1
|
Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 2014; 107:127-135. [PMID: 25498389 DOI: 10.1016/j.neuroimage.2014.12.002] [Citation(s) in RCA: 450] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/20/2022] Open
Abstract
To determine placement of electrodes after deep brain stimulation (DBS) surgery, a novel toolbox that facilitates both reconstruction of the lead electrode trajectory and the contact placement is introduced. Using the toolbox, electrode placement can be reconstructed and visualized based on the electrode-induced artifacts on post-operative magnetic resonance (MR) or computed tomography (CT) images. Correct electrode placement is essential for efficacious treatment with DBS. Post-operative knowledge about the placement of DBS electrode contacts and trajectories is a promising tool for clinical evaluation of DBS effects and adverse effects. It may help clinicians in identifying the best stimulation contacts based on anatomical target areas and may even shorten test stimulation protocols in the future. Fifty patients that underwent DBS surgery were analyzed in this study. After normalizing the post-operative MR/CT volumes into standard Montreal Neurological Institute (MNI)-stereotactic space, electrode leads (n=104) were detected by a novel algorithm that iteratively thresholds each axial slice and isolates the centroids of the electrode artifacts within the MR/CT-images (MR only n=32, CT only n=10, MR and CT n=8). Two patients received four, the others received two quadripolar DBS leads bilaterally, summing up to a total of 120 lead localizations. In a second reconstruction step, electrode contacts along the lead trajectories were reconstructed by using templates of electrode tips that had been manually created beforehand. Reconstructions that were made by the algorithm were finally compared to manual surveys of contact localizations. The algorithm was able to robustly accomplish lead reconstructions in an automated manner in 98% of electrodes and contact reconstructions in 69% of electrodes. Using additional subsequent manual refinement of the reconstructed contact positions, 118 of 120 electrode lead and contact reconstructions could be localized using the toolbox. Taken together, the toolbox presented here allows for a precise and fast reconstruction of DBS contacts by proposing a semi-automated procedure. Reconstruction results can be directly exported to two- and three-dimensional views that show the relationship between DBS contacts and anatomical target regions. The toolbox is made available to the public in form of an open-source MATLAB repository.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
450 |
2
|
FABIANI MONICA, LOW KATHYA, TAN CHINHONG, ZIMMERMAN BENJAMIN, FLETCHER MARKA, SCHNEIDER-GARCES NILS, MACLIN EDWARDL, CHIARELLI ANTONIOM, SUTTON BRADLEYP, GRATTON GABRIELE. Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods. Psychophysiology 2014; 51:1072-88. [PMID: 25100639 PMCID: PMC9906973 DOI: 10.1111/psyp.12288] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022]
Abstract
Cerebrovascular support is crucial for healthy cognitive and brain aging. Arterial stiffening is a cause of reduced brain blood flow, a predictor of cognitive decline, and a risk factor for cerebrovascular accidents and Alzheimer's disease. Arterial health is influenced by lifestyle factors, such as cardiorespiratory fitness (CRF). We investigated new noninvasive optical measures of cerebrovascular health, which provide estimates of arterial pulse parameters (pulse pressure, transit time, and compliance/elasticity) within specific cerebral arteries and cortical regions, and low-resolution maps of large superficial cerebral arteries. We studied naturally occurring variability in these parameters in adults (aged 55-87), and found that these indices of cerebrovascular health are negatively correlated with age and positively with CRF and gray and white matter volumes. Further, regional pulse transit time predicts specific neuropsychological performance.
Collapse
|
research-article |
11 |
57 |
3
|
Kotrschal A, Deacon AE, Magurran AE, Kolm N. Predation pressure shapes brain anatomy in the wild. Evol Ecol 2017; 31:619-633. [PMID: 32009719 PMCID: PMC6961500 DOI: 10.1007/s10682-017-9901-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/08/2017] [Indexed: 11/30/2022]
Abstract
There is remarkable diversity in brain anatomy among vertebrates and evidence is accumulating that predatory interactions are crucially important for this diversity. To test this hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the biomass of the four major predators of guppies (one prawn and three fish species), and predator diversity (number of predatory fish species in each site). We found that populations from localities with higher prawn biomass had relatively larger telencephalon size as well as larger brains. Optic tectum size was positively associated with one of the fish predator’s biomass and with overall predator diversity. However, both olfactory bulb and hypothalamus size were negatively associated with the biomass of another of the fish predators. Hence, while fish predator occurrence is associated with variation in brain anatomy, prawn occurrence is associated with variation in brain size. Our results suggest that cognitive challenges posed by local differences in predator communities may lead to changes in prey brain anatomy in the wild.
