1
|
Lurie DJ, Kessler D, Bassett DS, Betzel RF, Breakspear M, Kheilholz S, Kucyi A, Liégeois R, Lindquist MA, McIntosh AR, Poldrack RA, Shine JM, Thompson WH, Bielczyk NZ, Douw L, Kraft D, Miller RL, Muthuraman M, Pasquini L, Razi A, Vidaurre D, Xie H, Calhoun VD. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw Neurosci 2020; 4:30-69. [PMID: 32043043 PMCID: PMC7006871 DOI: 10.1162/netn_a_00116] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain's functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as "dynamic" or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.
Collapse
|
Review |
5 |
340 |
2
|
Kucyi A, Davis KD. Dynamic functional connectivity of the default mode network tracks daydreaming. Neuroimage 2014; 100:471-80. [PMID: 24973603 DOI: 10.1016/j.neuroimage.2014.06.044] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/09/2014] [Accepted: 06/18/2014] [Indexed: 01/03/2023] Open
Abstract
Humans spend much of their time engaged in stimulus-independent thoughts, colloquially known as "daydreaming" or "mind-wandering." A fundamental question concerns how awake, spontaneous brain activity represents the ongoing cognition of daydreaming versus unconscious processes characterized as "intrinsic." Since daydreaming involves brief cognitive events that spontaneously fluctuate, we tested the hypothesis that the dynamics of brain network functional connectivity (FC) are linked with daydreaming. We determined the general tendency to daydream in healthy adults based on a daydreaming frequency scale (DDF). Subjects then underwent both resting state functional magnetic resonance imaging (rs-fMRI) and fMRI during sensory stimulation with intermittent thought probes to determine the occurrences of mind-wandering events. Brain regions within the default mode network (DMN), purported to be involved in daydreaming, were assessed for 1) static FC across the entire fMRI scans, and 2) dynamic FC based on FC variability (FCV) across 30s progressively sliding windows of 2s increments within each scan. We found that during both resting and sensory stimulation states, individual differences in DDF were negatively correlated with static FC between the posterior cingulate cortex and a ventral DMN subsystem involved in future-oriented thought. Dynamic FC analysis revealed that DDF was positively correlated with FCV within the same DMN subsystem in the resting state but not during stimulation. However, dynamic but not static FC, in this subsystem, was positively correlated with an individual's degree of self-reported mind-wandering during sensory stimulation. These findings identify temporal aspects of spontaneous DMN activity that reflect conscious and unconscious processes.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
256 |
3
|
Chen JE, Chang C, Greicius MD, Glover GH. Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics. Neuroimage 2015; 111:476-88. [PMID: 25662866 DOI: 10.1016/j.neuroimage.2015.01.057] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/07/2015] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, fMRI researchers have begun to realize that the brain's intrinsic network patterns may undergo substantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics, metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce various quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state alternations at each individual time frame and relies on very few assumptions; then apply these proposed metrics to quantify changes of brain dynamics during a sustained 2-back working memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less variability of global Pearson correlations with respect to the two chosen networks using a sliding-window approach during WM task compared to rest; then we show that the macroscopic decrease in variations in correlations during a WM task is also well characterized by the combined effect of a reduced number of dominant CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may provide alternative and more straightforward quantitative means of characterizing brain network dynamics than time-windowed correlation analyses.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
112 |
4
|
Stam CJ, van Straaten ECW, Van Dellen E, Tewarie P, Gong G, Hillebrand A, Meier J, Van Mieghem P. The relation between structural and functional connectivity patterns in complex brain networks. Int J Psychophysiol 2015; 103:149-60. [PMID: 25678023 DOI: 10.1016/j.ijpsycho.2015.02.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE An important problem in systems neuroscience is the relation between complex structural and functional brain networks. Here we use simulations of a simple dynamic process based upon the susceptible-infected-susceptible (SIS) model of infection dynamics on an empirical structural brain network to investigate the extent to which the functional interactions between any two brain areas depend upon (i) the presence of a direct structural connection; and (ii) the degree product of the two areas in the structural network. METHODS For the structural brain network, we used a 78×78 matrix representing known anatomical connections between brain regions at the level of the AAL atlas (Gong et al., 2009). On this structural network we simulated brain dynamics using a model derived from the study of epidemic processes on networks. Analogous to the SIS model, each vertex/brain region could be in one of two states (inactive/active) with two parameters β and δ determining the transition probabilities. First, the phase transition between the fully inactive and partially active state was investigated as a function of β and δ. Second, the statistical interdependencies between time series of node states were determined (close to and far away from the critical state) with two measures: (i) functional connectivity based upon the correlation coefficient of integrated activation time series; and (ii) effective connectivity based upon conditional co-activation at different time intervals. RESULTS We find a phase transition between an inactive and a partially active state for a critical ratio τ=β/δ of the transition rates in agreement with the theory of SIS models. Slightly above the critical threshold, node activity increases with degree, also in line with epidemic theory. The functional, but not the effective connectivity matrix closely resembled the underlying structural matrix. Both functional connectivity and, to a lesser extent, effective connectivity were higher for connected as compared to disconnected (i.e.: