1
|
Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants. J Virol 2017; 91:JVI.01581-17. [PMID: 28978710 DOI: 10.1128/jvi.01581-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines.IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that circulated between 2004 and 2007. Three of the H3N2 COBRA vaccines recognized all of the cocirculating strains during this era, but the chosen wild-type vaccine strains were not able to elicit antibodies with HAI activity against these cocirculating strains. Therefore, the COBRA vaccines have the ability to elicit protective antibodies against not only the dominant vaccine strains but also minor circulating strains that can evolve into the dominant vaccine strains in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
70 |
2
|
Crevar CJ, Carter DM, Lee KYJ, Ross TM. Cocktail of H5N1 COBRA HA vaccines elicit protective antibodies against H5N1 viruses from multiple clades. Hum Vaccin Immunother 2015; 11:572-83. [PMID: 25671661 DOI: 10.1080/21645515.2015.1012013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pandemic outbreaks of influenza are caused by the emergence of a pathogenic and transmissible virus to which the human population is immunologically naïve. Recent outbreaks of highly pathogenic avian influenza (HPAI) of the H5N1 subtype are of particular concern because of the high mortality rate (60% case fatality rate) and novel subtype. In this study, we have engineered an influenza virus-like particle (VLP) that contains a synthetic, consensus-based HA molecule using a new methodology, computationally optimized broadly reactive antigen (COBRA). Three COBRA H5N1 HA proteins have been engineered based upon (1) human clade 2 H5N1 sequences, (2) human and avian clade 2 sequences, and (3) all H5N1 influenza sequences recorded between 2005-2008. Each hemagglutinin protein retained the ability to bind the appropriate receptors, as well as the ability to mediate particle fusion, following purification from a mammalian expression system. COBRA VLP vaccines were administered to mice and the humoral immune responses were compared to those induced by VLPs containing an HA derived from a primary viral isolate. Using a single vaccination (0.6 ug HA dose with an adjuvant) all animals vaccinated with COBRA clade 2 HA H5N1 VLPs had protective levels of HAI antibodies to a representative isolate from each subclade of clade 2, but lower titers against other clades. The addition of avian sequences from other clades expanded breadth of HAI antibodies to the divergent clades, but still not all of the 25 H5N1 viruses in the panel were recognized by antibodies elicited any one H5N1 COBRA VLP vaccine. Vaccination of mice with a cocktail of all 3 COBRA HA VLP vaccines, in a prime-boost regimen, elicited an average HAI titer greater than 1:40 against all 25 viruses. Collectively, our findings indicate that the elicited antibody response following VLP vaccination with all 3 COBRA HA vaccine simultaneously elicited a broadly-reactive set of antibodies that recognized H5N1 viruses from 11 H5N1 clades/subclades isolated over a 12-year span.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
66 |
3
|
Abstract
Bisulfite conversion of genomic DNA combined with next-generation sequencing (NGS) has become a very effective approach for mapping the whole-genome and sub-genome wide DNA methylation landscapes. However, whole methylome shotgun bisulfite sequencing is still expensive and not suitable for analyzing large numbers of human cancer specimens. Recent advances in the development of targeted bisulfite sequencing approaches offer several attractive alternatives. The characteristics and applications of these methods are discussed in this review article. In addition, the bioinformatic tools that can be used for sequence capture probe design as well as downstream sequence analyses are also addressed.
Collapse
|
Review |
13 |
53 |
4
|
Carter DM, Darby CA, Johnson SK, Carlock MA, Kirchenbaum GA, Allen JD, Vogel TU, Delagrave S, DiNapoli J, Kleanthous H, Ross TM. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses. J Virol 2017; 91:e01283-17. [PMID: 28978709 PMCID: PMC5709581 DOI: 10.1128/jvi.01283-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model.IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long-lasting protective immune responses. The goal of these vaccines is to stimulate immune responses that react against most, if not all, circulating influenza strains, over a long period of time in all populations of people. Commonly, these experimental vaccines are tested in naive animal models that do not have anti-influenza immune responses; however, humans have preexisting immunity to influenza viral antigens, particularly antibodies to the HA and NA glycoproteins. Therefore, this study investigated how preexisting antibodies to historical influenza viruses influenced HAI-specific antibodies and protective efficacy using a broadly protective vaccine candidate.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Ferrets
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/immunology
Collapse
|
Retracted Publication |
8 |
48 |
5
|
Karlsen E, Schulz C, Almaas E. Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics 2018; 19:467. [PMID: 30514205 PMCID: PMC6280343 DOI: 10.1186/s12859-018-2472-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Constraint-based modeling is a widely used and powerful methodology to assess the metabolic phenotypes and capabilities of an organism. The starting point and cornerstone of all such modeling is a genome-scale metabolic network reconstruction. The creation, further development, and application of such networks is a growing field of research thanks to a plethora of readily accessible computational tools. While the majority of studies are focused on single-species analyses, typically of a microbe, the computational study of communities of organisms is gaining attention. Similarly, reconstructions that are unified for a multi-cellular organism have gained in popularity. Consequently, the rapid generation of genome-scale metabolic reconstructed networks is crucial. While multiple web-based or stand-alone tools are available for automated network reconstruction, there is, however, currently no publicly available tool that allows the swift assembly of draft reconstructions of community metabolic networks and consolidated metabolic networks for a specified list of organisms. RESULTS Here, we present AutoKEGGRec, an automated tool that creates first draft metabolic network reconstructions of single organisms, community reconstructions based on a list of organisms, and finally a consolidated reconstruction for a list of organisms or strains. AutoKEGGRec is developed in Matlab and works seamlessly with the COBRA Toolbox v3, and it is based on only using the KEGG database as external input. The generated first draft reconstructions are stored in SBML files and consist of all reactions for a KEGG organism ID and corresponding linked genes. This provides a comprehensive starting point for further refinement and curation using the host of COBRA toolbox functions or other preferred tools. Through the data structures created, the tool also facilitates a comparative analysis of metabolic content in any given number of organisms present in the KEGG database. CONCLUSION AutoKEGGRec provides a first step in a metabolic network reconstruction process, filling a gap for tools creating community and consolidated metabolic networks. Based only on KEGG data as external input, the generated reconstructions consist of data with a directly traceable foundation and pedigree. With AutoKEGGRec, this kind of modeling is made accessible to a wider part of the genome-scale metabolic analysis community.