Collapse
|
Journal Article |
8 |
53 |
4
|
Nagalski A, Puelles L, Dabrowski M, Wegierski T, Kuznicki J, Wisniewska MB. Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct Funct 2016; 221:2493-510. [PMID: 25963709 PMCID: PMC4884203 DOI: 10.1007/s00429-015-1052-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Abstract
Thalamocortical loops have been implicated in the control of higher-order cognitive functions, but advances in our understanding of the molecular underpinnings of neocortical organization have not been accompanied by similar analyses in the thalamus. Using expression-based correlation maps and the manual mapping of mouse and human datasets available in the Allen Brain Atlas, we identified a few individual regions and several sets of molecularly related nuclei that partially overlap with the classic grouping that is based on topographical localization and thalamocortical connections. These new molecular divisions of the adult thalamic complex are defined by the combinatorial expression of Tcf7l2, Lef1, Gbx2, Prox1, Pou4f1, Esrrg, and Six3 transcription factor genes. Further in silico and experimental analyses provided the evidence that TCF7L2 might be a pan-thalamic specifier. These results provide substantial insights into the "molecular logic" that underlies organization of the thalamic complex.
Collapse
|
research-article |
9 |
45 |
5
|
Wang H, Zhu J, Akkin T. Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. Neuroimage 2013; 84:1007-17. [PMID: 24099843 DOI: 10.1016/j.neuroimage.2013.09.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/25/2013] [Accepted: 09/23/2013] [Indexed: 02/01/2023] Open
Abstract
We describe a serial optical coherence scanner (SOCS) for high resolution imaging of ex-vivo brain. SOCS integrates a multi-contrast optical coherence tomography and a vibratome slicer to establish comprehensive brain anatomy and fiber pathways in three-dimensional space. Rat brain images are demonstrated by utilizing intrinsic optical contrasts including back-scattering, birefringence and optic axis orientation, which are simultaneously generated from the same dataset. Volumetric images from serial scans are combined to realize large scale brain maps. Nerve fiber tracts are globally described in 3D by retardance, and delicately delineated by cross-polarization at the resolution of 15×15×5.5μm(3). In-plane orientations of the tracts are quantified by optic axis orientation. SOCS offers a new solution for complete reconstructions of macroscopic tissues such as primate and human brains at microscopic resolution. The technique also opens up varieties of opportunities for connectome studies and systematic investigations on neurological diseases and brain disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
39 |
6
|
De Benedictis A, Nocerino E, Menna F, Remondino F, Barbareschi M, Rozzanigo U, Corsini F, Olivetti E, Marras CE, Chioffi F, Avesani P, Sarubbo S. Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences. World Neurosurg 2018; 115:e279-e291. [PMID: 29660551 DOI: 10.1016/j.wneu.2018.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. METHODS The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. RESULTS We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. CONCLUSIONS Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments.
Collapse
|
Journal Article |
7 |
38 |
7
|
Baumgartner T, Schiller B, Hill C, Knoch D. Impartiality in humans is predicted by brain structure of dorsomedial prefrontal cortex. Neuroimage 2013; 81:317-324. [PMID: 23689015 DOI: 10.1016/j.neuroimage.2013.05.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/15/2022] Open
Abstract
The moral force of impartiality (i.e. the equal treatment of all human beings) is imperative for providing justice and fairness. Yet, in reality many people become partial during intergroup interactions; they demonstrate a preferential treatment of ingroup members and a discriminatory treatment of outgroup members. Some people, however, do not show this intergroup bias. The underlying sources of these inter-individual differences are poorly understood. Here we demonstrate that the larger the gray matter volume and thickness of the dorsomedial prefrontal cortex (DMPFC), the more individuals in the role of an uninvolved third-party impartially punish outgroup and ingroup perpetrators. Moreover, we show evidence for a possible mechanism that explains the impact of DMPFC's gray matter volume on impartiality, namely perspective-taking. Large gray matter volume of DMPFC seems to facilitate equal perspective-taking of all sides, which in turn leads to impartial behavior. This is the first evidence demonstrating that brain structure of the DMPFC constitutes an important source underlying an individual's propensity for impartiality.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
8
|
Lázaro J, Hertel M, Sherwood CC, Muturi M, Dechmann DKN. Profound seasonal changes in brain size and architecture in the common shrew. Brain Struct Funct 2018; 223:2823-2840. [PMID: 29663134 PMCID: PMC5995987 DOI: 10.1007/s00429-018-1666-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
Abstract
The seasonal changes in brain size of some shrews represent the most drastic reversible transformation in the mammalian central nervous system known to date. Brain mass decreases 10-26% from summer to winter and regrows 9-16% in spring, but the underlying structural changes at the cellular level are not yet understood. Here, we describe the volumetric differences in brain structures between seasons and sexes of the common shrew (Sorex araneus) in detail, confirming that changes in different brain regions vary in the magnitude of change. Notably, shrews show a decrease in hypothalamus, thalamus, and hippocampal volume and later regrowth in spring, whereas neocortex and striatum volumes decrease in winter and do not recover in size. For some regions, males and females showed different patterns of seasonal change from each other. We also analyzed the underlying changes in neuron morphology. We observed a general decrease in soma size and total dendrite volume in the caudoputamen and anterior cingulate cortex. This neuronal retraction may partially explain the overall tissue shrinkage in winter. While not sufficient to explain the entire seasonal process, it represents a first step toward understanding the mechanisms beneath this remarkable phenomenon.
