1
|
Ghosh S, Qu ZW, Pradhan S, Ghosh A, Grimme S, Chatterjee I. HFIP-Assisted Single C-F Bond Activation of Trifluoromethyl Ketones using Visible-Light Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 61:e202115272. [PMID: 34821454 DOI: 10.1002/anie.202115272] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/07/2022]
Abstract
A visible light photoredox catalytic method for the selective cleavage of single strong C-F bond in trifluoromethyl ketones is reported. Single electron reduction of trifluoromethyl ketones generates difluoromethyl radicals which can be engaged in intermolecular C-C bond formation with N-methyl-N-arylmethacrylamides to furnish fluorine-containing oxindole derivatives in good yields. The reaction shows excellent chemoselectivity with good functional group tolerance under mild conditions. 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) as a solvent plays a critical role for the selective single C-F bond cleavage. High-level DFT calculations are depicted to shed light on the mechanism.
Collapse
|
|
4 |
39 |
2
|
Fu L, Chen Q, Nishihara Y. Recent Advances in Transition-metal-catalyzed C-C Bond Formation via C(sp 2 )-F Bond Cleavage. CHEM REC 2021; 21:3394-3410. [PMID: 33852203 DOI: 10.1002/tcr.202100053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
The activation of a carbon-fluorine bond is one of the most challenging topics in modern synthetic organic chemistry due to their low reactivity compared to other carbon-halogen bonds. In this review, we present the recent developments since 2015 on cross-coupling reactions that form C-C bonds via cleavage of C(sp2 )-F bonds. Not only the conventional activation of C(sp2 )-F bonds, but also decarbonylative or carbonyl-retentive cleavage of C(acyl)-F bonds will be introduced. This paper mainly describes new protocols for the formation of C(sp2 )-C(sp3 ), C(sp2 )-C(sp2 ), and C(sp2 )-C(sp) bonds via transition-metal-catalyzed cleavage of C(sp2 )-F bonds.
Collapse
|
Review |
4 |
26 |
3
|
Liu G, Feng C, Shao P. Degradation of Perfluorooctanoic Acid with Hydrated Electron by a Heterogeneous Catalytic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6223-6231. [PMID: 34941262 DOI: 10.1021/acs.est.1c06793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrated electron (eaq-)-induced reduction protocols have bright prospects for the decomposition of recalcitrant organic pollutants. However, traditional eaq- production involves homogeneous sulfite photolysis, which has a pH-dependent reaction activity and might have potential secondary pollution risks. In this study, a heterogeneous UV/diamond catalytic system was proposed to decompose of a typical persistent organic pollutant, perfluorooctanoic acid (PFOA). In contrast to the rate constant of the advanced reduction process (ARP) of a UV/SO32-, the kobs of PFOA decomposition in the UV/diamond system showed only minor pH dependence, ranging from 0.01823 ± 0.0014 min-1 to 0.02208 ± 0.0013 min-1 (pH 2 to pH 11). As suggested by the electron affinity (EA) and electron configuration of the diamond catalyst, the diamond catalyst yields facile energetic photogenerated electron emission into water without a high energy barrier after photoexcitation, thus inducing eaq- production. The impact of radical scavengers, electron spin resonance (ESR), and transient absorption (TA) measurements verified the formation of eaq- in the UV/diamond system. The investigation of diamond for ejection of energetic photoelectrons into a water matrix represents a new paradigm for ARPs and would facilitate future applications of heterogeneous catalytic processes for efficient recalcitrant pollutant removal by eaq-.
