1
|
Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020; 9:601-604. [PMID: 32178593 PMCID: PMC7103712 DOI: 10.1080/22221751.2020.1739565] [Citation(s) in RCA: 448] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The recent outbreak of pneumonia-causing COVID-19 in China is an urgent global public health issue with an increase in mortality and morbidity. Here we report our modelled homo-trimer structure of COVID-19 spike glycoprotein in both closed (ligand-free) and open (ligand-bound) conformation, which is involved in host cell adhesion. We also predict the unique N- and O-linked glycosylation sites of spike glycoprotein that distinguish it from the SARS and underlines shielding and camouflage of COVID-19 from the host the defence system. Furthermore, our study also highlights the key finding that the S1 domain of COVID-19 spike glycoprotein potentially interacts with the human CD26, a key immunoregulatory factor for hijacking and virulence. These findings accentuate the unique features of COVID-19 and assist in the development of new therapeutics.
Collapse
|
Letter |
5 |
448 |
2
|
Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, Indig FE, Basu SK, Ohnuma K, Morimoto C, Johnson PF, Biragyn A, Abdelmohsen K, Gorospe M. Identification of senescent cell surface targetable protein DPP4. Genes Dev 2017; 31:1529-1534. [PMID: 28877934 PMCID: PMC5630018 DOI: 10.1101/gad.302570.117] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Kim et al. show that DPP4 (dipeptidyl peptidase 4) was selectively expressed on the surface of senescent human diploid fibroblasts and that this enabled their preferential elimination. Senescent cell accumulation in aging tissues is linked to age-associated diseases and declining function, prompting efforts to eliminate them. Mass spectrometry analysis revealed that DPP4 (dipeptidyl peptidase 4) was selectively expressed on the surface of senescent, but not proliferating, human diploid fibroblasts. Importantly, the differential presence of DPP4 allowed flow cytometry-mediated isolation of senescent cells using anti-DPP4 antibodies. Moreover, antibody-dependent cell-mediated cytotoxicity (ADCC) assays revealed that the cell surface DPP4 preferentially sensitized senescent, but not dividing, fibroblasts to cytotoxicity by natural killer cells. In sum, the selective expression of DPP4 on the surface of senescent cells enables their preferential elimination.
Collapse
|
Journal Article |
8 |
185 |
3
|
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A 2017; 114:E3119-E3128. [PMID: 28348219 DOI: 10.1073/pnas.1619109114] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERSMA) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERSMA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERSMA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERSMA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERSMA provide tools to investigate disease causes and develop new therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
133 |
4
|
Blood classification and blood response criteria in mycosis fungoides and Sézary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force. Eur J Cancer 2018; 93:47-56. [PMID: 29477101 DOI: 10.1016/j.ejca.2018.01.076] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 01/13/2023]
Abstract
Our current mycosis fungoides (MF) and Sézary Syndrome (SS) staging system includes blood-classification from B0-B2 for patch/plaque/tumour or erythroderma based on manual Sézary counts but results from our EORTC survey confirm these are rarely performed in patch/plaque/tumour MF, and there is a trend towards using flow cytometry to measure blood-class. Accurately assigning blood-class effects overall stage and the 'global response' used to measure treatment responses in MF/SS and hence impacts management. The EORTC Cutaneous Lymphoma Task Force Committee have reviewed the literature and held a Workshop (June 2017) to agree a definition of blood-class according to flow cytometry. No large study comparing blood-class as defined by Sézary count with flow cytometry has been performed in MF/SS. The definition of blood-class by flow cytometry varies between publications. Low-level blood involvement occurs in patch/plaque/tumour much less than erythroderma (p < 0.001). The prognostic relevance of blood involvement (B1 or B2) in patch/plaque/tumour is not known. Studies have not shown a statistically worse difference in prognosis in erythrodermic MF patients with low-level blood involvement (IIIB) versus those without (IIIA), but Sezary patients who by definition have a leukaemic blood picture (staged IVA1 or higher) have a worse prognosis. For consistency flow, definition for blood-class must be an objective measurement. We propose absolute counts of either CD4+CD7-or CD4+CD26-where B0<250/μL, B1 = 250/μl-<1000/μL and B2≥1000/μL plus a T-cell blood clone. Fluctuations between B0 and B1 should not be considered in the treatment response criteria until further prognostic information is known.