Collapse
|
research-article |
7 |
26 |
9
|
Wittbrodt MT, Sawka MN, Mizelle JC, Wheaton LA, Millard‐Stafford ML. Exercise-heat stress with and without water replacement alters brain structures and impairs visuomotor performance. Physiol Rep 2018; 6:e13805. [PMID: 30136401 PMCID: PMC6105626 DOI: 10.14814/phy2.13805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Effects of exercise-heat stress with and without water replacement on brain structure and visuomotor performance were examined. Thirteen healthy adults (23.6 ± 4.2 years) completed counterbalanced 150 min trials of exercise-heat stress (45°C, 15% RH) with water replacement (EHS) or without (~3% body mass loss; EHS-DEH) compared to seated rest (CON). Anatomical scans and fMRI Blood-Oxygen-Level-Dependent responses during a visuomotor pacing task were evaluated. Accuracy decreased (P < 0.05) despite water replacement during EHS (-8.2 ± 6.8% vs. CON) but further degraded with EHS-DEH (-8.3 ± 6.4% vs. EHS and -16.5 ± 10.2% vs. CON). Relative to CON, EHS elicited opposing volumetric changes (P < 0.05) in brain ventricles (-5.3 ± 1.7%) and periventricular structures (cerebellum: 1.5 ± 0.8%) compared to EHS-DEH (ventricles: 6.8 ± 3.4, cerebellum: -0.7 ± 0.7; thalamus: -2.7 ± 1.3%). Changes in plasma osmolality (EHS: -3.0 ± 2.1; EHS-DEH: 9.3 ± 2.1 mOsm/kg) were related (P < 0.05) to thalamus (r = -0.45) and cerebellum volume (r = -0.61) which, in turn, were related (P < 0.05) to lateral (r = -0.41) and fourth ventricle volume (r = -0.67) changes, respectively; but, there were no associations (P > 0.50) between structural changes and visuomotor accuracy. EHS-DEH increased neural activation (P < 0.05) within motor and visual areas versus EHS and CON. Brain structural changes are related to bidirectional plasma osmolality perturbations resulting from exercise-heat stress (with and without water replacement), but do not explain visuomotor impairments. Negative impacts of exercise-heat stress on visuomotor tasks are further exacerbated by dehydration.
Collapse
|
research-article |
7 |
21 |
10
|
Pereira-Pedro AS, Bruner E. Sulcal pattern, extension, and morphology of the precuneus in adult humans. Ann Anat 2016; 208:85-93. [PMID: 27210059 DOI: 10.1016/j.aanat.2016.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/01/2022]
Abstract
The precuneus represents a relevant cortical component of the parietal lobes. It is involved in visuospatial integration, imagery and simulation, self-awareness, and it is a main node of the Default Mode Network. Its morphology is extremely variable among adult humans, and it has been hypothesized to have undergone major morphological changes in the evolution of Homo sapiens. Recent studies have evidenced a marked variation also associated with its sulcal patterns. The present survey contributes to add further information on this topic, investigating the extension of its main folds, their geometrical influence on the lateral parietal areas, and the relationships with the sulcal schemes. The subparietal sulcus, on average, extends 14mm in its anterior and middle regions and 11mm in its posterior area. The precuneal area extends 36mm above this sulcus. The subparietal sulcus is generally wider on the right hemisphere. Males have larger values than females, but differences are not significant. Sulcal pattern is not correlated with the size of the subparietal sulcus extension. There is a lack of consistent correspondence between hemispheres in the sulcal patterns, pointing further towards a notable individual variability and random asymmetries. The vertical extension of the precuneus influences the height and proportions of the upper parietal profile, but the lateral parietal outline is not sensitive to precuneal variation. There is no correlation between external cortical shape and the size of the subparietal sulcus. Morphological analyses of the precuneus must be integrated with studies on histological factors involved in its variability and, ultimately, with analyses on possible relationships with functional factors.