Collapse
|
|
3 |
23 |
4
|
Yue Y, Fan J, Xin G, Huang Q, Wang JB, Li Y, Zhang Q, Wang W. Comprehensive Understanding of Fluoroacetate Dehalogenase-Catalyzed Degradation of Fluorocarboxylic Acids: A QM/MM Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9817-9825. [PMID: 34080849 DOI: 10.1021/acs.est.0c08811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorochemicals are persistent, bioaccumulative, and toxic compounds that are widely tributed in the environment. Developing efficient biodegradation strategies to decompose the fluorochemicals via breaking the inert C-F bonds presents a holistic challenge. As a promising biodegradation enzyme candidate, fluoroacetate dehalogenase (FAcD) has been reported as the only non-metallic enzyme to catalyze the cleavage of the strong C-F bond. Here, we systematically investigated the catalytic actions of FAcD toward its natural substrate fluoroacetate using molecular dynamics simulations and quantum mechanism/molecular mechanism calculations. We propose that the enzymatic transformation involves four elementary steps, (I) C-F bond activation, (II) nucleophilic attack, (III) C-O bond cleavage, and (IV) proton transfer. Our results show that nucleophilic attack is the rate-determining step. However, for difluoroacetate and trifluoroacetate, C-F bond activation, instead of nucleophilic attack, becomes the rate-determining step. We show that FAcD, originally recognized as α-fluorocarboxylic acid degradation enzyme, can catalyze the defluorination of difluoroacetate to glyoxylate, which is captured by our high-resolution mass spectrometry experiments. In addition, we employed amino acid electrostatic analysis method to screen potential mutation hotspots for tuning FAcD's electrostatic environment to favor substrate conversion. The comprehensive understanding of catalytic mechanism will inform a rational enzyme engineering strategy to degrade fluorochemicals for benefits of environmental sustainability.
Collapse
|
|
4 |
21 |
5
|
Zhou X, Ding H, Chen P, Liu L, Sun Q, Wang X, Wang P, Lv Z, Li M. Radical Dehydroxymethylative Fluorination of Carbohydrates and Divergent Transformations of the Resulting Reverse Glycosyl Fluorides. Angew Chem Int Ed Engl 2020; 59:4138-4144. [PMID: 31850616 DOI: 10.1002/anie.201914557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/22/2022]
Abstract
A mild and convenient method for the synthesis of reverse glycosyl fluorides (RGFs) has been developed that is based on the silver-promoted radical dehydroxymethylative fluorination of carbohydrates. A salient feature of the reaction is that furanoid and pyranoid carbohydrates furnish structurally diverse RGFs bearing a wide variety of functional groups in good to excellent yields. Intramolecular hydrogen atom transfer experiments revealed that the reaction involves an underexploited radical fluorination that proceeds via β-fragmentation of sugar-derived primary alkoxyl radicals. Structurally divergent RGFs were obtained by catalytic C-F bond activation, and our method thus offers a concise and efficient strategy for the synthesis of reverse glycosides by late-stage diversification of RGFs. The potential of this method is showcased by the preparation and diversification of sotagliflozin, leading to the discovery of a promising SGLT2 inhibitor candidate.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
21 |
6
|
Ghosh S, Qu ZW, Roy S, Grimme S, Chatterjee I. Photoredox Catalyzed Single C-F Bond Activation of Trifluoromethyl Ketones: A Solvent Controlled Divergent Access of gem-Difluoromethylene Containing Scaffolds. Chemistry 2023; 29:e202203428. [PMID: 36445786 DOI: 10.1002/chem.202203428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Selective defluorinative functionalization of trifluoromethyl ketones is a long-standing challenge owing to the exhaustive mode of the process. To meet the demands for the installation of the gem-difluoromethylene unit for the construction of the molecular architectures of well-known pharmaceuticals and agrochemicals, a distinct pathway is thereby highly desirable. Here, a protocol is introduced that allows the divergent synthesis of gem-difluoromethylene group containing tetrahydrofuran derivatives and linear ketones via single C-F bond activation of trifluoromethyl ketones using visible-light photoredox catalysis in the presence of suitable olefins as trapping partner. The choice of appropriate solvent and catalyst plays a significant role in controlling the divergent behavior of this protocol. Highly reducing photo-excited catalysts are found to be responsible for the generation of α,α-difluoromethyl ketone (DFMK) radicals as the key intermediate via a SET process. This protocol also results in a high diastereoselectivity towards the formation of partially fluorinated cyclic ketal derivatives with simultaneous construction of one C-C and two C-O bonds. State-of-the-art DFT calculations are performed to address the origin of diastereoselectivity as well as the divergence of this protocol.