Collapse
|
research-article |
7 |
45 |
6
|
Universal Influenza Virus Neuraminidase Vaccine Elicits Protective Immune Responses against Human Seasonal and Pre-pandemic Strains. J Virol 2021; 95:e0075921. [PMID: 34160258 DOI: 10.1128/jvi.00759-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen (COBRA) methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with avian, swine, and human influenza viruses of the N1 NA subtype. The elicited antibodies bound to NA proteins derived from A/California/07/2009 (H1N1)pdm09, A/Brisbane/59/2007 (H1N1), A/Swine/North Carolina/154074/2015 (H1N1), and A/Viet Nam/1203/2004 (H5N1) influenza viruses, with NA-neutralizing activity against a broad panel of HXN1 influenza strains. Mice vaccinated with the N1-I COBRA NA vaccine were protected from mortality and viral lung titers were lower when challenged with four different viral challenges (A/California/07/2009, A/Brisbane/59/2007, A/Swine/North Carolina/154074/2015, and A/Viet Nam/1203/2004). Vaccinated mice had little to no weight loss against both homologous, but also cross-NA, genetic clade challenges. Lung viral titers were lower than the mock-vaccinated mice and, at times, equivalent to the homologous control. Thus, the N1-I COBRA NA antigen has the potential to be a complementary component in a multiantigen universal influenza virus vaccine formulation that also contains HA antigens. IMPORTANCE The development and distribution of a universal influenza vaccine would alleviate global economic and public health stress from annual influenza virus outbreaks. The influenza virus NA vaccine antigen allows for protection from multiple HA subtypes and virus host origins, but it has not been the focus of vaccine development. The N1-I NA antigen described here protected mice from direct challenge of four distinct influenza viruses and inhibited the enzymatic activity of an N1 influenza virus panel. The use of the NA antigen in combination with the HA antigen widens the breadth of protection against various virus strains. Therefore, this research opens the door to the development of a longer-lasting vaccine with increased protective breadth.
Collapse
|
Journal Article |
4 |
43 |
7
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
review-article |
4 |
39 |
8
|
Elicitation of Protective Antibodies against 20 Years of Future H3N2 Cocirculating Influenza Virus Variants in Ferrets Preimmune to Historical H3N2 Influenza Viruses. J Virol 2019; 93:JVI.00946-18. [PMID: 30429350 DOI: 10.1128/jvi.00946-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
The vast majority of people already have preexisting immune responses to influenza viruses from one or more subtypes. However, almost all preclinical studies evaluate new influenza vaccine candidates in immunologically naive animals. Recently, our group demonstrated that priming naive ferrets with broadly reactive H1 COBRA HA-based vaccines boosted preexisting antibodies induced by wild-type H1N1 virus infections. These H1 COBRA hemagglutinin (HA) antigens induced antibodies with HAI activity against multiple antigenically different H1N1 viral variants. In this study, ferrets, preimmune to historical H3N2 viruses, were vaccinated with virus-like particle (VLP) vaccines expressing either an HA from a wild-type H3 influenza virus or a COBRA H3 HA antigen (T6, T7, T10, or T11). The elicited antisera had the ability to neutralize virus infection against either a panel of viruses representing vaccine strains selected by the World Health Organization or a set of viral variants that cocirculated during the same time period. Preimmune animals vaccinated with H3 COBRA T10 HA antigen elicited sera with higher hemagglutination inhibition (HAI) antibody titers than antisera elicited by VLP vaccines with wild-type HA VLPs in preimmune ferrets. However, while the T11 COBRA vaccine did not elicit HAI activity, the elicited antibodies did neutralize antigenically distinct H3N2 influenza viruses. Overall, H3 COBRA-based HA vaccines were able to neutralize both historical H3 and contemporary, as well as future, H3N2 viruses with higher titers than vaccines with wild-type H3 HA antigens. This is the first report demonstrating the effectiveness of a broadly reactive H3N3 vaccine in a preimmune ferret model.IMPORTANCE After exposure to influenza virus, the host generates neutralizing anti-hemagglutinin (anti-HA) antibodies against that specific infecting influenza strain. These antibodies can also neutralize some, but not all, cocirculating strains. The goal of next-generation influenza vaccines, such as HA head-based COBRA, is to stimulate broadly protective neutralizing antibodies against all strains circulating within a subtype, in particular those that persist over multiple influenza seasons, without requiring an update to the vaccine. To mimic the human condition, COBRA HA virus-like particle vaccines were tested in ferrets that were previously exposed to historical H3N2 influenza viruses. In this model, these vaccines elicited broadly protective antibodies that neutralized cocirculating H3N2 influenza viruses isolated over a 20-year period. This is the first study to show the effectiveness of H3N3 COBRA HA vaccines in a host with preexisting immunity to influenza.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