Collapse
|
Review |
7 |
111 |
5
|
Vorstandlechner V, Laggner M, Kalinina P, Haslik W, Radtke C, Shaw L, Lichtenberger BM, Tschachler E, Ankersmit HJ, Mildner M. Deciphering the functional heterogeneity of skin fibroblasts using single-cell RNA sequencing. FASEB J 2020; 34:3677-3692. [PMID: 31930613 DOI: 10.1096/fj.201902001rr] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Though skin fibroblasts (FB) are the main cell population within the dermis, the different skin FB subsets are not well characterized and the traditional classification into reticular and papillary FBs has little functional relevance. To fill the gap of knowledge on FB diversity in human skin, we performed single-cell RNA sequencing. Investigation of marker genes for the different skin cell subtypes revealed a heterogeneous picture of FBs. When mapping reticular and papillary FB markers, we could not detect cluster specificity, suggesting that these two populations show a higher transcriptional heterogeneity than expected. This finding was further confirmed by in situ hybridization, showing that DPP4 was expressed in both dermal layers. Our analysis identified six FB clusters with distinct transcriptional signatures. Importantly, we could demonstrate that in human skin DPP4+ FBs are the main producers of factors involved in extracellular matrix (ECM) assembly. In conclusion, we provide evidence that hitherto considered FB markers are not ideal to characterize skin FB subpopulations in single-cell sequencing analyses. The identification of DPP4+ FBs as the main ECM-producing cells in human skin will foster the development of anti-fibrotic treatments for the skin and other organs.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
105 |
6
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
|
Review |
6 |
105 |
7
|
Tasanen K, Varpuluoma O, Nishie W. Dipeptidyl Peptidase-4 Inhibitor-Associated Bullous Pemphigoid. Front Immunol 2019; 10:1238. [PMID: 31275298 PMCID: PMC6593303 DOI: 10.3389/fimmu.2019.01238] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Bullous pemphigoid (BP) is an organ-specific autoantibody-mediated blistering skin disease that mainly affects the elderly. Typical clinical features include the widespread blisters, often preceded by and/or associated with itchy urticarial or eczema-like lesions. BP patients have circulating autoantibodies against BP180 and/or the plakin family protein BP230 both of which are components of hemidesmosomes in basal keratinocytes. Most BP autoantibodies particularly target the epitopes within the non-collagenous NC16A domain of BP180. Clinical findings and murine models of BP have provided evidence of a pathogenic role of anti-NC16A autoantibodies. However, it is largely unknown what triggers the breakage of immunotolerance against BP180 in elderly individuals. The incidence of BP has been increased over the past two decades in several countries. Aside from aging populations, the factors behind this phenomenon are still not fully understood. Neurodegenerative diseases such as multiple sclerosis, Parkinson's disease, and certain dementias are independent risk factors for BP. Recently several case reports have described BP in patients with diabetes mellitus (DM) patients who have been treated with dipeptidyl peptidase-4 inhibitors (DPP-4i or gliptins), which are a widely used class of anti-DM drugs. The association between the use of DPP-4is, particularly vildagliptin, and BP risk has been confirmed by several epidemiological studies. Evidence suggests that cases of gliptin-associated BP in Japan display certain features that set them apart from cases of “regular” BP. These include a “non-inflammatory” phenotype, targeting by antibodies of different immunodominant BP180 epitopes, and a specific association with the human leukocyte antigen (HLA) types. However, recent studies in European populations have found no major differences between the clinical and immunological characteristics of gliptin-associated BP and “regular” BP. The DPP-4 protein (also known as CD26) is ubiquitously expressed and has multiple functions in various cell types. The different effects of the inhibition of DPP-4/CD26 activity include, for example, tissue modeling and regulation of inflammatory cells such as T lymphocytes. Although the pathomechanism of gliptin-associated BP is currently largely unknown, investigation of the unique effect of gliptins in the induction of BP may provide a novel route to better understanding of how immunotolerance against BP180 breaks down in BP.