Collapse
|
Journal Article |
9 |
19 |
11
|
Raznahan A, Lue Y, Probst F, Greenstein D, Giedd J, Wang C, Lerch J, Swerdloff R. Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies. Brain Struct Funct 2014; 220:3581-93. [PMID: 25146308 DOI: 10.1007/s00429-014-0875-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/09/2014] [Indexed: 12/11/2022]
Abstract
Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be co-localized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study--XO, XX, XY and XXY--to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males ("forebrain cholinergic" and "cerebelo-pontine-thalamo-cortical"), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA.
Collapse
|
Journal Article |
11 |
18 |
12
|
Cortical thickness and trait empathy in patients and people at high risk for alcohol use disorders. Psychopharmacology (Berl) 2017; 234:3521-3533. [PMID: 28971228 DOI: 10.1007/s00213-017-4741-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/27/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
RATIONALE Alcoholism not only affects individuals with alcohol use disorder (AUD) but also their biological relatives. This high-risk (HR) group has a higher probability to develop AUD. The aim of our study was to compare cortical thickness (CT) in AUD patients relative to participants with (HR) and without (non-HR) familial predisposition for AUD. We focused on empathy-related brain areas as sociocognitive impairment represents a known risk factor for AUD. METHOD We examined 13 individuals with AUD, 14 HR individuals, and 20 non-HR participants using high-resolution T1-weighted magnetic resonance images (3 Tesla) to investigate differences in CT. CT was correlated with self-reported empathy in empathy-related areas. RESULTS AUD patients showed decreased CT in the left inferior and superior frontal gyri, the right precuneus and bilaterally in the middle frontal gyri/the insula relative to the HR group, and in the left insula, the right middle frontal gyrus and bilaterally in the superior frontal gyrus/the precuneus relative to the non-HR group (all ps < 0.036, all ƞp2 between 0.161 and 0.375). Reduced CT in inferior, middle, and superior frontal gyri was related to cognitive (all ps < 0.036) and reduced CT in the inferior frontal gyrus to affective (p = 0.031) empathy. CONCLUSIONS We present preliminary evidence of CT reduction in empathy-associated brain regions in patients with AUD relative to healthy participants with and without familial predisposition for AUD. The results have to be interpreted with caution due to low sample sizes and potential confounding effects of medication, gender, and withdrawal.
Collapse
|
|
8 |
14 |
13
|
Mann C, Bletsch A, Andrews D, Daly E, Murphy C, Murphy D, Ecker C. The effect of age on vertex-based measures of the grey-white matter tissue contrast in autism spectrum disorder. Mol Autism 2018; 9:49. [PMID: 30302187 PMCID: PMC6167902 DOI: 10.1186/s13229-018-0232-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/11/2018] [Indexed: 11/17/2022] Open
Abstract
Background Histological evidence suggests that autism spectrum disorder (ASD) is accompanied by a reduced integrity of the grey-white matter boundary. This has also recently been confirmed by a structural neuroimaging study in vivo reporting significantly reduced grey-white matter tissue contrast (GWC) in adult individuals (18–42 years of age) with ASD relative to typically developing (TD) controls. However, it remains unknown whether the neuroanatomical differences in ASD at the grey-white matter boundary are stable across development or are age-dependent. Methods Here, we examined differences in the neurodevelopmental trajectories of GWC in a cross-sectional sample of 77 male ASD individuals and 76 typically developing (TD) controls across childhood and early adulthood (from 7 to 25 years). Results Using nested model comparisons, we first established that the developmental trajectory of GWC is complex in many regions across the cortex and includes linear and non-linear effects of age. Second, while ASD individuals have significantly reduced GWC overall, these differences are age-dependent and are most prominent during childhood (< 15 years). Conclusions Taken together, our findings suggest that differences in GWC in ASD are unlikely to reflect atypical grey matter cytoarchitecture alone, but may also represent other aspects of the cortical architecture such as age-dependent variability in myelin integrity. Electronic supplementary material The online version of this article (10.1186/s13229-018-0232-6) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
10 |
14
|
García-Conde M, Martín-Viota L. [Arachnoid cysts: Embriology and pathology]. Neurocirugia (Astur) 2015; 26:137-42. [PMID: 25866380 DOI: 10.1016/j.neucir.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/07/2015] [Indexed: 11/19/2022]
Abstract
There is still great controversy surrounding the origin of the arachnoid cyst. The most accepted theory in the case of congenital cysts explains how they are formed from an anomalous development of the arachnoid membrane, which is unfolded allowing the accumulation of cerebrospinal fluid inside and creating a cyst. This theory seems to explain the origin of convexity and sylvian cistern arachnoid cysts, whereas those in other locations might be due to other mechanisms. In the anatomopathological analysis, the arachnoid cyst wall can be seen as having few differences from normal, although thickened due to an increase quantity of collagenous material. A description of the embryological development of the arachnoid layer and cyst formation is presented, describing the main anatomopathological findings.