38 |
9
|
Panchal A, Seto P, Wall R, Hillier BJ, Zhu Y, Krakow J, Datt A, Pongo E, Bagheri A, Chen THT, Degenhardt JD, Culp PA, Dettling DE, Vinogradova MV, May C, DuBridge RB. COBRA™: a highly potent conditionally active T cell engager engineered for the treatment of solid tumors. MAbs 2021; 12:1792130. [PMID: 32684124 PMCID: PMC7531513 DOI: 10.1080/19420862.2020.1792130] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Conditionally active COBRA™ (COnditional Bispecific Redirected Activation) T cell engagers are engineered to overcome the limitations of inherently active first-generation T cell engagers, which are unable to discern between tumor and healthy tissues. Designed to be administered as prodrugs, COBRAs target cell surface antigens upon administration, but engage T cells only after they are activated within the tumor microenvironment (TME). This allows COBRAs to be preferentially turned on in tumors while safely remaining inactive in healthy tissue. Here, we describe the development of the COBRA design and the characterization of these conditionally active T cell engagers. Upon administration COBRAs are engineered to bind to tumor-associated antigens (TAAs) and serum albumin (to extend their half-life in circulation), but are inhibited from interacting with the T cell receptor complex signaling molecule CD3. In the TME, a matrix metalloproteinase (MMP)-mediated linker cleavage event occurs within the COBRA construct, which rearranges the molecule, allowing it to co-engage TAAs and CD3, thereby activating T cells against the tumor. COBRAs are conditionally activated through cleavage with MMP9, and once active are highly potent, displaying sub-pM EC50s in T cell killing assays. Studies in tumor-bearing mice demonstrate COBRA administration completely regresses established solid tumor xenografts. These results strongly support the further characterization of the novel COBRA design in preclinical development studies.
Collapse
|
Video-Audio Media |
4 |
35 |
10
|
Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. J Virol 2022; 96:e0165221. [PMID: 35289635 DOI: 10.1128/jvi.01652-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Commercial influenza virus vaccines often elicit strain-specific immune responses and have difficulties preventing illness caused by antigenically drifted viral variants. In the last 20 years, the H3N2 component of the annual vaccine has been updated nearly twice as often as the H1N1 component, and in 2019, a mismatch between the wild-type (WT) H3N2 vaccine strain and circulating H3N2 influenza strains led to a vaccine efficacy of ∼9%. Modern methods of developing computationally optimized broadly reactive antigens (COBRAs) for H3N2 influenza viruses utilize current viral surveillance information to design more broadly reactive vaccine antigens. Here, 7 new recombinant hemagglutinin (rHA) H3 COBRA hemagglutinin (HA) antigens were evaluated in mice. Subsequently, two candidates, J4 and NG2, were selected for further testing in influenza-preimmune animals based on their ability to elicit broadly reactive antibodies against antigenically drifted H3N2 viral isolates. In the preimmune model, monovalent formulations of J4 and NG2 elicited broadly reactive antibodies against recently circulating H3N2 influenza viruses from 2019. Bivalent mixtures of COBRA H1 and H3 rHA, Y2 + J4, and Y2 + NG2 outperformed multiple WT H1+H3 bivalent rHA mixtures by eliciting seroprotective antibodies against H1N1 and H3N2 isolates from 2009 to 2019. Overall, the newly generated COBRA HA antigens, namely, Y2, J4, and NG2, had the ability to induce broadly reactive antibodies in influenza-naive and preimmune animals in both monovalent and bivalent formulations, and these antigens outperformed H1 and H3 WT rHA vaccine antigens by eliciting seroprotective antibodies against panels of antigenically drifted historical H1N1 and H3N2 vaccine strains from 2009 to 2019. IMPORTANCE Standard-of-care influenza virus vaccines are composed of a mixture of antigens from different influenza viral subtypes. For the first time, lead COBRA H1 and H3 HA antigens, formulated as a bivalent vaccine, have been investigated in animals with preexisting immunity to influenza viruses. The cocktail of COBRA HA antigens elicited more broadly reactive anti-HA antibodies than those elicited by a comparator bivalent wild-type HA vaccine against H1 and H3 influenza viruses isolated between 2009 and 2019.