Collapse
|
Review |
6 |
90 |
8
|
Strollo R, Pozzilli P. DPP4 inhibition: Preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab Res Rev 2020; 36:e3330. [PMID: 32336007 PMCID: PMC7267128 DOI: 10.1002/dmrr.3330] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4), also known as cluster of differentiation 26 (CD26), is a serine exopeptidase expressed ubiquitously in several tissues, including but not limited to lung, kidney, liver, gut, and immune cells. The question has been raised on whether DPP4 modulation or inhibition may prevent infection and/or progression of the COVID-19. A docked complex model of the SARS-CoV-2 spike glycoprotein and DPP4 has been proposed, showing a large interface between the proteins and proposing close similarity with other coronaviruses using DPP4 as functional receptor. In absence of experimental validation, these data should be interpreted with caution. Nevertheless, this observation may rise the question on whether DPP4 is directly involved in SARS-CoV-2 cell adhesion/virulence, and whether DPP4 inhibition might be a therapeutic strategy for preventing infection. Although a direct involvement of DPP4 in SARS-CoV-2 infection needs to be clarified, there is also evidence suggesting that DPP4 inhibitors modulate inflammation and exert anti-fibrotic activity. These properties may be of potential use for halting progression to the hyperinflammatory state associated with severe COVID-19. Taken together these findings may suggest a potential role for DPP4 inhibition or modulation in one or more steps of COVID-19 immunopathogenesis.
Collapse
|
article-commentary |
5 |
82 |
9
|
Kawasaki T, Chen W, Htwe YM, Tatsumi K, Dudek SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315:L834-L845. [PMID: 30188745 DOI: 10.1152/ajplung.00031.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe clinical condition marked by acute respiratory failure and dysregulated inflammation. Pulmonary vascular endothelial cells (PVECs) function as an important pro-inflammatory source in ARDS, suggesting that modulation of inflammatory events at the endothelial level may have a therapeutic benefit. Dipeptidyl peptidase-4 (DPP4) inhibitors, widely used for the treatment of diabetes mellitus, have been reported to have possible anti-inflammatory effects. However, the potential anti-inflammatory effects of DPP4 inhibition on PVEC function and ARDS pathophysiology are unknown. Therefore, we evaluated the effects of sitagliptin, a DPP4 inhibitor in wide clinical use, on LPS-induced lung injury in mice and in human lung ECs in vitro. In vivo, sitagliptin reduced serum DPP4 activity, bronchoalveolar lavage protein concentration, cell number, and proinflammatory cytokine levels after LPS and alleviated histological findings of lung injury. LPS decreased the expression levels of CD26/DPP4 on pulmonary epithelial cells and PVECs isolated from mouse lungs, and the effect was partially reversed by sitagliptin. In vitro, human lung microvascular ECs (HLMVECs) expressed higher levels of CD26/DPP4 than human pulmonary arterial ECs. LPS induced the release of TNFα, IL-6, and IL-8 by HLMVECs that were inhibited by sitagliptin. LPS promoted the proliferation of HLMVECs, and sitagliptin suppressed this response. However, sitagliptin failed to reverse LPS-induced permeability in cultured ECs or lung epithelial cells in vitro. In summary, sitagliptin attenuates LPS-induced lung injury in mice and exerts anti-inflammatory effects on HLMVECs. These novel observations indicate DPP4 inhibitors may have potential as therapeutic drugs for ARDS.
Collapse
|
|
7 |
80 |
10
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
|
Review |
9 |
78 |
11
|
Bocchia M, Sicuranza A, Abruzzese E, Iurlo A, Sirianni S, Gozzini A, Galimberti S, Aprile L, Martino B, Pregno P, Sorà F, Alunni G, Fava C, Castagnetti F, Puccetti L, Breccia M, Cattaneo D, Defina M, Mulas O, Baratè C, Caocci G, Sica S, Gozzetti A, Luciano L, Crugnola M, Annunziata M, Tiribelli M, Pacelli P, Ferrigno I, Usala E, Sgherza N, Rosti G, Bosi A, Raspadori D. Residual Peripheral Blood CD26+ Leukemic Stem Cells in Chronic Myeloid Leukemia Patients During TKI Therapy and During Treatment-Free Remission. Front Oncol 2018; 8:194. [PMID: 29900128 PMCID: PMC5988870 DOI: 10.3389/fonc.2018.00194] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) patients in sustained "deep molecular response" may stop TKI treatment without disease recurrence; however, half of them lose molecular response shortly after TKI withdrawing. Well-defined eligibility criteria to predict a safe discontinuation up-front are still missing. Relapse is probably due to residual quiescent TKI-resistant leukemic stem cells (LSCs) supposedly transcriptionally low/silent and not easily detectable by BCR-ABL1 qRT-PCR. Bone marrow Ph+ CML CD34+/CD38- LSCs were found to specifically co-express CD26 (dipeptidylpeptidase-IV). We explored feasibility of detecting and quantifying CD26+ LSCs by flow cytometry in peripheral blood (PB). Over 400 CML patients (at diagnosis and during/after therapy) entered this cross-sectional study in which CD26 expression was evaluated by a standardized multiparametric flow cytometry analysis on PB CD45+/CD34+/CD38- stem cell population. All 120 CP-CML patients at diagnosis showed measurable PB CD26+ LSCs (median 19.20/μL, range 0.27-698.6). PB CD26+ LSCs were also detectable in 169/236 (71.6%) CP-CML patients in first-line TKI treatment (median 0.014 cells/μL; range 0.0012-0.66) and in 74/112 (66%), additional patients studied on treatment-free remission (TFR) (median 0.015/μL; range 0.006-0.76). Notably, no correlation between BCR-ABL/ABLIS ratio and number of residual LSCs was found both in patients on or off TKIs. This is the first evidence that "circulating" CML LSCs persist in the majority of CML patients in molecular response while on TKI treatment and even after TKI discontinuation. Prospective studies evaluating the dynamics of PB CD26+ LSCs during TKI treatment and the role of a "stem cell response" threshold to achieve and maintain TFR are ongoing.
