1
|
Omotoso MO, Est-Witte SE, Shannon SR, Li S, Nair NM, Neshat SY, Kang SS, Tzeng SY, Green JJ, Schneck JP. Alginate-based artificial antigen presenting cells expand functional CD8 + T cells with memory characteristics for adoptive cell therapy. Biomaterials 2025; 313:122773. [PMID: 39217794 PMCID: PMC11423771 DOI: 10.1016/j.biomaterials.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.
Collapse
|
2
|
Li W, Li K, Chen Y, Wang S, Xu K, Ye S, Zhao B, Yuan H, Li Z, Shen Y, Mou T, Wang Y, Zhou W, Ma W. IRF1 transcriptionally up-regulates CXCL10 which increases CD8 + T cells infiltration in colorectal cancer. Int Immunopharmacol 2025; 144:113678. [PMID: 39591825 DOI: 10.1016/j.intimp.2024.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Tumor-infiltrating CD8+ T cell is a robust predictor of outcome and immunotherapy response in patients with CRC. However, limited introduction of intratumoral CD8+ T cells remains a barrier for treatment of CRC. One of the most effective but difficult therapy for CD8+ T cells entering the tumor is activating chemokine receptors. This study observed a decrease in the expression level of interferon regulator factor 1(IRF1) in CRC tumor tissues compared to matched non-tumor tissues. Furthermore, it found a positive correlation between low IRF1 expression and unfavorable prognosis in CRC patients. The present study also demonstrated that overexpression of IRF1 attenuated tumor growth by promoting the accumulation of facilitating CD8+T cells at the tumor site in mouse models. Additionally, this study identified IRF1 response elements in the promoter region of CXCL10 and show that the binding of IRF1 promoted the transcription of CXCL10. Of note, it was discovered that an increase in CXCL10 was positively associated with improved survival in CRC. These findings strongly suggest that IRF1 serves as a key transcription factor for CXCL10, highlighting its potential as a therapeutic target for CRC.
Collapse
|
3
|
Kim SA, Kim S, Hong Y, Choi Y, Lee Y, Kwon M, Park SY, Jeong C, Nam GH, Han RT, Kim IS. Immunogenic clearance combined with PD-1 blockade elicits antitumor effect by promoting the recruitment and expansion of the effector memory-like CD8 +T cell. Transl Oncol 2025; 51:102209. [PMID: 39608213 PMCID: PMC11635775 DOI: 10.1016/j.tranon.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Immune checkpoint inhibition shows promise for cancer treatment, but only a minority of patients respond. Combination strategies have been explored to overcome this resistance. Combining immunogenic clearance using immunogenic cell death inducers with a rho kinase inhibitor enhances phagocytosis of immunogenically dying cancer cells by antigen-presenting cells, stimulating tumor-specific immune responses by activating CD8+T cells via dendritic cell-mediated priming. This approach increases the responsiveness of immune checkpoint blockade (ICB)-resistant cancer to ICB. However, the precise mechanisms remain unclear. This study elucidates cellular mechanisms of immunogenic clearance enhancing ICB response. Using single-cell RNA sequencing, we observed an increase in effector memory-like CD8+T cells within the tumor microenvironment with combined treatment. We propose this cell cluster may originate from proliferating CD8+T cells elevated by immunogenic clearance. Notably, abundant effector memory-like CD8+T cells in ICB-responsive patients suggest their antitumor effect. Thus, increasing this cell population through enhanced T cell priming may improve the response of ICB-resistant tumors.