Collapse
|
|
3 |
31 |
11
|
Lieven C, Petersen LAH, Jørgensen SB, Gernaey KV, Herrgard MJ, Sonnenschein N. A Genome-Scale Metabolic Model for Methylococcus capsulatus (Bath) Suggests Reduced Efficiency Electron Transfer to the Particulate Methane Monooxygenase. Front Microbiol 2018; 9:2947. [PMID: 30564208 PMCID: PMC6288188 DOI: 10.3389/fmicb.2018.02947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Genome-scale metabolic models allow researchers to calculate yields, to predict consumption and production rates, and to study the effect of genetic modifications in silico, without running resource-intensive experiments. While these models have become an invaluable tool for optimizing industrial production hosts like Escherichia coli and S. cerevisiae, few such models exist for one-carbon (C1) metabolizers. Results: Here, we present a genome-scale metabolic model for Methylococcus capsulatus (Bath), a well-studied obligate methanotroph, which has been used as a production strain of single cell protein (SCP). The model was manually curated, and spans a total of 879 metabolites connected via 913 reactions. The inclusion of 730 genes and comprehensive annotations, make this model not only a useful tool for modeling metabolic physiology, but also a centralized knowledge base for M. capsulatus (Bath). With it, we determined that oxidation of methane by the particulate methane monooxygenase could be driven both through direct coupling or uphill electron transfer, both operating at reduced efficiency, as either scenario matches well with experimental data and observations from literature. Conclusion: The metabolic model will serve the ongoing fundamental research of C1 metabolism, and pave the way for rational strain design strategies toward improved SCP production processes in M. capsulatus.
Collapse
|
Journal Article |
7 |
30 |
12
|
Aurich MK, Thiele I. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine. Methods Mol Biol 2016; 1386:253-81. [PMID: 26677187 DOI: 10.1007/978-1-4939-3283-2_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.
Collapse
|
Review |
9 |
28 |
13
|
Computationally Optimized Broadly Reactive H2 HA Influenza Vaccines Elicited Broadly Cross-Reactive Antibodies and Protected Mice from Viral Challenges. J Virol 2020; 95:JVI.01526-20. [PMID: 33115871 DOI: 10.1128/jvi.01526-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/25/2020] [Indexed: 01/10/2023] Open
Abstract
Influenza viruses have caused numerous pandemics throughout human history. The 1957 influenza pandemic was initiated by an H2N2 influenza virus. This H2N2 influenza virus was the result of a reassortment event between a circulating H2N2 avian virus and the seasonal H1N1 viruses in humans. Previously, our group has demonstrated the effectiveness of hemagglutinin (HA) antigens derived using computationally optimized broadly reactive antigen (COBRA) methodology against H1N1, H3N2, and H5N1 viruses. Using the COBRA methodology, H2 HA COBRA antigens were designed using sequences from H2N2 viruses isolated from humans in the 1950s and 1960s, as well as H2Nx viruses isolated from avian and mammalian species between the 1950s and 2016. In this study, the effectiveness of H2 COBRA HA antigens (Z1, Z3, Z5, and Z7) was evaluated in DBA/2J mice and compared to that of wild-type H2 HA antigens. The COBRA HA vaccines elicited neutralizing antibodies to the majority of viruses in our H2 HA panel and across all three clades as measured by hemagglutination inhibition (HAI) and neutralization assays. Comparatively, several wild-type HA vaccines elicited antibodies against a majority of the viruses in the H2 HA panel. DBA/2J mice vaccinated with COBRA vaccines showed increase survival for all three viral challenges compared to the wild-type H2 vaccines. In particular, the Z1 COBRA is a promising candidate for future work toward a pandemic H2 influenza vaccine.IMPORTANCE H2N2 influenza has caused at least one pandemic in the past. Given that individuals born after 1968 have not been exposed to H2N2 influenza viruses, a future pandemic caused by H2 influenza is likely. An effective H2 influenza vaccine would need to elicit broadly cross-reactive antibodies to multiple H2 influenza viruses. Choosing a wild-type virus to create a vaccine may elicit a narrow immune response and not protect against multiple H2 influenza viruses. COBRA H2 HA vaccines were developed and evaluated in mice along with wild-type H2 HA vaccines. Multiple COBRA H2 HA vaccines protected mice from all three viral challenges and produced broadly cross-reactive neutralizing antibodies to H2 influenza viruses.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
24 |
14
|
Intragenic DNA methylation status down-regulates bovine IGF2 gene expression in different developmental stages. Gene 2013; 534:356-61. [PMID: 24140490 DOI: 10.1016/j.gene.2013.09.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