not directly connected) nodes. Effective connectivity scaled with the degree product. For functional connectivity, a weaker scaling relation was only observed for disconnected node pairs. For random networks with the same degree distribution as the original structural network, similar patterns were seen, but the scaling exponent was significantly decreased especially for effective connectivity. CONCLUSIONS Even with a very simple dynamical model it can be shown that functional relations between nodes of a realistic anatomical network display clear patterns if the system is studied near the critical transition. The detailed nature of these patterns depends on the properties of the functional or effective connectivity measure that is used. While the strength of functional interactions between any two nodes clearly depends upon the presence or absence of a direct connection, this study has shown that the degree product of the nodes also plays a large role in explaining interaction strength, especially for disconnected nodes and in combination with an effective connectivity measure. The influence of degree product on node interaction strength probably reflects the presence of large numbers of indirect connections.
Collapse
|
Journal Article |
10 |
97 |
5
|
Uddin LQ. Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder. Biol Psychiatry 2021; 89:172-183. [PMID: 32709415 PMCID: PMC7677208 DOI: 10.1016/j.biopsych.2020.05.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
Cognitive flexibility enables appropriate responses to a changing environment and is associated with positive life outcomes. Adolescence, with its increased focus on transitioning to independent living, presents particular challenges for youths with autism spectrum disorder (ASD) who often struggle to behave in a flexible way when faced with challenges. This review focuses on brain mechanisms underlying the development of flexible cognition during adolescence and how these neural systems are affected in ASD. Neuroimaging studies of task switching and set-shifting provide evidence for atypical lateral frontoparietal and midcingulo-insular network activation during cognitive flexibility task performance in individuals with ASD. Recent work also examines how intrinsic brain network dynamics support flexible cognition. These dynamic functional connectivity studies provide evidence for alterations in the number of transitions between brain states, as well as hypervariability of functional connections in adolescents with ASD. Future directions for the field include addressing issues related to measurement of cognitive flexibility using a combination of metrics with ecological and construct validity. Heterogeneity of executive function ability in ASD must also be parsed to determine which individuals will benefit most from targeted training to improve flexibility. The influence of pubertal hormones on brain network development and cognitive maturation in adolescents with ASD is another area requiring further exploration. Finally, the intriguing possibility that bilingualism might be associated with preserved cognitive flexibility in ASD should be further examined. Addressing these open questions will be critical for future translational neuroscience investigations of cognitive and behavioral flexibility in adolescents with ASD.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
62 |
6
|
Hassan M, Benquet P, Biraben A, Berrou C, Dufor O, Wendling F. Dynamic reorganization of functional brain networks during picture naming. Cortex 2015; 73:276-88. [PMID: 26478964 DOI: 10.1016/j.cortex.2015.08.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/06/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022]
Abstract
For efficient information processing during cognitive activity, functional brain networks have to rapidly and dynamically reorganize on a sub-second time scale. Tracking the spatiotemporal dynamics of large scale networks over this short time duration is a very challenging issue. Here, we tackle this problem by using dense electroencephalography (EEG) recorded during a picture naming task. We found that (i) the picture naming task can be divided into six brain network states (BNSs) characterized by significantly high synchronization of gamma (30-45 Hz) oscillations, (ii) fast transitions occur between these BNSs that last from 30 msec to 160 msec, (iii) based on the state of the art of the picture naming task, we consider that the spatial location of their nodes and edges, as well as the timing of transitions, indicate that each network can be associated with one or several specific function (from visual processing to articulation) and (iv) the comparison with previously-used approach aimed at localizing the sources showed that the network-based approach reveals networks that are more specific to the performed task. We speculate that the persistence of several brain regions in successive BNSs participates to fast and efficient information processing in the brain.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
56 |
7
|
Complexity measures of brain wave dynamics. Cogn Neurodyn 2011; 5:171-82. [PMID: 22654989 DOI: 10.1007/s11571-011-9151-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 12/08/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022] Open
Abstract
To understand the nature of brain dynamics as well as to develop novel methods for the diagnosis of brain pathologies, recently, a number of complexity measures from information theory, chaos theory, and random fractal theory have been applied to analyze the EEG data. These measures are crucial in quantifying the key notions of neurodynamics, including determinism, stochasticity, causation, and correlations. Finding and understanding the relations among these complexity measures is thus an important issue. However, this is a difficult task, since the foundations of information theory, chaos theory, and random fractal theory are very different. To gain significant insights into this issue, we carry out a comprehensive comparison study of major complexity measures for EEG signals. We find that the variations of commonly used complexity measures with time are either similar or reciprocal. While many of these relations are difficult to explain intuitively, all of them can be readily understood by relating these measures to the values of a multiscale complexity measure, the scale-dependent Lyapunov exponent, at specific scales. We further discuss how better indicators for epileptic seizures can be constructed.