Collapse
|
4
|
Li Y, Zhao Z, He L, Liang Y, Liu M, Dong M, Li Z, Xu B, Zhang Z, Zhou Y, Liu Y, Zhu Z, Zhao J. PD-1 blockade synergizes with ascorbic acid to restore the activation and anti-viral immune functions of CD8 + T cells in a mouse model of BVDV infection. Vet Microbiol 2025; 300:110316. [PMID: 39615163 DOI: 10.1016/j.vetmic.2024.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
Bovine viral diarrhea virus (BVDV) can cause typical peripheral lymphopenia and inhibit CD8+ T-cell activation and proliferation. Programmed death-1 (PD-1) blockade has been shown to increase CD8+ T-cell activation during cytopathic (CP) BVDV infection but not non-cytopathic (NCP) BVDV. Notably, ascorbic acid (AA) restores lymphocyte count and activation during SARS-CoV-2 and influenza virus infections and has a synergistic effect with PD-1 blockade to improve antitumor CD8+ T-cell activity. Nevertheless, it remains unclear whether AA exerts an immunomodulatory effect on the activation and proliferation of CD8+ T cells during BVDV infection, especially NCP BVDV infection, or whether PD-1 blockade and AA exert a synergistic effect in regulating CD8+ T cell antiviral activities. In this study, we found that BVDV infection significantly decreased AA levels in serum and CD8+ T cells in a BALB/c mouse model. Interestingly, AA supplementation dramatically downregulated PD-1 expression, restored the activation and proliferation of CD8+ T cells, inhibited viral replication, ameliorated BVDV-induced histological lesions, and upregulated the expression of CD25 and p-ERK. More importantly, we also found a synergistic effect of PD-1 blockade with AA in restoring the activation and proliferation of CD8+ T cells during CP BVDV infection. However, during NCP BVDV infection, a synergistic effect of PD-1 blockade and AA led to the inhibition of viral replication and the promotion of IFN-γ production. Our findings provided new insights into the immunopathological mechanisms of BVDV and the potential value of anti-viral strategies based on AA treatment alone or in combination with PD-1 blockade.
Collapse
|
5
|
Entezam M, Bagheri N, Soltani A, Hosseini SA, Khosravian P, Ferns GA, Ghatrehsamani M. Enhanced antitumor immunity in breast cancer: Synergistic effects of ADAM10/ADAM17 inhibition, metabolic modulation, and camptothecin-loaded selenium nanoparticles. Int J Pharm 2024; 669:125037. [PMID: 39675534 DOI: 10.1016/j.ijpharm.2024.125037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND In this study, we investigate the impact of a multi-targeted therapeutic approach that includes camptothecin (CPT), a potent chemotherapeutic topoisomerase inhibitor; metformin (Met), a metabolic modulator with emerging anti-tumor effects; and GW280264X, an inhibitor of ADAM 10/ADAM 17 enzymes, which are associated with tumor invasion and immune response. The study aims to assess the combined effects of these agents in enhancing CD8+ T cell-mediated anti-tumor immunity and suppressing cancer cell growth in triple-negative breast cancer (TNBC) models, both in vitro and in vivo. METHODS Cell viability was performed on the 4 T1 human TNBC cell line. Furthermore, we examined c-MYC protein expression by western blot, TOX and NR4A expression by Real-time PCR, and the number of CD8+ CD28+ T cells by immunofluorescence assay to demonstrate the anticancer effects of combined of CPT, Met and GW280264X in BC growth, exhaustion and senescence of T cells. RESULTS Regarding cell viability, HA-Se@CPT + Met and HA-Se@CPT + Met + GW280264X treatments decreased 4 T1 cell growth (p < 0.001). Combination therapy of Met, HA-Se@CPT, and GW280264X significantly reduced tumor volume and weight in vivo. This treatment also increased the number of CD8+ CD28+ T cells in the tumor microenvironment (TME) of BC (p < 0.0001) and decreased the expression of TOX and NR4A (p < 0.0001, p < 0.01). Furthermore, decreased expression of c-MYC as an oncogene protein was seen in the single and combined treatment by HA-Se@CPT and GW280264X (p < 0.05). CONCLUSION These findings suggest that of HA-Se@CPT, Met, and GW280264X may inhibit tumor progression in BC by improving the function and infiltration of CD8+ T cells. Their effect is more pronounced when used in combination.
Collapse
|
6
|
Liu M, Fu X, Yi Q, Xu E, Dong L. Impaired mitochondrial oxidative phosphorylation induces CD8 + T cell exhaustion. Biochem Biophys Res Commun 2024; 734:150738. [PMID: 39342799 DOI: 10.1016/j.bbrc.2024.150738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
CD8+ T cells play a crucial role in anti-tumor immunity, but their function can be impaired by exhaustion induced by prolonged antigen stimulation. Mitochondrial dysfunction, a hallmark of the tumor microenvironment (TME), has been linked to various pathologies, but its specific role in CD8+ T cell exhaustion remains underexplored. Here, we established an in vitro model of CD8+ T cell exhaustion by co-culturing OVA-specific OT1 CD8+ T cells with OVA-expressing MC38 tumor cells. Next, we investigated the impact of mitochondrial dysfunction on exhaustion using pharmacological inhibitors targeting the electron transport chain. The role of the mitochondrial complex I component NDUFA10 was further examined through genetic knockout in CD8+ T cells using CRISPR-Cas9. Inhibition of the mitochondrial electron transport chain significantly accelerated CD8+ T cell exhaustion in vitro. Knockout of NDUFA10 in CD8+ T cells led to enhanced tumor growth and increased exhaustion of tumor-infiltrating CD8+ T cells in a Rag1-/- tumor-bearing transfer model. This study highlights the critical role of mitochondrial function in regulating CD8+ T cell exhaustion and anti-tumor activity, providing new insights into the metabolic underpinnings of immune dysfunction in cancer.