DNA methylation is a key epigenetic modification in mammals and has an essential and important role in muscle development. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation. The aim of this study was to evaluate the expression of IGF2 and the methylation pattern on the differentially methylated region (DMR) of the last exon of IGF2 in six tissues with two different developmental stages. The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The quantitative real-time PCR (qPCR) analysis indicated that IGF2 has a broad tissue distribution and the adult bovine group showed significant lower mRNA expression levels than that in the fetal bovine group (P<0.05 or P<0.01). Moreover, the DNA methylation level analysis showed that the adult bovine group exhibited a significantly higher DNA methylation levels than that in the fetal bovine group (P<0.05 or P<0.01). These results indicate that IGF2 expression levels were negatively associated with the methylation status of the IGF2 DMR during the two developmental stages. Our results suggest that the methylation pattern in this DMR may be a useful parameter to investigate as a marker-assisted selection for muscle developmental in beef cattle breeding program and as a model for studies in other species.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
24 |
15
|
Toyoshima K, Kako Y, Toyomaki A, Shimizu Y, Tanaka T, Nakagawa S, Inoue T, Martinez-Aran A, Vieta E, Kusumi I. Associations between cognitive impairment and quality of life in euthymic bipolar patients. Psychiatry Res 2019; 271:510-515. [PMID: 30551083 DOI: 10.1016/j.psychres.2018.11.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/30/2018] [Indexed: 01/08/2023]
Abstract
During the euthymic state in bipolar disorder, cognitive functions often remain affected. Specifically, subjective and objective cognitive impairment might distinctly affect patients' quality of life (QoL); however, this question had not been examined previously in Japanese patients. Therefore, the current study investigated the associations between cognitive complaints, QoL, and objective cognitive functions. Forty patients in remission were recruited from the Hokkaido University Hospital, Sapporo, Japan and assessed with the translated version of the cognitive complaints in bipolar disorder rating assessment (COBRA), medical outcomes study 36-item short-form health survey version 2 (SF-36v2), and Sheehan disability scale (SDS). The Japanese adult reading scale, Wisconsin card sorting test, word fluency, continuous performance test, trail making test (TMT), auditory verbal learning, and Stroop test evaluated objective cognitive functions. Significant correlations were observed between the COBRA, SF-36v2, and SDS results, as well as the TMT scores. Overall, euthymic patients were aware of their cognitive dysfunction, which could be understood in relation to the decrease in satisfaction in their daily life. Therefore, even mild cognitive impairments can have ramifications for patients in the euthymic state of bipolar disorder.
Collapse
|
|
6 |
21 |
16
|
Lagziel S, Lee WD, Shlomi T. Studying metabolic flux adaptations in cancer through integrated experimental-computational approaches. BMC Biol 2019; 17:51. [PMID: 31272436 PMCID: PMC6609376 DOI: 10.1186/s12915-019-0669-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
Review |
6 |
20 |
17
|
Nuñez IA, Huang Y, Ross TM. Next-Generation Computationally Designed Influenza Hemagglutinin Vaccines Protect against H5Nx Virus Infections. Pathogens 2021; 10:1352. [PMID: 34832509 PMCID: PMC8625041 DOI: 10.3390/pathogens10111352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
H5N1 COBRA hemagglutinin (HA) sequences, termed human COBRA-2 HA, were constructed through layering of HA sequences from viruses isolated from humans collected between 2004-2007 using only clade 2 strains. These COBRA HA proteins, when expressed on the surface of virus-like particles (VLP), elicited protective immune responses in mice, ferrets, and non-human primates. However, these vaccines were not as effective at inducing neutralizing antibodies against newly circulating viruses. Therefore, COBRA HA-based vaccines were updated in order to elicit protective antibodies against the current circulating clades of H5Nx viruses. Next-generation COBRA HA vaccines were designed to encompass the newly emerging viruses circulating in wild avian populations. HA amino acid sequences from avian and human H5 influenza viruses isolated between 2011-2017 were downloaded from the GISAID (Global Initiative on Sharing All Influenza Data). Mice were vaccinated with H5 COBRA rHA that elicited antibodies with hemagglutinin inhibition (HAI) activity against H5Nx viruses from five clades. The H5 COBRA rHA vaccine, termed IAN8, elicited protective immune responses against mice challenged with A/Sichuan/26621/2014 and A/Vietnam/1203/2004. This vaccine elicited antibodies with HAI activity against viruses from clades 2.2, 2.3.2.1, 2.3.4.2, 2.2.1 and 2.2.2. Lungs from vaccinated mice had decreased viral titers and the levels of cellular infiltration in mice vaccinated with IAN-8 rHA were similar to mice vaccinated with wild-type HA comparator vaccines or mock vaccinated controls. Overall, these next-generation H5 COBRA HA vaccines elicited protective antibodies against both historical H5Nx influenza viruses, as well as currently circulating clades of H5N1, H5N6, and H5N8 influenza viruses.