Collapse
|
Journal Article |
7 |
75 |
12
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/ CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
|
Journal Article |
9 |
67 |
13
|
Dipeptidyl Peptidase 4 Inhibitors Reduce Hepatocellular Carcinoma by Activating Lymphocyte Chemotaxis in Mice. Cell Mol Gastroenterol Hepatol 2018; 7:115-134. [PMID: 30510994 PMCID: PMC6260362 DOI: 10.1016/j.jcmgh.2018.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS CD26, a multifunctional transmembrane glycoprotein, is expressed in various cancers and functions as dipeptidyl peptidase 4 (DPP4). We investigated whether CD26 expression is associated with hepatocellular carcinoma (HCC) progression and whether DPP4 inhibitors exert antitumor effects against HCC. METHODS CD26 expression was examined in 41 surgically resected HCC specimens. The effects of DPP4 inhibitors on HCC were examined by using HCC cell lines (Huh-7 and Li-7), xenograft tumors in nude mice, and a nonalcoholic steatohepatitis-related HCC mouse model. RESULTS CD26 expression in HCC specimens was associated with increased serum DPP4 activity, as well as a more advanced stage, less tumor immunity, and poorer prognosis in HCC patients. The HCC cell lines and xenograft tumors exhibited CD26 expression and DPP4 activity. The DPP4 inhibitors did not exhibit antitumor effects in vitro, but natural killer (NK) and/or T-cell tumor accumulation suppressed growth of xenograft tumor and HCC in vivo. The antitumor effects of DPP4 inhibitors were abolished by the depletion of NK cells or the neutralization of CXCR3, a chemokine receptor on NK cells. EZ-TAXIScan, an optical horizontal chemotaxis apparatus, identified enhanced NK and T-cell chemotaxis by DPP4 inhibitors ex vivo in the presence of Huh-7 cells and the chemokine CXCL10, which binds to CXCR3. The DPP4 inhibitors prevented the biologically active form of CXCL10 from being truncated by Huh-7 cell DPP4 activity. DPP4 inhibitors also suppressed tumor angiogenesis. CONCLUSIONS These results provide a rationale for verifying whether DPP4 inhibitors clinically inhibit the progression of HCC or augment the antitumor effects of molecular-targeting drugs or immunotherapies against HCC.