Collapse
|
Journal Article |
14 |
53 |
8
|
Griffa A, Ricaud B, Benzi K, Bresson X, Daducci A, Vandergheynst P, Thiran JP, Hagmann P. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. Neuroimage 2017; 155:490-502. [PMID: 28412440 DOI: 10.1016/j.neuroimage.2017.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
The study of brain dynamics enables us to characterize the time-varying functional connectivity among distinct neural groups. However, current methods suffer from the absence of structural connectivity information. We propose to integrate infra-slow neural oscillations and anatomical-connectivity maps, as derived from functional and diffusion MRI, in a multilayer-graph framework that captures transient networks of spatio-temporal connectivity. These networks group anatomically wired and temporary synchronized brain regions and encode the propagation of functional activity on the structural connectome. In a group of 71 healthy subjects, we find that these transient networks demonstrate power-law spatial and temporal size, globally organize into well-known functional systems and describe wave-like trajectories of activation across anatomically connected regions. Within the transient networks, activity propagates through polysynaptic paths that include selective ensembles of structural connections and differ from the structural shortest paths. In the light of the communication-through-coherence principle, the identified spatio-temporal networks could encode communication channels' selection and neural assemblies, which deserves further attention. This work contributes to the understanding of brain structure-function relationships by considering the time-varying nature of resting-state interactions on the axonal scaffold, and it offers a convenient framework to study large-scale communication mechanisms and functional dynamics.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
46 |
9
|
Xie Y, Xu Z, Xia M, Liu J, Shou X, Cui Z, Liao X, He Y. Alterations in Connectome Dynamics in Autism Spectrum Disorder: A Harmonized Mega- and Meta-analysis Study Using the Autism Brain Imaging Data Exchange Dataset. Biol Psychiatry 2022; 91:945-955. [PMID: 35144804 DOI: 10.1016/j.biopsych.2021.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroimaging studies have reported functional connectome aberrancies in autism spectrum disorder (ASD). However, the time-varying patterns of connectome topology in individuals with ASD and the connection between these patterns and gene expression profiles remain unknown. METHODS To investigate case-control differences in dynamic connectome topology, we conducted mega- and meta-analyses of resting-state functional magnetic resonance imaging data of 939 participants (440 patients with ASD and 499 healthy control subjects, all males) from 18 independent sites, selected from the Autism Brain Imaging Data Exchange (ABIDE) dataset. Functional data were preprocessed and analyzed using harmonized protocols, and brain module dynamics was assessed using a multilayer network model. We further leveraged postmortem brain-wide gene expression data to identify transcriptomic signatures associated with ASD-related alterations in brain dynamics. RESULTS Compared with healthy control participants, individuals with ASD exhibited a higher global mean and lower standard deviation of whole-brain module dynamics, indicating an unstable and less regionally differentiated pattern. More specifically, individuals with ASD showed higher module switching, primarily in the medial prefrontal cortex, posterior cingulate gyrus, and angular gyrus, and lower switching in the visual regions. These alterations in brain dynamics were predictive of social impairments in individuals with ASD and were linked with expression profiles of genes primarily involved in the regulation of neurotransmitter transport and secretion as well as with previously identified autism-related genes. CONCLUSIONS This study is the first to identify consistent alterations in brain network dynamics in ASD and the transcriptomic signatures related to those alterations, furthering insights into the biological basis behind this disorder.
Collapse
|
Meta-Analysis |
3 |
31 |
10
|
Srivastava P, Nozari E, Kim JZ, Ju H, Zhou D, Becker C, Pasqualetti F, Pappas GJ, Bassett DS. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw Neurosci 2020; 4:1122-1159. [PMID: 33195951 PMCID: PMC7655113 DOI: 10.1162/netn_a_00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.