Collapse
|
research-article |
4 |
19 |
18
|
Abbey D, Seshagiri PB. Aza-induced cardiomyocyte differentiation of P19 EC-cells by epigenetic co-regulation and ERK signaling. Gene 2013; 526:364-73. [PMID: 23747406 DOI: 10.1016/j.gene.2013.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/01/2013] [Accepted: 05/15/2013] [Indexed: 11/15/2022]
Abstract
Stem cells in cell based therapy for cardiac injury is being potentially considered. However, genetic regulatory networks involved in cardiac differentiation are not clearly understood. Among stem cell differentiation models, mouse P19 embryonic carcinoma (EC) cells, are employed for studying (epi)genetic regulation of cardiomyocyte differentiation. Here, we comprehensively assessed cardiogenic differentiation potential of 5-azacytidine (Aza) on P19 EC-cells, associated gene expression profiles and the changes in DNA methylation, histone acetylation and activated-ERK signaling status during differentiation. Initial exposure of Aza to cultured EC-cells leads to an efficient (55%) differentiation to cardiomyocyte-rich embryoid bodies with a threefold (16.8%) increase in the cTnI+ cardiomyocytes. Expression levels of cardiac-specific gene markers i.e., Isl-1, BMP-2, GATA-4, and α-MHC were up-regulated following Aza induction, accompanied by differential changes in their methylation status particularly that of BMP-2 and α-MHC. Additionally, increases in the levels of acetylated-H3 and pERK were observed during Aza-induced cardiac differentiation. These studies demonstrate that Aza is a potent cardiac inducer when treated during the initial phase of differentiation of mouse P19 EC-cells and its effect is brought about epigenetically and co-ordinatedly by hypo-methylation and histone acetylation-mediated hyper-expression of cardiogenesis-associated genes and involving activation of ERK signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
19 |
19
|
Toyoshima K, Fujii Y, Mitsui N, Kako Y, Asakura S, Martinez-Aran A, Vieta E, Kusumi I. Validity and reliability of the Cognitive Complaints in Bipolar Disorder Rating Assessment ( COBRA) in Japanese patients with bipolar disorder. Psychiatry Res 2017; 254:85-89. [PMID: 28457989 DOI: 10.1016/j.psychres.2017.04.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Abstract
In Japan, there are currently no reliable rating scales for the evaluation of subjective cognitive impairment in patients with bipolar disorder. We studied the relationship between the Japanese version of the Cognitive Complaints in Bipolar Disorder Rating Assessment (COBRA) and objective cognitive assessments in patients with bipolar disorder. We further assessed the reliability and validity of the COBRA. Forty-one patients, aged 16-64, in a remission period of bipolar disorder were recruited from Hokkaido University Hospital in Sapporo, Japan. The COBRA (Japanese version) and Frankfurt Complaint Questionnaire (FCQ), the gold standard in subjective cognitive assessment, were administered. A battery of neuropsychological tests was employed to measure objective cognitive impairment. Correlations among the COBRA, FCQ, and neuropsychological tests were determined using Spearman's correlation coefficient. The Japanese version of the COBRA had high internal consistency, good retest reliability, and concurrent validity-as indicated by a strong correlation with the FCQ. A significant correlation was also observed between the COBRA and objective cognitive measurements of processing speed. These findings are the first to demonstrate that the Japanese version of the COBRA may be clinically useful as a subjective cognitive impairment rating scale in Japanese patients with bipolar disorder.