Collapse
|
7
|
Shentu J, Su X, Yu Y, Duan S. Unveiling the role of taurine and SLC6A6 in tumor immune evasion: Implications for gastric cancer therapy. Int J Biochem Cell Biol 2024; 176:106661. [PMID: 39270578 DOI: 10.1016/j.biocel.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Metabolic changes are key drivers of tumor progression. Understanding how metabolic reprogramming promotes tumor development and identifying key metabolic activities are essential for improving tumor diagnosis and treatment. Among the numerous transporters in the body, solute carriers (SLCs) are particularly significant, often overexpressed in cancer cells to meet the tumor's demand for nutrients and energy. While the role of SLCs in nutrient absorption within the gastrointestinal tract is well-established, their specific role in gastric cancer (GC) remains unclear. Recently, Xiaodi Zhao's team investigated the critical role of taurine and its transporter, SLC6A6, in anti-tumor immunity and clinical outcomes. Notably, this research marks the first instance of taurine exhibiting a dual role. It promotes tumor growth in immunodeficient mice while inhibiting it in immunocompetent mice. The study found that taurine exerts its anti-cancer effects by modulating CD8+ T cells rather than directly inhibiting tumor cells, revealing the SP1-SLC6A6 axis as a key mechanism behind chemotherapy-induced immune evasion. Our work further explored the potential, advantages, and challenges of using taurine and SLC6A6 as biomarkers and therapeutic targets in gastric cancer. We aim to underscore their importance in both basic research and clinical applications, providing valuable insights and guidance for future investigations.
Collapse
|
8
|
Masuda Y, Kondo N, Nakayama Y, Shimizu R, Konishi M. Neudesin regulates dendritic cell function and antitumor CD8 + T cell immunity. Clin Immunol 2024; 268:110376. [PMID: 39369973 DOI: 10.1016/j.clim.2024.110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Dendritic cells (DCs) are essential for antitumor T-cell responses to immune checkpoint inhibitor therapies. We have previously reported that the secreted protein neudesin suppresses DC function. In contrast, neudesin has been found to be abundantly expressed in human cancers. In this study, we evaluated the role of neudesin in cancer immunity. Cancer-related database analysis revealed that patients with melanoma with low neudesin expression exhibited increased infiltration of DCs and CD8+ T cells and improved outcomes of checkpoint inhibitor therapy. In mouse tumor models, neudesin deficiency delayed tumor growth and increased the proportions of Type 1 conventional DCs (cDC1s) and tumor antigen-specific CD8+ T cells in tumors and tumor-infiltrating lymph nodes. Neudesin-deficient antitumor cDC1 vaccine enhanced the systemic immunity more effectively than the wild-type cDC1 vaccine. Overall, our findings highlight the importance of neudesin in cancer immunity, providing a novel target for immunotherapy.