Collapse
|
research-article |
5 |
30 |
11
|
Iturria-Medina Y, Carbonell FM, Evans AC. Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration. Neuroimage 2018; 179:40-50. [PMID: 29894824 DOI: 10.1016/j.neuroimage.2018.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 01/23/2023] Open
Abstract
Personalized Medicine (PM) seeks to assist the patients according to their specific treatment needs and potential intervention responses. However, in the neurological context, this approach is limited by crucial methodological challenges, such as the requirement for an understanding of the causal disease mechanisms and the inability to predict the brain's response to therapeutic interventions. Here, we introduce and validate the concept of the personalized Therapeutic Intervention Fingerprint (pTIF), which predicts the effectiveness of potential interventions for controlling a patient's disease evolution. Each subject's pTIF can be inferred from multimodal longitudinal imaging (e.g. amyloid-β, metabolic and tau PET; vascular, functional and structural MRI). We studied an aging population (N = 331) comprising cognitively normal and neurodegenerative patients, longitudinally scanned using six different neuroimaging modalities. We found that the resulting pTIF vastly outperforms cognitive and clinical evaluations on predicting individual variability in gene expression (GE) profiles. Furthermore, after regrouping the patients according to their predicted primary single-target interventions, we observed that these pTIF-based subgroups present distinctively altered molecular pathway signatures, supporting the across-population identification of dissimilar pathological stages, in active correspondence with different therapeutic needs. The results further evidence the imprecision of using broad clinical categories for understanding individual molecular alterations and selecting appropriate therapeutic needs. To our knowledge, this is the first study highlighting the direct link between multifactorial brain dynamics, predicted treatment responses, and molecular alterations at the patient level. Inspired by the principles of PM, the proposed pTIF framework is a promising step towards biomarker-driven assisted therapeutic interventions, with additional important implications for selective enrollment of patients in clinical trials.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
28 |
12
|
Zhang Y, Tetrel L, Thirion B, Bellec P. Functional annotation of human cognitive states using deep graph convolution. Neuroimage 2021; 231:117847. [PMID: 33582272 DOI: 10.1016/j.neuroimage.2021.117847] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
A key goal in neuroscience is to understand brain mechanisms of cognitive functions. An emerging approach is "brain decoding", which consists of inferring a set of experimental conditions performed by a participant, using pattern classification of brain activity. Few works so far have attempted to train a brain decoding model that would generalize across many different cognitive tasks drawn from multiple cognitive domains. To tackle this problem, we proposed a multidomain brain decoder that automatically learns the spatiotemporal dynamics of brain response within a short time window using a deep learning approach. We evaluated the decoding model on a large population of 1200 participants, under 21 different experimental conditions spanning six different cognitive domains, acquired from the Human Connectome Project task-fMRI database. Using a 10s window of fMRI response, the 21 cognitive states were identified with a test accuracy of 90% (chance level 4.8%). Performance remained good when using a 6s window (82%). It was even feasible to decode cognitive states from a single fMRI volume (720ms), with the performance following the shape of the hemodynamic response. Moreover, a saliency map analysis demonstrated that the high decoding performance was driven by the response of biologically meaningful brain regions. Together, we provide an automated tool to annotate human brain activity with fine temporal resolution and fine cognitive granularity. Our model shows potential applications as a reference model for domain adaptation, possibly making contributions in a variety of domains, including neurological and psychiatric disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
25 |
13
|
Geniesse C, Sporns O, Petri G, Saggar M. Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis. Netw Neurosci 2019; 3:763-778. [PMID: 31410378 PMCID: PMC6663215 DOI: 10.1162/netn_a_00093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
In this article, we present an open source neuroinformatics platform for exploring, analyzing, and validating distilled graphical representations of high-dimensional neuroimaging data extracted using topological data analysis (TDA). TDA techniques like Mapper have been recently applied to examine the brain's dynamical organization during ongoing cognition without averaging data in space, in time, or across participants at the outset. Such TDA-based approaches mark an important deviation from standard neuroimaging analyses by distilling complex high-dimensional neuroimaging data into simple-yet neurophysiologically valid and behaviorally relevant-representations that can be interactively explored at the single-participant level. To facilitate wider use of such techniques within neuroimaging and general neuroscience communities, our work provides several tools for visualizing, interacting with, and grounding TDA-generated graphical representations in neurophysiology. Through Python-based Jupyter notebooks and open datasets, we provide a platform to assess and visualize different intermittent stages of Mapper and examine the influence of Mapper parameters on the generated representations. We hope this platform could enable researchers and clinicians alike to explore topological representations of neuroimaging data and generate biological insights underlying complex mental disorders.