Collapse
|
|
8 |
16 |
20
|
Skarlupka AL, Owino SO, Suzuki-Williams LP, Crevar CJ, Carter DM, Ross TM. Computationally optimized broadly reactive vaccine based upon swine H1N1 influenza hemagglutinin sequences protects against both swine and human isolated viruses. Hum Vaccin Immunother 2019; 15:2013-2029. [PMID: 31448974 PMCID: PMC6773400 DOI: 10.1080/21645515.2019.1653743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
Swine H1 influenza viruses were stable within pigs for nearly 70 years until in 1998 when a classical swine virus reassorted with avian and human influenza viruses to generate the novel triple reassortant H1N1 strain that eventually led to the 2009 influenza pandemic. Previously, our group demonstrated broad protection against a panel of human H1N1 viruses using HA antigens derived by the COBRA methodology. In this report, the effectiveness of COBRA HA antigens (SW1, SW2, SW3 and SW4), which were designed using only HA sequences from swine H1N1 and H1N2 isolates, were tested in BALB/c mice. The effectiveness of these vaccines were compared to HA sequences designed using both human and swine H1 HA sequences or human only sequences. SW2 and SW4 elicited antibodies that detected the pandemic-like virus, A/California/07/2009 (CA/09), had antibodies with HAI activity against almost all the classical swine influenza viruses isolated from 1973-2015 and all of the Eurasian viruses in our panel. However, sera collected from mice vaccinated with SW2 or SW4 had HAI activity against ~25% of the human seasonal-like influenza viruses isolated from 2009-2015. In contrast, the P1 COBRA HA vaccine (derived from both swine and human HA sequences) elicited antibodies that had HAI activity against both swine and human H1 viruses and protected against CA/09 challenge, but not a human seasonal-like swine H1N2 virus challenge. However, the SW1 vaccine protected against this challenge as well as the homologous vaccine. These results support the idea that a pan-swine-human H1 influenza virus vaccine is possible.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Computers, Molecular
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Swine
- Vaccines, Virus-Like Particle/immunology
Collapse
|
research-article |
6 |
13 |
21
|
Abstract
ZFP57 is a master regulator of genomic imprinting. It has both maternal and zygotic functions that are partially redundant in maintaining DNA methylation at some imprinting control regions (ICRs). In this study, we found that DNA methylation was lost at most known ICRs in Zfp57 mutant embryos. Furthermore, loss of ZFP57 caused loss of parent-of-origin-dependent monoallelic expression of the target imprinted genes. The allelic expression switch occurred in the ZFP57 target imprinted genes upon loss of differential DNA methylation at the ICRs in Zfp57 mutant embryos. Specifically, upon loss of ZFP57, the alleles of the imprinted genes located on the same chromosome with the originally methylated ICR switched their expression to mimic their counterparts on the other chromosome with unmethylated ICR. Consistent with our previous study, ZFP57 could regulate the NOTCH signaling pathway in mouse embryos by impacting allelic expression of a few regulators in the NOTCH pathway. In addition, the imprinted Dlk1 gene that has been implicated in the NOTCH pathway was significantly down-regulated in Zfp57 mutant embryos. Our allelic expression switch models apply to the examined target imprinted genes controlled by either maternally or paternally methylated ICRs. Our results support the view that ZFP57 controls imprinted expression of its target imprinted genes primarily through maintaining differential DNA methylation at the ICRs.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
13 |
22
|
Shukla K, Seppanen C, Naess B, Chang C, Cooley D, Maier A, Divita F, Pitiranggon M, Johnson S, Ito K, Arunachalam S. ZIP Code-Level Estimation of Air Quality and Health Risk Due to Particulate Matter Pollution in New York City. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7119-7130. [PMID: 35475336 PMCID: PMC9178920 DOI: 10.1021/acs.est.1c07325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/19/2023]
Abstract
Exposure to PM2.5 is associated with hundreds of premature mortalities every year in New York City (NYC). Current air quality and health impact assessment tools provide county-wide estimates but are inadequate for assessing health benefits at neighborhood scales, especially for evaluating policy options related to energy efficiency or climate goals. We developed a new ZIP Code-Level Air Pollution Policy Assessment (ZAPPA) tool for NYC by integrating two reduced form models─Community Air Quality Tools (C-TOOLS) and the Co-Benefits Risk Assessment Health Impacts Screening and Mapping Tool (COBRA)─that propagate emissions changes to estimate air pollution exposures and health benefits. ZAPPA leverages custom higher resolution inputs for emissions, health incidences, and population. It, then, enables rapid policy evaluation with localized ZIP code tabulation area (ZCTA)-level analysis of potential health and monetary benefits stemming from air quality management decisions. We evaluated the modeled 2016 PM2.5 values against observed values at EPA and NYCCAS monitors, finding good model performance (FAC2, 1; NMSE, 0.05). We, then, applied ZAPPA to assess PM2.5 reduction-related health benefits from five illustrative policy scenarios in NYC focused on (1) commercial cooking, (2) residential and commercial building fuel regulations, (3) fleet electrification, (4) congestion pricing in Manhattan, and (5) these four combined as a "citywide sustainable policy implementation" scenario. The citywide scenario estimates an average reduction in PM2.5 of 0.9 μg/m3. This change translates to avoiding 210-475 deaths, 340 asthma emergency department visits, and monetized health benefits worth $2B to $5B annually, with significant variation across NYC's 192 ZCTAs. ZCTA-level assessments can help prioritize interventions in neighborhoods that would see the most health benefits from air pollution reduction. ZAPPA can provide quantitative insights on health and monetary benefits for future sustainability policy development in NYC.