Collapse
|
|
2 |
5 |
7
|
Talavera M, Braun T. Versatile Reaction Pathways of 1,1,3,3,3-Pentafluoropropene at Rh(I) Complexes [Rh(E)(PEt 3 ) 3 ] (E=H, GePh 3 , Si(OEt) 3 , F, Cl): C-F versus C-H Bond Activation Steps. Chemistry 2021; 27:11926-11934. [PMID: 34118095 PMCID: PMC8456946 DOI: 10.1002/chem.202101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/08/2022]
Abstract
The reaction of the rhodium(I) complexes [Rh(E)(PEt3)3] (E=GePh3 (1), H (6), F (7)) with 1,1,3,3,3‐pentafluoropropene afforded the defluorinative germylation products Z/E‐2‐(triphenylgermyl)‐1,3,3,3‐tetrafluoropropene and the fluorido complex [Rh(F)(CF3CHCF2)(PEt3)2] (2) together with the fluorophosphorane E‐(CF3)CH=CF(PFEt3). For [Rh(Si(OEt)3)(PEt3)3] (4) the coordination of the fluoroolefin was found to give [Rh{Si(OEt)3}(CF3CHCF2)(PEt3)2] (5). Two equivalents of complex 2 reacted further by C−F bond oxidative addition to yield [Rh(CF=CHCF3)(PEt3)2(μ‐F)3Rh(CF3CHCF2)(PEt3)] (9). The role of the fluorido ligand on the reactivity of complex 2 was assessed by comparison with the analogous chlorido complex. The use of complexes 1, 4 and 6 as catalysts for the derivatization of 1,1,3,3,3‐pentafluoropropene provided products, which were generated by hydrodefluorination, hydrometallation and germylation reactions.
Collapse
|
|
4 |
4 |
8
|
Steiner A, Sharapa DI, Troyanov SI, Nuss J, Amsharov K. Carbon Origami via an Alumina-Assisted Cyclodehydrofluorination Strategy. Chemistry 2021; 27:6223-6229. [PMID: 32871018 PMCID: PMC8048823 DOI: 10.1002/chem.202003448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/18/2022]
Abstract
The synthesis of pristine non-planar nanographenes (NGs) via a cyclodehydrofluorination strategy is reported and the creation of highly strained systems via alumina-assisted C-F bond activation is shown. Steric hindrance could execute an alternative coupling program leading to rare octagon formation offering access to elusive non-classical NGs. The combination of two alternative ways of folding could lead to the formation of various 3D NG objects, resembling the Japanese art of origami. The power of the presented "origami" approach is proved by the assembly of 12 challenging nanographenes that are π-isoelectronic to planar hexabenzocoronene but forced out of planarity.
Collapse
|
research-article |
4 |
3 |
9
|
Zhang C, Li S, Deng L, Yan J, Su Z, Yu Z, Hu C. Visible-Light-Induced ArC(sp 3)-F Bond Activation in Aqueous Media: From DFT Study to Molecular Design. Chemistry 2025; 31:e202403729. [PMID: 39655365 DOI: 10.1002/chem.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Trifluoromethylarenes (ArCF3) are crucial bioisosteres in medicinal chemistry, but catalyst-free and controlled photo-activation of the ArC(sp3)-F bond remains a significant challenge. The photo-induced defluorination acyl fluoride exchange (photo-DAFEx) of m-trifluoromethylaniline, induced by ultraviolet light, emerges as a promising novel photo-click reaction for photoaffinity drug discovery. However, the photophysical properties of NMe2PhF2C(sp3)-F derivatives and factors affecting ArC(sp3)-F bond activation in photo-DAFEx are not yet fully understood, hindering the development of new photo-defluorination reagents with longer absorption wavelength for the photo-DAFEx. Herein, the photophysical properties, the related mechanism and their affecting factors of a series of ArCF3 compounds are systematically studied using (TD)DFT methods. The skeleton of aromatic core is found to be intimately related to the absorption wavelength needed for ArC(sp3)-F bond activation. A photo-induced intramolecular single-electron activation model was proposed to rationalize the photo-activation of the ArC(sp3)-F bond. The transfer of excited electron to C(sp3)-F antibonding orbital determined the activation. Based on the above knowledge, three novel ArCF3 reagents with extended excitation wavelength were designed and predicted, and the absorption spectra and photo-defluorination reactivity of two of them with visible absorption wavelength were validated experimentally, which provided a theoretical guidance for designing next-generation photo-DAFEx.