Collapse
|
research-article |
6 |
22 |
14
|
Targeted training modifies oscillatory brain activity in schizophrenia patients. NEUROIMAGE-CLINICAL 2015; 7:807-14. [PMID: 26082889 PMCID: PMC4459048 DOI: 10.1016/j.nicl.2015.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/03/2015] [Accepted: 03/15/2015] [Indexed: 01/01/2023]
Abstract
Effects of both domain-specific and broader cognitive remediation protocols have been reported for neural activity and overt performance in schizophrenia (SZ). Progress is limited by insufficient knowledge of relevant neural mechanisms. Addressing neuronal signal resolution in the auditory system as a mechanism contributing to cognitive function and dysfunction in schizophrenia, the present study compared effects of two neuroplasticity-based training protocols targeting auditory–verbal or facial affect discrimination accuracy and a standard rehabilitation protocol on magnetoencephalographic (MEG) oscillatory brain activity in an auditory paired-click task. SZ were randomly assigned to either 20 daily 1-hour sessions over 4 weeks of auditory–verbal training (N = 19), similarly intense facial affect discrimination training (N = 19), or 4 weeks of treatment as usual (TAU, N = 19). Pre-training, the 57 SZ showed smaller click-induced posterior alpha power modulation than did 28 healthy comparison participants, replicating Popov et al. (2011b). Abnormally small alpha decrease 300–800 ms around S2 improved more after targeted auditory–verbal training than after facial affect training or TAU. The improvement in oscillatory brain dynamics with training correlated with improvement on a measure of verbal learning. Results replicate previously reported effects of neuroplasticity-based psychological training on oscillatory correlates of auditory stimulus differentiation, encoding, and updating and indicate specificity of cortical training effects.
Induced posterior alpha power modulation in auditory paired-click design is abnormally small in schizophrenia patients. Abnormal alpha power modulation improved after neuroplasticity-based auditory training. Results confirm targeted training effects on oscillatory correlates of auditory stimulus discrimination, encoding, updating. No similar effects of visual affect discrimination training on alpha power indicate specificity of cortical training effects.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
15
|
Faghiri A, Iraji A, Damaraju E, Belger A, Ford J, Mathalon D, Mcewen S, Mueller B, Pearlson G, Preda A, Turner J, Vaidya JG, Van Erp TGM, Calhoun VD. Weighted average of shared trajectory: A new estimator for dynamic functional connectivity efficiently estimates both rapid and slow changes over time. J Neurosci Methods 2020; 334:108600. [PMID: 31978489 PMCID: PMC7371494 DOI: 10.1016/j.jneumeth.2020.108600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Dynamic functional network connectivity (dFNC) of the brain has attracted considerable attention recently. Many approaches have been suggested to study dFNC with sliding window Pearson correlation (SWPC) being the most well-known. SWPC needs a relatively large sample size to reach a robust estimation but using large window sizes prevents us to detect rapid changes in dFNC. NEW METHOD Here we first calculate the gradients of each time series pair and use the magnitude of these gradients to calculate weighted average of shared trajectory (WAST) as a new estimator for dFNC. RESULTS Using WAST to compare healthy control and schizophrenia patients using a large dataset, we show disconnectivity between different regions associated with schizophrenia. In addition, WAST results reveals patients with schizophrenia stay longer in a connectivity state with negative connectivity between motor and sensory regions than do healthy controls. COMPARISON WITH EXISTING METHODS We compare WAST with SWPC and multiplication of temporal derivatives (MTD) using different simulation scenarios. We show that WAST enables us to detect very rapid changes in dFNC (undetected by SWPC) while MTD performance is generally lower. CONCLUSIONS As large window sizes are unable to detect short states, using shorter window size is desirable if the estimator is robust enough. We provide evidence that WAST requires fewer samples (compared to SWPC) to reach a robust estimation. As a result, we were able to identify rapidly varying dFNC patterns undetected by SWPC while still being able to robustly estimate slower dFNC patterns.