Collapse
|
9
|
Huang X, Ao S, Xu R, Gao X, Qi S, Liang Y, Feng P, Xue R, Ren Y, Han J, Li F, Chu C, Wang F. Sensory neuroimmune signaling in the pathogenesis of Stevens-Johnson syndrome and toxic epidermal necrolysis. J Allergy Clin Immunol 2024:S0091-6749(24)01128-X. [PMID: 39481654 DOI: 10.1016/j.jaci.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening cutaneous reactions often triggered by medications. While the involvement of CD8+ T cells causing keratinocyte death is well recognized, the contribution of neural elements to the persistent skin inflammation has been largely overlooked. OBJECTIVE We investigated the potential neuroimmune regulation in SJS/TEN. METHODS Unbiased single-cell RNA sequencing and flow cytometry were performed using circulating CD8+ T cells from healthy controls and patients with SJS/TEN. ELISA and LEGENDplex assays were respectively used to detect neuropeptides and inflammatory mediators. Skin tissues were examined by immunofluorescence staining for neuropeptide-associated nerves and cytokine receptors. Calcium imaging, Smart-seq, and a 3-D skin model were used for cultured human CD8+ T cells. RESULTS Unbiased RNA sequencing revealed an upregulation of the receptor for neuropeptide calcitonin gene-related peptide (CGRP), known as RAMP1, in effector CD8+ T cells in SJS/TEN. Increased CGRP+ nerve fibers and CGRP levels, along with upregulated IL-15R and IL-18R on CD8+ T cells, were displayed in the affected skin of SJS/TEN. The CGRP-RAMP1 axis was necessary and sufficient to enhance receptors for IL-15 and IL-18 and cytotoxic activities in CD8+ T cells, ultimately resulting in keratinocyte apoptosis. Calcium influx was detected in CGRP-stimulated CD8+ T cells. HCN2, a hyperpolarization-activated cation channel, was required for this process and the subsequent cytotoxic effects. CONCLUSIONS Our study highlights the role of neural elements in regulating CD8+ T-cell-mediated inflammatory responses and provides new potential translational targets to improve the outcomes of severe cutaneous drug reactions.
Collapse
|
10
|
Lin J, Lai Y, Lu F, Wang W. Targeting ACSLs to modulate ferroptosis and cancer immunity. Trends Endocrinol Metab 2024:S1043-2760(24)00255-8. [PMID: 39424456 DOI: 10.1016/j.tem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Five acyl-CoA synthetase long-chain family members (ACSLs) are responsible for catalyzing diverse long-chain fatty acids (LCFAs) into LCFA-acyl-coenzyme A (CoA) for their subsequent metabolism, including fatty acid oxidation (FAO), lipid synthesis, and protein acylation. In this review, we focus on ACSLs and their LCFA substrates and introduce their involvement in regulation of cancer proliferation, metastasis, and therapeutic resistance. Along with the recognition of the decisive role of ACSL4 in ferroptosis - an immunogenic cell death (ICD) initiated by lipid peroxidation - we review the functions of ACSLs on regulating ferroptosis sensitivity. Last, we discuss the current understanding of ACSL on the antitumor immune response. We emphasize the necessity to explore the functions of immune cells expressing ACSLs for developing novel strategies to augment immunotherapy by targeting ACSL.
Collapse
|
11
|
Ke Y, Lian N, Chen Y, Zhang Y, Li Y, Zhang W, Yu H, Gu H, Chen X. Ferrostatin-1 alleviates skin inflammation and inhibits ferroptosis of neutrophils and CD8 + T cells in allergic contact dermatitis. J Dermatol Sci 2024; 116:2-13. [PMID: 39299894 DOI: 10.1016/j.jdermsci.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Ferroptosis is considered as an immunogenic type of regulated cell death and associated with the pathogenesis of inflammatory skin diseases. However, the involvement and function of ferroptosis in allergic contact dermatitis (ACD) remains unknown. OBJECTIVE To explore the role of ferroptosis in ACD. To reveal which type of cells develops ferroptosis in ACD. METHODS We detected the key markers of ferroptosis in 1-Chloro-2,4-dinitrochlorobenzene (DNCB)-induced ACD mice model. We applicated ferrostatin-1 (Fer-1) to restrain ferroptosis in ACD mice and then compared the severity of dermatitis and the level of inflammation and ferroptosis in dermis and epidermis, respectively. Keratinocyte-specific Gpx4 conditional knockout (cKO) mice were used to investigate the function of keratinocyte ferroptosis in the development of ACD. Single-cell RNA sequencing was conducted to analyze the affection of Fer-1 on different type of cells in ACD. RESULTS Ferroptosis was involved in DNCB-induced ACD mice. Ferroptosis activation was more remarkable in dermis rather than in epidermis. Gpx4 cKO mice showed similar severity of skin dermatitis as control mice. Fer-1 alleviated skin inflammation in mice and reduced ferroptosis in neutrophils and CD8+ T cells both of which contribute to development of ACD. CONCLUSION Ferroptosis was activated in immune cells, especially neutrophils and CD8+ T cells in DNCB-induced ACD mice. Fer-1 treatment inhibited ferroptosis of neutrophils and CD8+ T cells and relieved skin damage in ACD mice.