Collapse
|
English Abstract |
10 |
9 |
15
|
Müller M, Esser R, Kötter K, Voss J, Müller A, Stellmes P. Width of 3. Ventricle: reference values and clinical relevance in a cohort of patients with relapsing remitting multiple sclerosis. Open Neurol J 2013; 7:11-6. [PMID: 23730365 PMCID: PMC3664451 DOI: 10.2174/1874205x01307010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 11/22/2022] Open
Abstract
Objectives: To estimate the quantity of multiple sclerosis (MS) patients with brain atrophy as indicated by third ventricular enlargement using transcranial colourcoded ultrasound (TCCS). Methods: The width of the 3. ventricle was assessed by TCCS in 70 healthy controls (male 31, female 39, mean age 41 ± 15 years, age range 18 – 79 years), and in a cohort of 54 patients with relapsing remitting MS (male 16, female 38, mean age 40 ± 10 years, median EDSS 2 [1-3]). Results: In the controls, the width of the 3. ventricle increased with age (without any sex differences) from 3.0 ± 0.76 mm in the age group < 40 years to 4.0 ± 0.74 mm in the age group of 60 years or more (ANOVA p=0.0001). Derived from regression analysis, the upper limit of the 95% Confidence Interval for each year provided cutoff points according to which 14 of 54 patients (25%) exhibited an enlarged 3. ventricle. In a multivariate regression analysis, the width of the 3. ventricle over all MS patients was significantly related to EDSS (Spearman rho , r=0.446, p<0.005) and to MS duration (r=0.319, p<0.005). Conclusions: Even in MS patients in good clinical conditions the rate of patients with brain atrophy determined by TCCS is high.
Collapse
|
|
12 |
7 |
16
|
Gómez-de Frutos MC, García-Suárez I, Laso-García F, Diekhorst L, Otero-Ortega L, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Ruiz-Ares G. Identification of brain structures and blood vessels by conventional ultrasound in rats. J Neurosci Methods 2020; 346:108935. [PMID: 32916202 DOI: 10.1016/j.jneumeth.2020.108935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/16/2020] [Accepted: 09/02/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ultrasound is a safe, non-invasive and affordable imaging technique for the visualization of internal structures and the measurement of blood velocity using Doppler imaging. However, despite all these advantages, no study has identified the structures of the rat brain using conventional ultrasound. METHODS A 13 MHz high frequency transducer was used to identify brain structures in the rat. The enlargement of the transcranial window was performed gradually using the ultrasound directly on the skin of the animal, then against the skull, then through a delimited craniotomy and finally through a complete craniotomy. RESULTS Our results showed that ultrasound allowed the identification of cerebral ventricles and subarachnoid cisterns, as well as the analysis of real-time monitoring of cerebral blood flow in the main brain arteries of the rat. COMPARISON WITH EXISTING METHODS Ultrasound is a tool with the potential to identify brain structures and blood vessels. In contrast to MRI, transcranial ultrasound is a fast, non-invasive, well tolerated and low-cost method and can be done at the bedside. CONCLUSION In the present study, we described an atlas of the main brain structures as well as the main vasculature in the rat using ultrasound. This technique could be applied in animal models of various neurological diseases.