Collapse
Key Words
- CCK-8, Cell Counting Kit 8
- CD26
- CXCL10
- DM, diabetes mellitus
- DPP4, dipeptidyl peptidase 4
- FBS, fetal bovine serum
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HPLC, high-performance liquid chromatography
- IC50, inhibitory concentration of 50%
- Ig, immunoglobulin
- LDH, lactate dehydrogenase
- MICA, MHC class I polypeptide-related sequence A
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NK Cell
- NK, natural killer
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PTH, phenylthiohydantoin
- SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis
- T Cell
- TAXIScan
- Tumor Immunity
- anti-ASGM, anti-asialo GM1 antisera
Collapse
|
research-article |
7 |
66 |
14
|
Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. Chemokine isoforms and processing in inflammation and immunity. J Autoimmun 2017; 85:45-57. [PMID: 28684129 DOI: 10.1016/j.jaut.2017.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
The first dimension of chemokine heterogeneity is reflected by their discovery and purification as natural proteins. Each of those chemokines attracted a specific inflammatory leukocyte type. With the introduction of genomic technologies, a second wave of chemokine heterogeneity was established by the discovery of putative chemokine-like sequences and by demonstrating chemotactic activity of the gene products in physiological leukocyte homing. In the postgenomic era, the third dimension of chemokine heterogeneity is the description of posttranslational modifications on most chemokines. Proteolysis of chemokines, for instance by dipeptidyl peptidase IV (DPP IV/CD26) and by matrix metalloproteinases (MMPs) is already well established as a biological control mechanism to activate, potentiate, dampen or abrogate chemokine activities. Other posttranslational modifications are less known. Theoretical N-linked and O-linked attachment sites for chemokine glycosylation were searched with bio-informatic tools and it was found that most chemokines are not glycosylated. These findings are corroborated with a low number of experimental studies demonstrating N- or O-glycosylation of natural chemokine ligands. Because attached oligosaccharides protect proteins against proteolytic degradation, their absence may explain the fast turnover of chemokines in the protease-rich environments of infection and inflammation. All chemokines interact with G protein-coupled receptors (GPCRs) and glycosaminoglycans (GAGs). Whether lectin-like GAG-binding induces cellular signaling is not clear, but these interactions are important for leukocyte migration and have already been exploited to reduce inflammation. In addition to selective proteolysis, citrullination and nitration/nitrosylation are being added as biologically relevant modifications contributing to functional chemokine heterogeneity. Resulting chemokine isoforms with reduced affinity for GPCRs reduce leukocyte migration in various models of inflammation. Here, these third dimension modifications are compared, with reflections on the biological and pathological contexts in which these posttranslational modifications take place and contribute to the repertoire of chemokine functions and with an emphasis on autoimmune diseases.
Collapse
|
Review |
8 |
57 |
15
|
Wang Z, Grigo C, Steinbeck J, von Hörsten S, Amann K, Daniel C. Soluble DPP4 originates in part from bone marrow cells and not from the kidney. Peptides 2014; 57:109-17. [PMID: 24874705 DOI: 10.1016/j.peptides.2014.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is known to inactivate incretins as well as important chemokines and neuropeptides. DPP4 is expressed as a transmembrane protein but also occurs as a soluble enzyme circulating in the blood. However, the origin of the soluble DPP4 (sDPP4) is still unknown. In this study, DPP4 activity was quantified in plasma and extracted from different rat organs. Then, in order to see if the kidney or the bone marrow was the source of sDPP4, kidney or bone marrow transplantation was performed between wildtype (wt) Dark Agouti (DA) and DPP4 deficient congenic rats (n=6-9). Kidney was verified to have the highest DPP4 activity, followed by spleen and lung. In the following three weeks after successful kidney transplantation only transient trace plasma DPP4 activity was detected in DPP4 deficient rats receiving wt kidneys. In addition, DPP4 activity was not diminished in DA wt rats receiving DPP4 deficient kidneys. Both findings indicated that sDPP4 did not originate from the kidney. In contrast, 43±14% (compared to wt) sDPP4 activity was detected in the plasma of DPP4 deficient DA rats that were reconstituted with wt bone marrow cells. Not only leukocyte but also macrophage subpopulations express DPP4 in bone marrow as well as in blood as assessed by flow cytometry. Thus, bone marrow derived cells but not the kidney represent at least one source of sDPP4. And leukocyte or macrophage subpopulations could be potential candidates.
Collapse
|
|
11 |
49 |
16
|
Moreno E, Canet J, Gracia E, Lluís C, Mallol J, Canela EI, Cortés A, Casadó V. Molecular Evidence of Adenosine Deaminase Linking Adenosine A 2A Receptor and CD26 Proteins. Front Pharmacol 2018; 9:106. [PMID: 29497379 PMCID: PMC5818423 DOI: 10.3389/fphar.2018.00106] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.