Collapse
|
12
|
Zhu CX, Yan K, Chen L, Huang RR, Bian ZH, Wei HR, Gu XM, Zhao YY, Liu MC, Suo CX, Li ZK, Yang ZY, Lu MQ, Hua XF, Li L, Zhao ZB, Sun LC, Zhang HF, Gao P, Lian ZX. Targeting OXCT1-mediated ketone metabolism reprograms macrophages to promote antitumor immunity via CD8 + T cells in hepatocellular carcinoma. J Hepatol 2024; 81:690-703. [PMID: 38759889 DOI: 10.1016/j.jhep.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND & AIMS The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.
Collapse
|
13
|
Zhao L, Wang H, Zhang Y, Shi Y, Zhou C, Yu M, Wang Y, Zhang L, Xu Z, Zhang Z, Gao L, Zhang J, Yang B, Huang H, Wang FS. Characteristics and functions of an atypical inflammation-associated GZMK +GZMB +CD8 + T subset in people living with HIV-1. Mol Immunol 2024; 173:40-52. [PMID: 39053388 DOI: 10.1016/j.molimm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
HIV-1 chronically infects host CD4+ T lymphocytes and further affects a variety of immune cells, including CD8+ T cells. In our previous study, by analyzing unbiased high-dimensional single-cell RNA-seq data (scRNA-seq), we found that the frequency of GZMK+CD8+ T cells expressing granzyme K (GZMK) was increased in people living with HIV-1 (PLWHs). However, the phenotypic and functional characteristics of these cells in chronic HIV-1 infection and their correlation with disease are not well understood. In this study, we conducted a comprehensive analysis of scRNA-seq and matched T-cell receptor repertoire (TCR) sequencing data to delve into the characterizations of GZMK+CD8+ T cells, which was further validated by flow cytometry. We observed heterogeneity within the GZMK+CD8+ T cells, which could be further subdivided into a GZMK+GZMB- subset and a GZMK+GZMB+ subset, with the latter being significantly enriched in PLWHs. The GZMK+GZMB+ cells are a unique subset within CD8+ T cells, characterized by high proliferation, activation, inflammatory response, clone transition, etc., and are one of the differentiation endpoints by pseudotemporal analysis of CD8+αβ T cells. Despite being predominantly composed of effector memory T cells (Tem), similar to the GZMK+GZMB- subset, the GZMK+GZMB+ subset exhibits differentiation at a later stage than the GZMK+GZMB- subset. We also observed that the frequency/count of GZMK+GZMB+CD8+ T cells was negatively correlated with CD4/CD8 ratio, and positively correlated with HIV DNA, IP-10, and MIG levels in PLWHs. In vitro experiments demonstrate that GZMK can potentiate the stimulatory effects of lipopolysaccharide (LPS) on THP-1 macrophages via the TLR-4 pathway, significantly enhancing the secretion of IP-10, MIG, and MCP-1, as well as increasing the proportion of TNF-α+ cells. In conclusion, in PLWHs, GZMK+GZMB+CD8+ T cells are a highly reactive and inflammatory-inducing subset that may be associated with systemic inflammation.
Collapse
|
14
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 PMCID: PMC11522508 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
|
15
|
Gholami A. Cancer stem cell-derived exosomes in CD8 + T cell exhaustion. Int Immunopharmacol 2024; 137:112509. [PMID: 38889509 DOI: 10.1016/j.intimp.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-β. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.