Collapse
|
|
5 |
6 |
17
|
Abstract
OBJECTIVE To explore motor praxis in adults with Prader-Willi syndrome (PWS) in comparison with a control group of people with intellectual disability (ID) and to examine the relationship with brain structural measurements. METHOD Thirty adult participants with PWS and 132 with ID of nongenetic etiology (matched by age, sex, and ID level) were assessed using a comprehensive evaluation of the praxis function, which included pantomime of tool use, imitation of meaningful and meaningless gestures, motor sequencing, and constructional praxis. RESULTS Results support specific praxis difficulties in PWS, with worse performance in the imitation of motor actions and better performance in constructional praxis than ID peers. Compared with both control groups, PWS showed increased gray matter volume in sensorimotor and subcortical regions. However, we found no obvious association between these alterations and praxis performance. Instead, praxis scores correlated with regional volume measures in distributed apparently normal brain areas. CONCLUSIONS Our findings are consistent in showing significant impairment in gesture imitation abilities in PWS and, otherwise, further indicate that the visuospatial praxis domain is relatively preserved. Praxis disability in PWS was not associated with a specific, focal alteration of brain anatomy. Altered imitation gestures could, therefore, be a consequence of widespread brain dysfunction. However, the specific contribution of key brain structures (e.g., areas containing mirror neurons) should be more finely tested in future research.
Collapse
|
|
4 |
6 |
18
|
Gudbrandsen M, Bletsch A, Mann C, Daly E, Murphy CM, Stoencheva V, Blackmore CE, Rogdaki M, Kushan L, Bearden CE, Murphy DGM, Craig MC, Ecker C. Neuroanatomical underpinnings of autism symptomatology in carriers and non-carriers of the 22q11.2 microdeletion. Mol Autism 2020; 11:46. [PMID: 32513259 PMCID: PMC7282054 DOI: 10.1186/s13229-020-00356-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A crucial step to understanding the mechanistic underpinnings of autism spectrum disorder (ASD), is to examine if the biological underpinnings of ASD in genetic high-risk conditions, like 22q11.2 deletion syndrome (22q11.2DS), are similar to those in idiopathic illness. This study aimed to examine if ASD symptomatology in 22q11.2DS is underpinned by the same-or distinct-neural systems that mediate these symptoms in non-deletion carriers. METHODS We examined vertex-wise estimates of cortical volume (CV), surface area (SA), and cortical thickness across 131 individuals between 6 and 25 years of age including (1) 50 individuals with 22q11.2DS, out of which n = 25 had a diagnosis of ASD, (2) 40 non-carriers of the microdeletion with a diagnosis of ASD (i.e., idiopathic ASD), and (3) 41 typically developing (TD) controls. We employed a 2-by-2 factorial design to identify neuroanatomical variability associated with the main effects of 22q11.2DS and ASD, as well as their interaction. Further, using canonical correlation analysis (CCA), we compared neuroanatomical variability associated with the complex (i.e., multivariate) clinical phenotype of ASD between 22q11.2 deletion carriers and non-carriers. RESULTS The set of brain regions associated with the main effect of 22q11.2DS was distinct from the neuroanatomical underpinnings of the main effect of ASD. Moreover, significant 22q11.2DS-by-ASD interactions were observed for CV and SA in the dorsolateral prefrontal cortex, precentral gyrus, and posterior cingulate cortex, suggesting that the neuroanatomy of ASD is significantly modulated by 22q11.2DS (p < 0.01). We further established that the multivariate patterns of neuroanatomical variability associated with differences in symptom profiles significantly differed between 22q11.2 deletion carriers and non-carriers. LIMITATIONS We employed a multicenter design to overcome single-site recruitment limitations; however, FreeSurfer-derived measures of surface anatomy have been shown to be highly reliable across scanner platforms and field strengths. Further, we controlled for gender to address the differing distribution between idiopathic ASD individuals and the other groups. Nonetheless, the gender distribution in our sample reflects that of the respective populations, adding to the generalizability of our results. Last, we included individuals with a relatively wide age range (i.e., 6-25 years). CONCLUSIONS Our findings indicate that neuroanatomical correlates of ASD symptomatology in carriers of the 22q11.2 microdeletion diverge from those in idiopathic ASD.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
5 |
19
|
Weiss A, Di Carlo DT, Di Russo P, Weiss F, Castagna M, Cosottini M, Perrini P. Microsurgical anatomy of the amygdaloid body and its connections. Brain Struct Funct 2021; 226:861-874. [PMID: 33528620 DOI: 10.1007/s00429-020-02214-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The amygdaloid body is a limbic nuclear complex characterized by connections with the thalamus, the brainstem and the neocortex. The recent advances in functional neurosurgery regarding the treatment of refractory epilepsy and several neuropsychiatric disorders renewed the interest in the study of its functional Neuroanatomy. In this scenario, we felt that a morphological study focused on the amygdaloid body and its connections could improve the understanding of the possible implications in functional neurosurgery. With this purpose we performed a morfological study using nine formalin-fixed human hemispheres dissected under microscopic magnification by using the fiber dissection technique originally described by Klingler. In our results the amygdaloid body presents two divergent projection systems named dorsal and ventral amygdalofugal pathways connecting the nuclear complex with the septum and the hypothalamus. Furthermore, the amygdaloid body is connected with the hippocampus through the amygdalo-hippocampal bundle, with the anterolateral temporal cortex through the amygdalo-temporalis fascicle, the anterior commissure and the temporo-pulvinar bundle of Arnold, with the insular cortex through the lateral olfactory stria, with the ambiens gyrus, the para-hippocampal gyrus and the basal forebrain through the cingulum, and with the frontal cortex through the uncinate fascicle. Finally, the amygdaloid body is connected with the brainstem through the medial forebrain bundle. Our description of the topographic anatomy of the amygdaloid body and its connections, hopefully represents a useful tool for clinicians and scientists, both in the scope of application and speculation.