Collapse
|
research-article |
7 |
49 |
17
|
Bishnoi R, Hong YR, Shah C, Ali A, Skelton WP, Huo J, Dang NH, Dang LH. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study. Cancer Med 2019; 8:3918-3927. [PMID: 31124302 PMCID: PMC6639187 DOI: 10.1002/cam4.2278] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Background Dipeptidyl peptidase 4 (DPP4) is a cell surface protein that can act as a tumor suppressor or activator, depending upon the level of expression and interaction with the microenvironment and chemokines. DPP4 inhibitors are used to treat diabetes. Methods We conducted this Surveillance Epidemiology and Endpoint Research‐Medicare database study to evaluate the role of DPP4 inhibitors on the overall survival (OS) of diabetic patients diagnosed with colorectal (CRC) and lung cancers. Results Diabetic patients with CRC or lung cancer who were treated with DPP4 inhibitors exhibited a statistically significant survival advantage (hazard ratio [HR] of 0.89; CI: 0.82‐0.97, P = 0.007) that remained significant after controlling for all other confounders. When DPP4 inhibitors were used in combination of metformin which is known to suppress cancer, the survival advantage was even more pronounced (HR of 0.83; CI: 0.77‐0.90, P < 0.0001). Data were then analyzed separately for two cancer types. In the CRC‐only cohort, the use of DPP4 inhibitors alone had a positive trend but did not meet statistically significant threshold (HR of 0.87; CI: 0.75‐1.00, P = 0.055), while the combined use of DPP4 inhibitors and metformin was associated with statistically significant survival advantage (HR of 0.77; CI: 0.67‐0.89, P = 0.003). Similarly, for the lung cancer cohort, use of DPP4 alone was not found to be statistically significant (HR of 0.93; CI: 0.83‐1.03, P = 0.153), whereas lung cancer patients treated with the combination of DPP4 inhibitors and metformin showed statistically significant survival advantage (HR of 0.88; CI: 0.80‐0.97, P = 0.010). Conclusions DPP4 inhibition in CRC and lung cancer is associated with improved OS, which possibly may be due to the effect of DPP4 inhibition on immunoregulation of cancer.
Collapse
|
Journal Article |
6 |
42 |
18
|
Novelli M, Fava P, Sarda C, Ponti R, Osella-Abate S, Savoia P, Bergallo M, Lisa F, Fierro MT, Quaglino P. Blood flow cytometry in Sézary syndrome: new insights on prognostic relevance and immunophenotypic changes during follow-up. Am J Clin Pathol 2015; 143:57-69. [PMID: 25511143 DOI: 10.1309/ajcp1na3ychcdeig] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVES Sézary syndrome (SS) is characterized by erythroderma, generalized lymphadenopathy, and the presence of circulating atypical lymphocytes, which are difficult to identify by morphologic data. METHODS We revised our series of 107 patients in an attempt to better define the phenotypic aberrancies in blood at diagnosis and the immunophenotypic stability over time detected by flow cytometry. Polymerase chain reaction assay was also used to study CD26/dipeptidyl peptidase IV (DPPIV) gene methylation. RESULTS The most common aberrancies were represented by the lack of CD26 (96/107) or CD38 (101/107) expression and the presence of a "dim" CD3, CD4, or CD2 population. There was a high variability in CD7 expression. In total, 31% of the patients had phenotypical heterogeneity in CD26 and CD7 expression at diagnosis. The phenotype was stable over time in 73 of 95 patients with available follow-up data, while 22 of 95 patients developed changes in CD26, CD7, or CD2 expression. CD4+CD26- SS showed hypermethylation of the CpG islands for the promoter region of CD26/DPPIV. Multivariate analysis showed that CD26 expression is a favorable prognostic factor (hazard ratio, 2.94; P = .045). CONCLUSIONS We confirm the relevance of CD26 negativity in SS diagnosis and monitoring. Nevertheless, the presence of rare CD26+ cases suggests that a multiparameter flow cytometry approach should be used. Changes in methylation profile could account for phenotypical heterogeneity.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
39 |
19
|
Davies S, Beckenkamp A, Buffon A. CD26 a cancer stem cell marker and therapeutic target. Biomed Pharmacother 2015; 71:135-8. [PMID: 25960228 DOI: 10.1016/j.biopha.2015.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/21/2015] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) comprise a tumor subpopulation responsible for tumor maintenance, resistance to chemotherapy, recurrence and metastasis. The identification of this cell group is very important, but there is still no consensus on its characterization. Several CSC markers have been described, like CD133, CD24, CD44 and ALDH1, but more research to identify new markers to facilitate the identification of CSC in a heterogeneous tumoral mass is required. Thus, this article describes the CD26 expression as a CSC marker and the role that it plays in different types of cancer. CD26 expression correlates with some characteristics of CSCs, like the formation of spheres in vitro, formation of new tumors, and resistance to chemotherapy. CD26 is therefore suggested as an auxiliary marker for CSC in different types of cancer, and as a potential therapeutic target.