Collapse
|
research-article |
3 |
12 |
23
|
Ross TM, DiNapoli J, Giel-Moloney M, Bloom CE, Bertran K, Balzli C, Strugnell T, Sá E Silva M, Mebatsion T, Bublot M, Swayne DE, Kleanthous H. A computationally designed H5 antigen shows immunological breadth of coverage and protects against drifting avian strains. Vaccine 2019; 37:2369-2376. [PMID: 30905528 DOI: 10.1016/j.vaccine.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Since the first identification of the H5N1 Goose/Guangdong lineage in 1996, this highly pathogenic avian influenza virus has spread worldwide, becoming endemic in domestic poultry. Sporadic transmission to humans has raised concerns of a potential pandemic and underscores the need for a broad cross-protective influenza vaccine. Here, we tested our previously described methodology, termed Computationally Optimized Broadly Reactive Antigen (COBRA), to generate a novel hemagglutinin (HA) gene, termed COBRA-2, that was based on H5 HA sequences from 2005 to 2006. The COBRA-2 HA virus-like particle (VLP) vaccines were used to vaccinate chickens and the immune responses were compared to responses elicited by VLP's expressing HA from A/whooper swan/Mongolia/244/2005 (WS/05), a representative 2005 vaccine virus from clade 2.2. To support this evaluation a hemagglutination inhibition (HAI) breadth panel was developed consisting of phylogenetically and antigenically diverse H5 strains in circulation from 2005 to 2006, as well as recent drift variants (2008 - 2014). We found that the COBRA-2 VLP vaccines elicited robust HAI titers against this entire breadth panel, whereas the VLP vaccine based upon the recommended WS/05 HA only elicited HAI responses against a subset of strains. Furthermore, while all vaccines protected chickens against challenge with the WS/05 virus, only the human COBRA-2 VLP vaccinated birds were protected (80%) against a recent drifted clade 2.3.2.1B, A/duck/Vietnam/NCVD-672/2011 (VN/11) virus. This is the first report to demonstrate seroprotective antibody responses against genetically diverse clades and sub-clades of H5 viruses and protective efficacy against a recent drifted variant using a globular head based design strategy.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
12 |
24
|
Pandey RV, Pulverer W, Kallmeyer R, Beikircher G, Pabinger S, Kriegner A, Weinhäusel A. MSP-HTPrimer: a high-throughput primer design tool to improve assay design for DNA methylation analysis in epigenetics. Clin Epigenetics 2016; 8:101. [PMID: 27688817 PMCID: PMC5031341 DOI: 10.1186/s13148-016-0269-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/16/2016] [Indexed: 02/08/2023] Open
Abstract
Background Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful. Results We have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format. Conclusions MSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic strands to increase the success rate. It is a standalone web-based pipeline, which is fully configured within a virtual machine and thus can be readily used without any configuration. We have experimentally validated primer pairs designed by our pipeline and shown a very high success rate of primer pairs: out of 66 BSP primer pairs, 63 were successfully validated without any further optimization step and using the same qPCR conditions. The MSP-HTPrimer pipeline is freely available from http://sourceforge.net/p/msp-htprimer. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0269-3) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
11 |
25
|
Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. mSphere 2021; 6:6/2/e00052-21. [PMID: 33692193 PMCID: PMC8546680 DOI: 10.1128/msphere.00052-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza vaccines have traditionally been tested in naive mice and ferrets. However, humans are first exposed to influenza viruses within the first few years of their lives. Therefore, there is a pressing need to test influenza virus vaccines in animal models that have been previously exposed to influenza viruses before being vaccinated. In this study, previously described H2 computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) vaccines (Z1 and Z5) were tested in influenza virus “preimmune” ferret models. Ferrets were infected with historical, seasonal influenza viruses to establish preimmunity. These preimmune ferrets were then vaccinated with either COBRA H2 HA recombinant proteins or wild-type H2 HA recombinant proteins in a prime-boost regimen. A set of naive preimmune or nonpreimmune ferrets were also vaccinated to control for the effects of the multiple different preimmunities. All of the ferrets were then challenged with a swine H2N3 influenza virus. Ferrets with preexisting immune responses influenced recombinant H2 HA-elicited antibodies following vaccination, as measured by hemagglutination inhibition (HAI) and classical neutralization assays. Having both H3N2 and H1N1 immunological memory regardless of the order of exposure significantly decreased viral nasal wash titers and completely protected all ferrets from both morbidity and mortality, including the mock-vaccinated ferrets in the group. While the vast majority of the preimmune ferrets were protected from both morbidity and mortality across all of the different preimmunities, the Z1 COBRA HA-vaccinated ferrets had significantly higher antibody titers and recognized the highest number of H2 influenza viruses in a classical neutralization assay compared to the other H2 HA vaccines. IMPORTANCE H1N1 and H3N2 influenza viruses have cocirculated in the human population since 1977. Nearly every human alive today has antibodies and memory B and T cells against these two subtypes of influenza viruses. H2N2 influenza viruses caused the 1957 global pandemic and people born after 1968 have never been exposed to H2 influenza viruses. It is quite likely that a future H2 influenza virus could transmit within the human population and start a new global pandemic, since the majority of people alive today are immunologically naive to viruses of this subtype. Therefore, an effective vaccine for H2 influenza viruses should be tested in an animal model with previous exposure to influenza viruses that have circulated in humans. Ferrets were infected with historical influenza A viruses to more accurately mimic the immune responses in people who have preexisting immune responses to seasonal influenza viruses. In this study, preimmune ferrets were vaccinated with wild-type (WT) and COBRA H2 recombinant HA proteins in order to examine the effects that preexisting immunity to seasonal human influenza viruses have on the elicitation of broadly cross-reactive antibodies from heterologous vaccination.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
11 |