Li J, Wu J, Zhou X, Lu Y, Ge Y, Zhang X. Targeting neuronal mitophagy in ischemic stroke: an update.
BURNS & TRAUMA 2023;
11:tkad018. [PMID:
37274155 PMCID:
PMC10232375 DOI:
10.1093/burnst/tkad018]
[Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/29/2023] [Accepted: 03/19/2023] [Indexed: 06/06/2023]
Abstract
Cerebral ischemia is a neurological disorder associated with complex pathological mechanisms, including autophagic degradation of neuronal mitochondria, or termed mitophagy, following ischemic events. Despite being well-documented, the cellular and molecular mechanisms underlying the regulation of neuronal mitophagy remain unknown. So far, the evidence suggests neuronal autophagy and mitophagy are separately regulated in ischemic neurons, the latter being more likely activated by reperfusional injury. Specifically, given the polarized morphology of neurons, mitophagy is regulated by different neuronal compartments, with axonal mitochondria being degraded by autophagy in the cell body following ischemia-reperfusion insult. A variety of molecules have been associated with neuronal adaptation to ischemia, including PTEN-induced kinase 1, Parkin, BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3), Bnip3-like (Bnip3l) and FUN14 domain-containing 1. Moreover, it is still controversial whether mitophagy protects against or instead aggravates ischemic brain injury. Here, we review recent studies on this topic and provide an updated overview of the role and regulation of mitophagy during ischemic events.
Collapse