Collapse
|
16
|
Guo W, Qiao T, Li H, Zhao Y, Qin J, Zhang C, Shi C. Peripheral CD8 +PD-1 + T cells as novel biomarker for neoadjuvant chemoimmunotherapy in humanized mice of non-small cell lung cancer. Cancer Lett 2024; 597:217073. [PMID: 38906523 DOI: 10.1016/j.canlet.2024.217073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Neoadjuvant immunotherapy has shown promising clinical activity in the treatment of early non-small cell lung cancer (NSCLC); however, further clarification of the specific mechanism and identification of biomarkers are imperative prior to implementing it as a daily practice. The study investigated the reprogramming of T cells in both tumor and peripheral blood following neoadjuvant chemoimmunotherapy in a preclinical NSCLC mouse model engrafted with a human immune system. Samples were also collected from 21 NSCLC patients (Stage IA-IIIB) who received neoadjuvant chemoimmunotherapy, and the dynamics of potential biomarkers within these samples were measured and further subjected to correlation analysis with prognosis. Further, we initially investigated the sources of the potential biomarkers. We observed in the humanized mouse model, neoadjuvant chemoimmunotherapy could prevent postoperative recurrence and metastasis by increasing the frequency and cytotoxicity of CD8+ T cells in both peripheral blood (p < 0.001) and tumor immune microenvironment (TIME) (p < 0.001). The kinetics of peripheral CD8+PD-1+ T cells reflected the changes in the TIME and pathological responses, ultimately predicting survival outcome of mice. In the clinical cohort, patients exhibiting an increase in these T cells post-treatment had a higher rate of complete or major pathological response (p < 0.05) and increased immune infiltration (p = 0.0012, r = 0.792). We identified these T cells originating from tumor draining lymph nodes and subsequently entering the TIME. In conclusion, the kinetics of peripheral CD8+PD-1+ T cells can serve as a predictor for changes in TIME and optimal timing for surgery, ultimately reflecting the outcomes of neoadjuvant chemoimmunotherapy in both preclinical and clinical setting.
Collapse
|
17
|
Andrews LP, Butler SC, Cui J, Cillo AR, Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, Ngiow SF, Huang YJ, Manne S, Sharpe AH, Delgoffe GM, Wherry EJ, Kirkwood JM, Bruno TC, Workman CJ, Vignali DAA. LAG-3 and PD-1 synergize on CD8 + T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell 2024; 187:4355-4372.e22. [PMID: 39121848 PMCID: PMC11323044 DOI: 10.1016/j.cell.2024.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/01/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.
Collapse
|
18
|
Wei X, Jin C, Li D, Wang Y, Zheng S, Feng Q, Shi N, Kong W, Ma X, Wang J. Single-cell transcriptomics reveals CD8 + T cell structure and developmental trajectories in idiopathic pulmonary fibrosis. Mol Immunol 2024; 172:85-95. [PMID: 38936318 DOI: 10.1016/j.molimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Collapse
|
19
|
Wu Z, Su R, Dai Y, Wu X, Wu H, Wang X, Wang Z, Bao J, Chen J, Xia E. Deep pan-cancer analysis and multi-omics evidence reveal that ALG3 inhibits CD8 + T cell infiltration by suppressing chemokine secretion and is associated with 5-fluorouracil sensitivity. Comput Biol Med 2024; 177:108666. [PMID: 38820773 DOI: 10.1016/j.compbiomed.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND α-1,3-mannosyltransferase (ALG3) holds significance as a key member within the mannosyltransferase family. Nevertheless, the exact function of ALG3 in cancer remains ambiguous. Consequently, the current research aimed to examine the function and potential mechanisms of ALG3 in various types of cancer. METHODS Deep pan-cancer analyses were conducted to investigate the expression patterns, prognostic value, genetic variations, single-cell omics, immunology, and drug responses associated with ALG3. Subsequently, in vitro experiments were executed to ascertain the biological role of ALG3 in breast cancer. Moreover, the link between ALG3 and CD8+ T cells was verified using immunofluorescence. Lastly, the association between ALG3 and chemokines was assessed using qRT-PCR and ELISA. RESULTS Deep pan-cancer analysis demonstrated a heightened expression of ALG3 in the majority of tumors based on multi-omics evidence. ALG3 emerges as a diagnostic and prognostic biomarker across diverse cancer types. In addition, ALG3 participates in regulating the tumor immune microenvironment. Elevated levels of ALG3 were closely linked to the infiltration of bone marrow-derived suppressor cells (MDSC) and CD8+ T cells. According to in vitro experiments, ALG3 promotes proliferation and migration of breast cancer cells. Moreover, ALG3 inhibited CD8+ T cell infiltration by suppressing chemokine secretion. Finally, the inhibition of ALG3 enhanced the responsiveness of breast cancer cells to 5-fluorouracil treatment. CONCLUSION ALG3 shows potential as both a prognostic indicator and immune infiltration biomarker across various types of cancer. Inhibition of ALG3 may represent a promising therapeutic strategy for tumor treatment.