Collapse
|
|
1 |
|
10
|
Biswas A, Kolb S, Röttger SH, Das A, Patalag LJ, Dey PP, Sil S, Maji S, Chakraborty S, Wenger OS, Bhunia A, Werz DB, Mandal SK. A BOIMPY Dye Enables Multi-Photoinduced Electron Transfer Catalysis: Reaching Super-Reducing Properties. Angew Chem Int Ed Engl 2025; 64:e202416472. [PMID: 39655963 DOI: 10.1002/anie.202416472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
An established concept to create radical intermediates is photoexcitation of a catalyst to a higher energy intermediate, subsequently leading to a photoinduced electron transfer (PET) with a reaction partner. The known concept of consecutive photoinduced electron transfer (con-PET) leads to catalytically active species even higher in energy by the uptake of two photons. Generally speaking, increased photon uptake leads to a more potent reductant. Here, we report the concept of multi-photoinduced electron transfer catalysis (>2 photons), termed multi-PET, which is enabled by photoinduced one-electron reductions of an organic dye. Further irradiation of the doubly reduced species leads to a photoexcited dianionic super-reductant, which is more potent than Li metal - one of the strongest chemical reductants known. This multi-photon process which is enabled by 390 nm LEDs allows the cleavage of strong carbon-fluorine bonds and reduction of other halides even in very electron-rich substrates. The resulting radicals are quenched by hydrogen atoms or engaged in carbon-carbon and carbon-phosphorus bond formations, highlighting the utility of multi-PET for organic chemistry. In addition, multi-PET enabled Birch-type reductions. Spectroscopic, chemical and computational investigations are presented to gain mechanistic insights.
Collapse
|
|
1 |
|
11
|
Chen Z, Du L, Fung V, Ma Q, Wang X, Chen S, Crittenden JC, Chen Y. B-Modified Pd Cathodes for the Efficient Detoxification of Halogenated Antibiotics: Enhancing C-F Bond Breakage beyond Hydrodefluorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5808-5818. [PMID: 40065680 PMCID: PMC11948477 DOI: 10.1021/acs.est.4c12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/28/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Halogenated antibiotics pose a great threat to aqueous environments because of their persistent biotoxicity from carbon-halogen bonds. Electrochemical reduction (ER) is an efficient technology for dehalogenation, but it still suffers from limited efficiencies in breaking C-F bonds. Herein, we present a strategy to enhance C-F cleavage and promote detoxification by loading benchmark palladium cathodes onto boron-doped carbon. This improves the florfenicol (FLO) degradation rate constant and defluorination efficiency by 1.24 and 1.05 times, respectively, and improves the defluorination of various fluorinated compounds. The cathode with optimal B content shows superior mass activity for FLO degradation (1.11 mmol g-1 Pd min-1), which is 5.9 times that of commercial Pd/C and is among the best-reported cathodes. Notably, the exclusive formation of the direct defluorination product (i.e., FLO-F) on Pd/B-C implies a higher intrinsic C-F cleavage ability endowed by B doping. As revealed by experiments and theoretical calculations, boron modification enhances palladium binding and induces stronger strain effects and higher electron density for surface palladium atoms, which boosts H* generation and reduces the energy barrier for C-F cleavage. This study provides an effective cathode design strategy to enhance C-F activation, which may broadly benefit the destruction and detoxification of fluorinated organics that are limited by sluggish C-F cleavage kinetics.
Collapse
|
research-article |
1 |
|
12
|
Deng G, Medel R, Lu Y, Riedel S. Photoinduced Dual C-F Bond Activation of Hexafluorobenzene Mediated by Boron Atom. Chemistry 2024:e202303874. [PMID: 38193267 DOI: 10.1002/chem.202303874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
The reaction of laser-ablated boron atoms with hexafluorobenzene (C6 F6 ) was investigated in neon and argon matrices, and the products are identified by matrix isolation infrared spectroscopy and quantum-chemical calculations. The reaction is triggered by a boron atom insertion into one C-F bond of hexafluorobenzene on annealing, forming a fluoropentafluorophenyl boryl radical (A). UV-Vis light irradiation of fluoropentafluorophenyl boryl radical causes generation of a 2-difluoroboryl-tetrafluorophenyl radical (B) via a second C-F bond activation. A perfluoroborepinyl radical (C) is also observed upon deposition and under UV-Vis light irradiation. This finding reveals the new example of a dual C-F bond activation of hexafluorobenzene mediated by a nonmetal and provides a possible route for synthesis of new perfluorinated organo-boron compounds.