Collapse
|
research-article |
5 |
17 |
16
|
Bonetti L, Brattico E, Carlomagno F, Donati G, Cabral J, Haumann NT, Deco G, Vuust P, Kringelbach ML. Rapid encoding of musical tones discovered in whole-brain connectivity. Neuroimage 2021; 245:118735. [PMID: 34813972 DOI: 10.1016/j.neuroimage.2021.118735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
Information encoding has received a wide neuroscientific attention, but the underlying rapid spatiotemporal brain dynamics remain largely unknown. Here, we investigated the rapid brain mechanisms for encoding of sounds forming a complex temporal sequence. Specifically, we used magnetoencephalography (MEG) to record the brain activity of 68 participants while they listened to a highly structured musical prelude. Functional connectivity analyses performed using phase synchronisation and graph theoretical measures showed a large network of brain areas recruited during encoding of sounds, comprising primary and secondary auditory cortices, frontal operculum, insula, hippocampus and basal ganglia. Moreover, our results highlighted the rapid transition of brain activity from primary auditory cortex to higher order association areas including insula and superior temporal pole within a whole-brain network, occurring during the first 220 ms of the encoding process. Further, we discovered that individual differences along cognitive abilities and musicianship modulated the degree centrality of the brain areas implicated in the encoding process. Indeed, participants with higher musical expertise presented a stronger centrality of superior temporal gyrus and insula, while individuals with high working memory abilities showed a stronger centrality of frontal operculum. In conclusion, our study revealed the rapid unfolding of brain network dynamics responsible for the encoding of sounds and their relationship with individual differences, showing a complex picture which extends beyond the well-known involvement of auditory areas. Indeed, our results expanded our understanding of the general mechanisms underlying auditory pattern encoding in the human brain.
Collapse
|
|
4 |
17 |
17
|
Idesis S, Faskowitz J, Betzel RF, Corbetta M, Sporns O, Deco G. Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. Neuroimage Clin 2022; 35:103055. [PMID: 35661469 PMCID: PMC9163596 DOI: 10.1016/j.nicl.2022.103055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Most neuroimaging studies of post-stroke recovery rely on analyses derived from standard node-centric functional connectivity to map the distributed effects in stroke patients. Here, given the importance of nonlocal and diffuse damage, we use an edge-centric approach to functional connectivity in order to provide an alternative description of the effects of this disorder. These techniques allow for the rendering of metrics such as normalized entropy, which describes the diversity of edge communities at each node. Moreover, the approach enables the identification of high amplitude co-fluctuations in fMRI time series. We found that normalized entropy is associated with stroke lesion severity and continually increases across the time of patients' recovery. Furthermore, high amplitude co-fluctuations not only relate to the lesion severity but are also associated with patients' level of recovery. The current study is the first edge-centric application for a clinical population in a longitudinal dataset and demonstrates how a different perspective for functional data analysis can further characterize topographic modulations of brain dynamics.
Collapse
|
research-article |
3 |
15 |
18
|
Tu Y, Cao J, Guler S, Chai-Zhang T, Camprodon JA, Vangel M, Gollub RL, Dougherty DD, Kong J. Perturbing fMRI brain dynamics using transcranial direct current stimulation. Neuroimage 2021; 237:118100. [PMID: 33933595 PMCID: PMC8291729 DOI: 10.1016/j.neuroimage.2021.118100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
The dynamic nature of resting-state functional magnetic resonance imaging (fMRI) brain activity and connectivity has drawn great interest in the past decade. Specific temporal properties of fMRI brain dynamics, including metrics such as occurrence rate and transitions, have been associated with cognition and behaviors, indicating the existence of mechanism distruption in neuropsychiatric disorders. The development of new methods to manipulate fMRI brain dynamics will advance our understanding of these pathophysiological mechanisms from native observation to experimental mechanistic manipulation. In the present study, we applied repeated transcranial direct current stimulation (tDCS) to the right dorsolateral prefrontal cortex (rDLPFC) and the left orbitofrontal cortex (lOFC), during multiple simultaneous tDCS-fMRI sessions from 81 healthy participants to assess the modulatory effects of stimulating target brain regions on fMRI brain dynamics. Using the rDLPFC and the lOFC as seeds, respectively, we first identified two reoccurring co-activation patterns (CAPs) and calculated their temporal properties (e.g., occurrence rate and transitions) before administering tDCS. The spatial maps of CAPs were associated with different cognitive and disease domains using meta-analytical decoding analysis. We then investigated how active tDCS compared to sham tDCS in the modulation of the occurrence rates of these different CAPs and perturbations of transitions between CAPs. We found that by enhancing neuronal excitability of the rDLPFC and the lOFC, the occurrence rate of one CAP was significantly decreased while that of another CAP was significantly increased during the first 6 min of stimulation. Furthermore, these tDCS-associated changes persisted over subsequent testing sessions (both during and before/after tDCS) across three consecutive days. Active tDCS could perturb transitions between CAPs and a non-CAP state (when the rDLPFC and the lOFC were not activated), but not the transitions within CAPs. These results demonstrate the feasibility of modulating fMRI brain dynamics, and open new possibilities for discovering stimulation targets and dynamic connectivity patterns that can ensure the propagation of tDCS-induced neuronal excitability, which may facilitate the development of new treatments for disorders with altered dynamics.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
14 |
19
|
Mora-Sánchez A, Dreyfus G, Vialatte FB. Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach. Cogn Neurodyn 2019; 13:437-452. [PMID: 31565089 DOI: 10.1007/s11571-019-09533-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022] Open
Abstract
We developed a framework to study brain dynamics under cognition. In particular, we investigated the spatiotemporal properties of brain state switches under cognition. The lack of electroencephalography stationarity is exploited as one of the signatures of the metastability of brain states. We correlated power law exponents in the variables that we proposed to describe brain states, and dynamical properties of non-stationarities with cognitive conditions. This framework was successfully tested with three different datasets: a working memory dataset, an Alzheimer disease dataset, and an emotions dataset. We discuss the temporal organization of switches between states, providing evidence suggesting the need to reconsider the piecewise model, in which switches appear at discrete times. Instead, we propose a more dynamically rich view, in which besides the seemingly discrete switches, switches between neighbouring states occur all the time. These micro switches are not (physical) noise, as their properties are also affected by cognition.