Collapse
|
20
|
Song P, Zhang W, Guo S, Wang G, Gao T, Li C, Liu L. Membranal Expression of Calreticulin Induced by Unfolded Protein Response in Melanocytes: A Mechanism Underlying Oxidative Stress-Induced Autoimmunity in Vitiligo. J Invest Dermatol 2024; 144:1622-1632.e5. [PMID: 38246583 DOI: 10.1016/j.jid.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Calreticulin (CRT), a damage-associated molecular pattern molecule, is reported to translocate from the endoplasmic reticulum to the membrane in melanocytes under oxidative stress. To investigate the potential role of CRT in the pathogenesis of vitiligo, we analyzed the correlation between CRT and ROS in serum and lesions of vitiligo, detected CRT and protein kinase RNA-like endoplasmic reticulum kinase (PERK) expression in vitiligo lesions, and studied the production of CRT and mediators of unfolded protein response (UPR) pathway and then tested the chemotactic migration of CD8+ T cells or CD11c+ CD86+ cells. Initially, we verified the overexpression of CRT in perilesional epidermis that was positively correlated with the disease severity of vitiligo. Furthermore, the PERK branch of UPR was confirmed to be responsible for the overexpression and membranal translocation of CRT in melanocytes under oxidative stress. We also found that oxidative stress-induced membranal translocation of CRT promoted the activation and migration of CD8+ T cells in vitiligo. In addition, dendritic cells from patients with vitiligo were also prone to maturation with the coincubation of melanocytes harboring membranal CRT. CRT could be induced on the membrane of melanocytes through UPR and might play a role in oxidative stress-triggered CD8+ T-cell response in vitiligo.
Collapse
|
21
|
Huang B, Li H, Jiang Q, Li Y, Jiang Z, Cao H, Wang S, Wang X, Li J, Li G. Elevated type I IFN signalling directly affects CD8 + T-cell distribution and autoantigen recognition of the skeletal muscles in active JDM patients. J Autoimmun 2024; 146:103232. [PMID: 38692172 DOI: 10.1016/j.jaut.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The link between type I IFN and adaptive immunity, especially T-cell immunity, in JDM still remained largely unclear. This study aimed to understand the effect of elevated type I IFN signaling on CD8+ T cell-associated muscle damage in juvenile dermatomyositis (JDM). This study used flow cytometry (FC) and RT‒PCR were used to examine the circulating cell ratio and type I IFN response. And scRNA-seq was used to examine peripheral immunity in 6 active JDM patients, 3 stable JDM patients, 3 juvenile IMNM patients and 3 age-matched healthy children. In vivo validation experiments were conducted using a mouse model induced by STING agonists and an experimental autoimmune myositis model (EAM). In vitro experiments were conducted using isolated CD8+ T-cells from JDM patients and mice. We found that active JDM patients showed an extensive type I IFN response and a decreased CD8+ T-cell ratio in the periphery (P < 0.05), which was correlated with muscle involvement (P < 0.05). Both new active JDM patients and all active JDM patients showed decreased CD8+ TCM cell ratios compared with age and gender matched stable JDM patients (P < 0.05). Compared with new pediatirc systemic lupus erythematosus (SLE) patients, new active JDM patients displayed decreased CD8+ T-cell and CD8+ TCM cell ratios (P < 0.05). Active JDM patient skeletal muscle biopsies displayed an elevated type I IFN response, upregulated MHC-I expression and CD8+ T-cell infiltration, which was validated in EAM mice. sc-RNAseq demonstrated that type I IFN signalling is the kinetic factor of abnormal differentiation and enhances the cytotoxicity of peripheral CD8+ T cells in active JDM patients, which was confirmed by in vivo and in vitro validation experiments. In summary, the elevated type I IFN signalling affected the differentiation and function of CD8+ T cells in active JDM patients. Skeletal muscle-infiltrating CD8+ T cells might migrate from the periphery under the drive of type I IFN and increased MHC I signals. Therapies targeting autoantigen-specific CD8+ T cells may represent a potential new treatment direction.