Collapse
|
|
1 |
|
13
|
Uchikura T, Akutsu F, Tani H, Akiyama T. Photoreduction of Trifluoromethyl Group: Lithium Ion Assisted Fluoride-Coupled Electron Transfer from EDA Complex. Chemistry 2024; 30:e202400658. [PMID: 38600038 DOI: 10.1002/chem.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Photoinduced single-electron reduction is an efficient method for the mono-selective activation of the C-F bond on a trifluoromethyl group to construct a difluoroalkyl group. We have developed an electron-donor-acceptor (EDA) complex mediated single-electron transfer (EDA-SET) of α,α,α-trifluoromethyl arenes in the presence of lithium salt to give α,α-difluoroalkylarenes. The C-F bond reduction was realized by lithium iodide and triethylamine, two common feedstock reagents. Mechanistic studies revealed the generation of a α,α-difluoromethyl radical by single-electron reduction and defluorination, followed by the radical addition to alkenes. Lithium salt interacted with the fluorine atom to promote the photoinduced reduction mediated by the EDA complex. Computational studies indicated that the lithium-assisted defluorination and the single-electron reduction occurred concertedly. We call this phenomenon fluoride-coupled electron transfer (FCET). FCET is a novel approach to C-F bond activation for the synthesis of organofluorine compounds.
Collapse
|
|
1 |
|
14
|
Wang Y, Wang L, Qin Y, Xiong HY, Zhang G. Pd-Catalyzed Site-Selective Defluorinative Etherification Between Unactivated Perfluoroarenes and Hydrobenzoxazoles. Chemistry 2025; 31:e202403914. [PMID: 39526546 DOI: 10.1002/chem.202403914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported. The substrate scope for this protocol is broad, with respect to hydrobenzoxazoles and perfluoroarenes, under mild reaction conditions. More importantly, challenging alkenyl and alkynyl substituted polyfluoroarenes could be successfully used as the cou-pling component for Pd-catalyzed etherification reaction. Density functional theory (DFT) calculations were employed to investigate the reaction mechanism, which suggested that oxidative addition between polyfluorobenzene and Pd(0) constituted the rate-determining step.
Collapse
|
|
1 |
|
15
|
Guo X, Zhang Y, Lai X, Pang Y, Xue XS. C(sp 3)-F Bond Activation by Lewis Base-Boryl Radicals via Concerted Electron-Fluoride Transfer. Angew Chem Int Ed Engl 2025; 64:e202415715. [PMID: 39472294 DOI: 10.1002/anie.202415715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 11/17/2024]
Abstract
Selective C-F bond activation through a radical pathway in the presence of multiple C-H bonds remains a formidable challenge, owing to the extraordinarily strong bond strength of the C-F bond. By the aid of density functional theory calculations, we disclose an innovative concerted electron-fluoride transfer mechanism, harnessing the unique reactivity of Lewis base-boryl radicals to selectively activate the resilient C-F bonds in fluoroalkanes. This enables the direct abstraction of a fluorine atom and subsequent generation of an alkyl radical, thus expanding the boundaries of halogen atom transfer reactions.
Collapse
|
|
1 |
|
16
|
Kumar T, Yang Y, Hassine AB, Mali D, Prajapat Y, Khandelwal P, Bouquin M, Taillefer M, Massicot F, Chevreux S, Behr JB, Maron L, Jaroschik F. Lanthanide-mediated Defluorinative Transformations of Trifluoromethylated Benzofulvenes: Access to Functionalized Difluoroalkenes and Mechanistic Insights. Chem Asian J 2025:e202500071. [PMID: 40079505 DOI: 10.1002/asia.202500071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/15/2025]
Abstract
Accessing difluorinated organic molecules via selective C-F bond activation in CF3-containing substrates has become a valuable synthetic pathway. The combination of lanthanide metals (lanthanum, dysprosium) with Lewis acids (AlCl3, LaI3) allows the efficient regio- and stereoselective transformation of CF3-benzofulvenes into a range of versatile difluoroalkenes proceeding via ϵ,ϵ-difluoropentadienyl lanthanide or aluminium species. The reaction of these organometallic intermediates towards ketones and nitroalkenes is herein reported and analyzed in relation to previous studies on aldehydes. The influence of steric and electronic factors of the organic substrates but also of the lanthanide metals and Lewis acids on the regio and stereoselective reaction is highlighted and corroborated by in-depth DFT studies. The resulting difluorinated homoallylic alcohols and nitroalkanes were further functionalized to new benzofulvenes and their reactivity explored.
Collapse
|
|
1 |
|