Collapse
|
Journal Article |
4 |
5 |
20
|
López JD, Valencia F, Flandin G, Penny W, Barnes GR. Reconstructing anatomy from electro-physiological data. Neuroimage 2017; 163:480-486. [PMID: 28687516 PMCID: PMC5725312 DOI: 10.1016/j.neuroimage.2017.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/25/2022] Open
Abstract
Here we show how it is possible to make estimates of brain structure based on MEG data. We do this by reconstructing functional estimates onto distorted cortical manifolds parameterised in terms of their spherical harmonics. We demonstrate that both empirical and simulated MEG data give rise to consistent and plausible anatomical estimates. Importantly, the estimation of structure from MEG data can be quantified in terms of millimetres from the true brain structure. We show, for simulated data, that the functional assumptions which are closer to the functional ground-truth give rise to anatomical estimates that are closer to the true anatomy.
Collapse
|
|
8 |
5 |
21
|
Hanley AP, Blumenthal JD, Raitano Lee N, Baker EH, Clasen LS, Giedd JN. Brain and behavior in 48, XXYY syndrome. Neuroimage Clin 2015; 8:133-9. [PMID: 26106537 PMCID: PMC4473812 DOI: 10.1016/j.nicl.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 11/14/2022]
Abstract
The phenotype of 48, XXYY syndrome (referred to as XXYY) is associated with characteristic but variable developmental, cognitive, behavioral and physical abnormalities. To discern the neuroanatomical phenotype of the syndrome, we conducted quantitative and qualitative analyses on MRI brain scans from 25 males with XXYY and 92 age and SES matched typically developing XY males. Quantitatively, males in the XXYY group had smaller gray and white matter volumes of the frontal and temporal lobes. Conversely, both gray and white matter volumes of the parietal lobe as well as lateral ventricular volume were larger in the XXYY group. Qualitatively, males in the XXYY group had a higher incidence of colpocephaly (84% vs. 34%, p ≤ 0.001), white matter lesions (25% vs. 5%, p = 0.007), and thin posterior body of the corpus callosum (28% vs. 3%, p = 0.001). The specificity of these findings may shed light on the role of the X and Y chromosomes in typical and atypical brain development and help provide direction for future studies of brain-behavior relationships in males with XXYY syndrome.
Collapse
|
Research Support, N.I.H., Intramural |
10 |
5 |
22
|
Koutsarnakis C, Komaitis S, Drosos E, Kalyvas AV, Skandalakis GP, Liakos F, Neromyliotis E, Lani E, Kalamatianos T, Stranjalis G. Mapping the superficial morphology of the occipital lobe: proposal of a universal nomenclature for clinical and anatomical use. Neurosurg Rev 2019; 44:335-350. [PMID: 31758336 DOI: 10.1007/s10143-019-01212-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 11/27/2022]
Abstract
The superficial anatomy of the occipital lobe has been described as irregular and highly complex. This notion mainly arises from the variability of the regional sulco-gyral architecture. Our aim was to investigate the prevalence, morphology, and correlative anatomy of the sulci and gyri of the occipital region in cadaveric specimens and to summarize the nomenclature used in the literature to describe these structures. To this end, 33 normal, adult, formalin-fixed hemispheres were studied. In addition, a review of the relevant literature was conducted with the aim to compare our findings with data from previous studies. Hence, in the lateral occipital surface, we recorded the lateral occipital sulcus and the intraoccipital sulcus in 100%, the anterior occipital sulcus in 24%, and the inferior occipital sulcus in 15% of cases. In the area of the occipital pole, we found the transverse occipital sulcus in 88% of cases, the lunate sulcus in 64%, the occipitopolar sulcus in 24%, and the retrocalcarine sulcus in 12% of specimens. In the medial occipital surface, the calcarine fissure and parieto-occipital sulcus were always present. Finally, the basal occipital surface was always indented by the posterior occipitotemporal and posterior collateral sulci. A sulcus not previously described in the literature was identified on the supero-lateral aspect of the occipital surface in 85% of cases. We named this sulcus "marginal occipital sulcus" after its specific topography. In this study, we offer a clear description of the occipital surface anatomy and further propose a standardized taxonomy for clinical and anatomical use.