Collapse
|
22
|
Kashif M, Waseem M, Subbarao N. In silico prediction of CD8 + and CD4 + T cell epitopes in Leishmania major proteome: Using immunoinformatics. J Mol Graph Model 2024; 129:108759. [PMID: 38492406 DOI: 10.1016/j.jmgm.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The leishmaniases are NDTs (neglected tropical diseases) that affect people all over the world. They are brought on by protozoans from the genus Leishmania and disseminated by phlebotomine flies that are afflicted with the disease. The best option to manage and lower the incidence of these diseases has been thought by the creation of a safe and effective vaccination. This research used an in silico based mining approach to look for high potential epitopes that might bind to MHC Class I and MHC Class II molecules (mainly; HLA-A*02:01 & HLA-DRB1*03:01) from human population in order to promote vaccine development. Based on the presence of signal peptides, GPI anchors, antigenicity predictions, and a subtractive proteomic technique, we have screened 17 putative antigenic proteins from the 8083 total proteins of L. major. After that thorough immunogenic epitope prediction were done using IEDB-AR tools. We isolated five immunogenic epitopes (three 9-mer & two 15-mer) from five antigenic proteins through docking and MD simulation analysis. Finally, these five anticipated epitopes, viz., TLPEIPVNV, ELMAPVFGL, TLAAAVALL, NSINIRLDGVTSAGF and NVPLVVDASSLFRVA have considerably stronger binding potential with their respective alleles and may trigger immunological responses. The goal of this work was to identify MHC restricted epitopes for CD8+ and CD4+ T cells activation using immunoinformatics in order to identify potential vaccine candidates against L. major parasites.
Collapse
|
23
|
Feng Y, Li Y, Ma F, Wu E, Cheng Z, Zhou S, Wang Z, Yang L, Sun X, Zhang J. Notoginsenoside Ft1 inhibits colorectal cancer growth by increasing CD8 + T cell proportion in tumor-bearing mice through the USP9X signaling pathway. Chin J Nat Med 2024; 22:329-340. [PMID: 38658096 DOI: 10.1016/s1875-5364(24)60623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 04/26/2024]
Abstract
The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding β-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.
Collapse
|
24
|
St Paul M, Saibil SD, Kates M, Han S, Lien SC, Laister RC, Hezaveh K, Kloetgen A, Penny S, Guo T, Garcia-Batres C, Smith LK, Chung DC, Elford AR, Sayad A, Pinto D, Mak TW, Hirano N, McGaha T, Ohashi PS. Ex vivo activation of the GCN2 pathway metabolically reprograms T cells, leading to enhanced adoptive cell therapy. Cell Rep Med 2024; 5:101465. [PMID: 38460518 PMCID: PMC10983112 DOI: 10.1016/j.xcrm.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/14/2023] [Accepted: 02/15/2024] [Indexed: 03/11/2024]
Abstract
The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8+ T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment. The adoptive transfer of halo-treated CD8+ T cells into tumor-bearing mice led to robust tumor control and curative responses. Halo-treated T cells synergized in vivo with a 4-1BB agonistic antibody to control tumor growth in a mouse model resistant to immunotherapy. Importantly, treatment of human CD8+ T cells with halo resulted in similar metabolic and functional reprogramming. These findings demonstrate that activating the amino acid starvation response with the GCN2 agonist halo can enhance T cell metabolism and anti-tumor activity.
Collapse
|
25
|
Wu J, Hu W, Yang W, Long Y, Chen K, Li F, Ma X, Li X. Knockdown of SQLE promotes CD8+ T cell infiltration in the tumor microenvironment. Cell Signal 2024; 114:110983. [PMID: 37993027 DOI: 10.1016/j.cellsig.2023.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol biosynthesis and metabolism are critical aspects that shape the process of tumor development and associated microenvironmental conditions owing to the ability of cholesterol to drive tumor growth and invasion. Squalene Epoxidase (SQLE) is the second rate-limiting enzyme involved in the synthesis of cholesterol. The functional role of SQLE within the tumor microenvironment, however, has yet to be established. Here we show that SQLE is distinctively expressed across most types of cancer, and the expression level is highly correlated with tumor mutation burden and microsatellite instability. Accordingly, SQLE was identified as a prognostic risk factor in cancer patients. In addition, we observed a negative correlation between SQLE expression and immune cell infiltration across multiple cancers, and murine xenograft model further confirmed that SQLE knockdown was associated with enhanced intratumoral CD8+ T cell infiltration. Using next-generation sequencing, we identified 410 genes distinctively expressed in tumors exhibiting SQLE inhibition. KEGG and GO analysis further verified that SQLE altered the immune response in the tumor microenvironment. Furthermore, we found that the metabolism and translation of proteins is the main binding factor with SQLE. Our findings ascertain that SQLE is a potential target in multiple cancers and suppressing SQLE establishes an essential mechanism for shaping tumor microenvironment.
Collapse
|