Collapse
|
Journal Article |
6 |
13 |
20
|
Aqil M, Roseman L. More than meets the eye: The role of sensory dimensions in psychedelic brain dynamics, experience, and therapeutics. Neuropharmacology 2023; 223:109300. [PMID: 36334767 DOI: 10.1016/j.neuropharm.2022.109300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Psychedelics are undergoing a major resurgence of scientific and clinical interest. While multiple theories and frameworks have been proposed, there is yet no universal agreement on the mechanisms underlying the complex effects of psychedelics on subjective experience and brain dynamics, nor their therapeutic benefits. Despite being prominent in psychedelic phenomenology and distinct from those elicited by other classes of hallucinogens, the effects of psychedelics on low-level sensory - particularly visual - dimensions of experience, and corresponding brain dynamics, have often been disregarded by contemporary research as 'epiphenomenal byproducts'. Here, we review available evidence from neuroimaging, pharmacology, questionnaires, and clinical studies; we propose extensions to existing models, provide testable hypotheses for the potential therapeutic roles of psychedelic-induced visual hallucinations, and simulations of visual phenomena relying on low-level cortical dynamics. In sum, we show that psychedelic-induced alterations in low-level sensory dimensions 1) are unlikely to be entirely causally reconducible to high-level alterations, but rather co-occur with them in a dialogical interplay, and 2) are likely to play a causally relevant role in determining high-level alterations and therapeutic outcomes. We conclude that reevaluating the currently underappreciated role of sensory dimensions in psychedelic states will be highly valuable for neuroscience and clinical practice, and that integrating low-level and domain-specific aspects of psychedelic effects into existing nonspecific models is a necessary step to further understand how these substances effect both acute and long-term change in the human brain.
Collapse
|
Review |
2 |
11 |
21
|
Sorrentino P, Rabuffo G, Baselice F, Troisi Lopez E, Liparoti M, Quarantelli M, Sorrentino G, Bernard C, Jirsa V. Dynamical interactions reconfigure the gradient of cortical timescales. Netw Neurosci 2023; 7:73-85. [PMID: 37334007 PMCID: PMC10270712 DOI: 10.1162/netn_a_00270] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/14/2022] [Indexed: 09/18/2023] Open
Abstract
The functional organization of the brain is usually presented with a back-to-front gradient of timescales, reflecting regional specialization with sensory areas (back) processing information faster than associative areas (front), which perform information integration. However, cognitive processes require not only local information processing but also coordinated activity across regions. Using magnetoencephalography recordings, we find that the functional connectivity at the edge level (between two regions) is also characterized by a back-to-front gradient of timescales following that of the regional gradient. Unexpectedly, we demonstrate a reverse front-to-back gradient when nonlocal interactions are prominent. Thus, the timescales are dynamic and can switch between back-to-front and front-to-back patterns.