Collapse
|
Journal Article |
6 |
5 |
23
|
Buechel SD, Noreikiene K, DeFaveri J, Toli E, Kolm N, Merilä J. Variation in sexual brain size dimorphism over the breeding cycle in the three-spined stickleback. ACTA ACUST UNITED AC 2019; 222:jeb.194464. [PMID: 30936267 DOI: 10.1242/jeb.194464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/22/2019] [Indexed: 01/25/2023]
Abstract
Snapshot analyses have demonstrated dramatic intraspecific variation in the degree of brain sexual size dimorphism (SSD). Although brain SSD is believed to be generated by the sex-specific cognitive demands of reproduction, the relative roles of developmental and population-specific contributions to variation in brain SSD remain little studied. Using a common garden experiment, we tested for sex-specific changes in brain anatomy over the breeding cycle in three-spined stickleback (Gasterosteus aculeatus) sampled from four locations in northern Europe. We found that the male brain increased in size (ca. 24%) significantly more than the female brain towards breeding, and that the resulting brain SSD was similar (ca. 20%) for all populations over the breeding cycle. Our findings support the notion that the stickleback brain is highly plastic and changes over the breeding cycle, especially in males, likely as an adaptive response to the cognitive demands of reproduction (e.g. nest construction and parental care). The results also provide evidence to suggest that breeding-related changes in brain size may be the reason for the widely varying estimates of brain SSD across studies of this species, cautioning against interpreting brain size measurements from a single time point as fixed/static.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
4 |
24
|
Guizar Rosales E, Baumgartner T, Knoch D. Interindividual differences in intergenerational sustainable behavior are associated with cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. Neuroimage 2022; 264:119664. [PMID: 36202158 DOI: 10.1016/j.neuroimage.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Intergenerational sustainability requires people of the present generation to make sacrifices today to benefit others of future generations (e.g. mitigating climate change, reducing public debt). Individuals vary greatly in their intergenerational sustainability, and the cognitive and neural sources of these interindividual differences are not yet well understood. We here combined neuroscientific and behavioral methods by assessing interindividual differences in cortical thickness and by using a common-pool resource paradigm with intergenerational contingencies. This enabled us to look for objective, stable, and trait-like neural markers of interindividual differences in consequential intergenerational behavior. We found that individuals behaving sustainably (vs. unsustainably) were marked by greater cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. Given that these brain areas are involved in perspective-taking and self-control and supported by mediation analyses, we speculate that greater cortical thickness of these brain areas better enable individuals to take the perspective of future generations and to resist temptations to maximize personal benefits that incur costs for future generations. By meeting recent calls for the contribution of neuroscience to sustainability research, it is our hope that the present study advances the transdisciplinary understanding of interindividual differences in intergenerational sustainability.
Collapse
|
|
3 |
3 |
25
|
Del Maschio N, Sulpizio S, Abutalebi J. Thinking outside the box: The brain-bilingualism relationship in the light of early neurobiological variability. BRAIN AND LANGUAGE 2020; 211:104879. [PMID: 33080496 DOI: 10.1016/j.bandl.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Bilingualism represents a distinctive way to investigate the interplay between brain and behaviour, and an elegant model to study the role of environmental factors in shaping this relationship. Past neuroimaging research has mainly focused on how bilingualism influences brain structure, and how eventually the brain accommodates a second language. In this paper, we discuss a more recent contribution to the field which views bilingualism as lens to understand brain-behaviour mappings from a different perspective. It has been shown, in contexts not related to bilingualism, that cognitive performance across several domains can be predicted by neuroanatomical variants determined prenatally and largely impervious to postnatal changes. Here, we discuss novel findings indicating that bilingualism modulates the predictive role of these variants on domain-specific cognition. The repercussions of these findings are potentially far-reaching on multiple levels, and highlight the need to shape more complex questions for progress in cognitive neuroscience approaches to bilingualism.
Collapse
|
Review |
5 |
2 |