Collapse
|
Review |
10 |
36 |
20
|
Chowdhury S, Chen Y, Yao TW, Ajami K, Wang XM, Popov Y, Schuppan D, Bertolino P, McCaughan GW, Yu DMT, Gorrell MD. Regulation of dipeptidyl peptidase 8 and 9 expression in activated lymphocytes and injured liver. World J Gastroenterol 2013; 19:2883-93. [PMID: 23704821 PMCID: PMC3660813 DOI: 10.3748/wjg.v19.i19.2883] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/17/2013] [Accepted: 02/02/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of dipeptidyl peptidase (DPP) 8 and DPP9 in lymphocytes and various models of liver fibrosis. METHODS DPP8 and DPP9 expression were measured in mouse splenic CD4⁺ T-cells, CD8⁺ T-cells and B-cells (B220⁺), human lymphoma cell lines and mouse splenocytes stimulated with pokeweed mitogen (PWM) or lipopolysaccharide (LPS), and in dithiothreitol (DTT) and mitomycin-C treated Raji cells. DPP8 and DPP9 expression were measured in epidermal growth factor (EGF) treated Huh7 hepatoma cells, in fibrotic liver samples from mice treated with carbon tetrachloride (CCl₄) and from multidrug resistance gene 2 (Mdr2/Abcb4) gene knockout (gko) mice with biliary fibrosis, and in human end stage primary biliary cirrhosis (PBC). RESULTS All three lymphocyte subsets expressed DPP8 and DPP9 mRNA. DPP8 and DPP9 expression were upregulated in both PWM and LPS stimulated mouse splenocytes and in both Jurkat T- and Raji B-cell lines. DPP8 and DPP9 were downregulated in DTT treated and upregulated in mitomycin-C treated Raji cells. DPP9-transfected Raji cells exhibited more annexin V⁺ cells and associated apoptosis. DPP8 and DPP9 mRNA were upregulated in CCl₄ induced fibrotic livers but not in the lymphocytes isolated from such livers, while DPP9 was upregulated in EGF stimulated Huh7 cells. In contrast, intrahepatic DPP8 and DPP9 mRNA expression levels were low in the Mdr2 gko mouse and in human PBC compared to non-diseased livers. CONCLUSION These expression patterns point to biological roles for DPP8 and DPP9 in lymphocyte activation and apoptosis and in hepatocytes during liver disease pathogenesis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Adult
- Aged
- Animals
- Apoptosis
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/etiology
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/pathology
- Dipeptidases/genetics
- Dipeptidases/metabolism
- Dipeptidyl Peptidase 4/deficiency
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism
- Endopeptidases
- Female
- Gelatinases/deficiency
- Gelatinases/genetics
- Humans
- Jurkat Cells
- Liver/enzymology
- Liver/innervation
- Liver/pathology
- Liver Cirrhosis, Biliary/enzymology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/pathology
- Liver Cirrhosis, Experimental/enzymology
- Liver Cirrhosis, Experimental/etiology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/immunology
- Liver Cirrhosis, Experimental/pathology
- Lymphocyte Activation
- Lymphocyte Subsets/enzymology
- Lymphocyte Subsets/immunology
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- RNA, Messenger/metabolism
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Time Factors
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
|
Original Article |
12 |
32 |
21
|
Lindgren O, Varpuluoma O, Tuusa J, Ilonen J, Huilaja L, Kokkonen N, Tasanen K. Gliptin-associated Bullous Pemphigoid and the Expression of Dipeptidyl Peptidase-4/ CD26 in Bullous Pemphigoid. Acta Derm Venereol 2019; 99:602-609. [PMID: 30848289 DOI: 10.2340/00015555-3166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4i or gliptins) increase the risk of developing bullous pemphigoid (BP). To clarify, whether gliptin-associated BP has special features, we analyzed the clinical, histopathological and immunological features of 27 BP patients, 10 of which previously used gliptin medication. Compared to those who had not previously received gliptins, subjects who had, showed higher BP180-NC16A ELISA (enzyme-linked immunosorbent assay) values, fewer neurological co-morbidities and shorter time to remission, but differences were not statistically significant. The HLA-DQB1*03:01 allele was more commonly present among the BP patients than the control population, but was not more common in those with gliptin history. To determine the effect of gliptins on the expression of the DPP-4/CD-26 protein we performed immunohistochemistry, which showed that the skin expression of DPP-4/CD-26 was increased in BP patients, but not affected by prior gliptin treatment. We conclude that DPP-4i medication is common among BP patients and prior gliptin treatment may be associated with some specific features.
Collapse
|
|
6 |
31 |
22
|
Alipoor SD, Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep 2022; 49:10715-10727. [PMID: 35754059 PMCID: PMC9244107 DOI: 10.1007/s11033-022-07700-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.