Collapse
|
research-article |
2 |
11 |
22
|
Yin D, Kaiser M. Understanding neural flexibility from a multifaceted definition. Neuroimage 2021; 235:118027. [PMID: 33836274 DOI: 10.1016/j.neuroimage.2021.118027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022] Open
Abstract
Flexibility is a hallmark of human intelligence. Emerging studies have proposed several flexibility measurements at the level of individual regions, to produce a brain map of neural flexibility. However, flexibility is usually inferred from separate components of brain activity (i.e., intrinsic/task-evoked), and different definitions are used. Moreover, recent studies have argued that neural processing may be more than a task-driven and intrinsic dichotomy. Therefore, the understanding to neural flexibility is still incomplete. To address this issue, we propose a multifaceted definition of neural flexibility according to three key features: broad cognitive engagement, distributed connectivity, and adaptive connectome dynamics. For these three features, we first review the advances in computational approaches, their functional relevance, and their potential pitfalls. We then suggest a set of metrics that can help us assign a flexibility rating to each region. Subsequently, we present an emergent probabilistic view for further understanding the functional operation of individual regions in the unified framework of intrinsic and task-driven states. Finally, we highlight several areas related to the multifaceted definition of neural flexibility for future research. This review not only strengthens our understanding of flexible human brain, but also suggests that the measure of neural flexibility could bridge the gap between understanding intrinsic and task-driven brain function dynamics.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
10 |
23
|
Vohryzek J, Griffa A, Mullier E, Friedrichs-Maeder C, Sandini C, Schaer M, Eliez S, Hagmann P. Dynamic spatiotemporal patterns of brain connectivity reorganize across development. Netw Neurosci 2020; 4:115-133. [PMID: 32043046 PMCID: PMC7006876 DOI: 10.1162/netn_a_00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 01/21/2023] Open
Abstract
Late human development is characterized by the maturation of high-level functional processes, which rely on reshaping of white matter connections, as well as synaptic density. However, the relationship between the whole-brain dynamics and the underlying white matter networks in neurodevelopment is largely unknown. In this study, we focused on how the structural connectome shapes the emerging dynamics of cerebral development between the ages of 6 and 33 years, using functional and diffusion magnetic resonance imaging combined into a spatiotemporal connectivity framework. We defined two new measures of brain dynamics, namely the system diversity and the spatiotemporal diversity, which quantify the level of integration/segregation between functional systems and the level of temporal self-similarity of the functional patterns of brain dynamics, respectively. We observed a global increase in system diversity and a global decrease and local refinement in spatiotemporal diversity values with age. In support of these findings, we further found an increase in the usage of long-range and inter-system white matter connectivity and a decrease in the usage of short-range connectivity with age. These findings suggest that dynamic functional patterns in the brain progressively become more integrative and temporally self-similar with age. These functional changes are supported by a greater involvement of long-range and inter-system axonal pathways.
Collapse
|
research-article |
5 |
9 |
24
|
Galadí JA, Silva Pereira S, Sanz Perl Y, Kringelbach ML, Gayte I, Laufs H, Tagliazucchi E, Langa JA, Deco G. Capturing the non-stationarity of whole- brain dynamics underlying human brain states. Neuroimage 2021; 244:118551. [PMID: 34506913 DOI: 10.1016/j.neuroimage.2021.118551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Brain dynamics depicts an extremely complex energy landscape that changes over time, and its characterisation is a central unsolved problem in neuroscience. We approximate the non-stationary landscape sustained by the human brain through a novel mathematical formalism that allows us characterise the attractor structure, i.e. the stationary points and their connections. Due to its time-varying nature, the structure of the global attractor and the corresponding number of energy levels changes over time. We apply this formalism to distinguish quantitatively between the different human brain states of wakefulness and different stages of sleep, as a step towards future clinical applications.
Collapse
|
|
4 |
9 |
25
|
Molina E, Sanabria D, Jung TP, Correa Á. Electroencephalographic and peripheral temperature dynamics during a prolonged psychomotor vigilance task. ACCIDENT; ANALYSIS AND PREVENTION 2019; 126:198-208. [PMID: 29061281 DOI: 10.1016/j.aap.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Attention lapses and fatigue are a main source of impaired performance that can lead to accidents. This study analyzed electroencephalographic (EEG) dynamics and body skin temperature as markers of attentional fluctuations in non-sleep deprived subjects during a 45min Psychomotor Vigilance Task (PVT). Independent Component Analysis and time-frequency analysis were used to evaluate the EEG data. Results showed a positive association between distal and distal-to-proximal gradient (DPG) temperatures and reaction time (RT); increments in EEG power in alpha-, theta- and beta-band frequencies in parieto-occipital, central-medial and frontal components, were associated with poor performance (slower RT) in the task. This generalized power increment fits with an increased activity in the default mode network, associated with attention lapses. This study highlights the potential use of the PVT as a tool to obtain individual physiological indices of vigilance and fatigue that could be applied to other vigilance tasks typically performed in occupational settings.
Collapse
|
|
6 |
9 |