Collapse
|
review-article |
3 |
30 |
23
|
Farag SS, Nelson R, Cairo MS, O'Leary HA, Zhang S, Huntley C, Delgado D, Schwartz J, Zaid MA, Abonour R, Robertson M, Broxmeyer H. High-dose sitagliptin for systemic inhibition of dipeptidylpeptidase-4 to enhance engraftment of single cord umbilical cord blood transplantation. Oncotarget 2017; 8:110350-110357. [PMID: 29299152 PMCID: PMC5746387 DOI: 10.18632/oncotarget.22739] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 01/31/2023] Open
Abstract
Delayed engraftment remains a limitation of umbilical cord blood (UCB) transplantation. We previously showed that inhibition of dipeptidylpeptidase (DPP)-4 using sitagliptin 600 mg daily was safe with encouraging results on engraftment, but inhibition was not sustained. We evaluated the efficacy and feasibility of higher doses of sitagliptin to enhance engraftment of UCB in patients with hematological cancers. Fifteen patients, median age 41 (range, 18-59) years, received single UCB grafts matched at 4 (n=11) or 5 (n=4) of 6 HLA loci with median nucleated cell dose of 3.5 (range, 2.57-4.57) x107/kg. Sitagliptin 600 mg every 12 hours was administered days -1 to +2. All patients engrafted by day 30, with 12 (80%) engrafting by day 21. The median time to neutrophil engraftment was 19 (range, 12-30) days. Plasma DPP-4 activity was better inhibited with a mean residual trough DPP-4 activity of 70%±19%. Compared to patients previously treated with 600 mg/day, sitagliptin 600 mg every 12 hours appeared to improve engraftment, supporting the hypothesis that more sustained DPP-4 inhibition is required. In-vivo inhibition of DPP-4 using high-dose sitagliptin compares favorably with other approaches to enhance UCB engraftment with greater simplicity, and may show synergy in combination with other strategies.
Collapse
|
Journal Article |
8 |
29 |
24
|
Tejera-Alhambra M, Casrouge A, de Andrés C, Ramos-Medina R, Alonso B, Vega J, Albert ML, Sánchez-Ramón S. Low DPP4 expression and activity in multiple sclerosis. Clin Immunol 2013; 150:170-83. [PMID: 24412911 DOI: 10.1016/j.clim.2013.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/31/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a prototypic Th1/Th17 chronic autoimmune disease of the central nervous system. Dipeptidyl peptidase 4 (DPP4 or CD26) is a multifunctional molecule involved in autoimmune diseases' pathophysiology. We sought to integrate disparate pieces of data and analyze the plasma levels of sDPP4, DPP activity and DPP4 surface expression on T-cells in 129 MS patients with different clinical forms and 53 healthy controls, across two independent cohorts. Herein, we provide new evidence that sDPP4 concentration and DPP activity are significantly lower in MS patients than controls (p < 0.0001 and p < 0.01, respectively). In contrast, the frequency of circulating CD8(+)DPP4(hi) T-cells (p = 0.02) was increased in MS patients. This is the first study that simultaneously analyzes DPP4 expression and function in a large cohort of MS patients. Our data indicate a putative role for DPP4 in MS pathophysiology and suggest that a deeper understanding of surface versus shed DPP4 biology is warranted.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
29 |
25
|
Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019; 56:139-160. [PMID: 27561663 PMCID: PMC7090975 DOI: 10.1007/s12016-016-8578-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a heterogeneous and chronic inflammatory family of disorders of the airways with increasing prevalence that results in recurrent and reversible bronchial obstruction and expiratory airflow limitation. These diseases arise from the interaction between environmental and genetic factors, which collaborate to cause increased susceptibility and severity. Many asthma susceptibility genes are linked to the immune system or encode enzymes like metalloproteases (e.g., ADAM-33) or serine proteases. The S9 family of serine proteases (prolyl oligopeptidases) is capable to process peptide bonds adjacent to proline, a kind of cleavage-resistant peptide bonds present in many growth factors, chemokines or cytokines that are important for asthma. Curiously, two serine proteases within the S9 family encoded by genes located on chromosome 2 appear to have a role in asthma: CD26/dipeptidyl peptidase 4 (DPP4) and DPP10. The aim of this review is to summarize the current knowledge about CD26 and to provide a structured overview of the numerous functions and implications that this versatile enzyme could have in this disease, especially after the detection of some secondary effects (e.g., viral nasopharyngitis) in type II diabetes mellitus patients (a subset with a certain risk of developing obesity-related asthma) upon CD26 inhibitory therapy.
Collapse
|
Review |
6 |
29 |