1
|
Yamaguchi T, Ito M, Kuroda K, Takeda S, Tanaka A. The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium 2017; 65:22-30. [PMID: 28320563 DOI: 10.1016/j.ceca.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/29/2023]
Abstract
Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to clinical use, we examined the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment. We also determined the optimal concentration of human PLCZ1 RNA to activate the human oocytes. Our findings suggest that human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.
Collapse
|
Journal Article |
8 |
26 |
2
|
Furuyama W, Enomoto M, Mossaad E, Kawai S, Mikoshiba K, Kawazu SI. An interplay between 2 signaling pathways: melatonin-cAMP and IP3-Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum. Biochem Biophys Res Commun 2014; 446:125-31. [PMID: 24607908 DOI: 10.1016/j.bbrc.2014.02.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca(2+)) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca(2+) imaging showed that LZ treatment completely abolished Ca(2+) oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP3-Ca(2+) and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.
Collapse
|
Journal Article |
11 |
21 |
3
|
Nazıroğlu M, Blum W, Jósvay K, Çiğ B, Henzi T, Oláh Z, Vizler C, Schwaller B, Pecze L. Menthol evokes Ca 2+ signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells. Redox Biol 2017; 14:439-449. [PMID: 29078169 PMCID: PMC5680524 DOI: 10.1016/j.redox.2017.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
Abstract
Menthol is a naturally occurring monoterpene alcohol possessing remarkable biological properties including antipruritic, analgesic, antiseptic, anti-inflammatory and cooling effects. Here, we examined the menthol-evoked Ca2+ signals in breast and prostate cancer cell lines. The effect of menthol (50–500 µM) was predicted to be mediated by the transient receptor potential ion channel melastatin subtype 8 (TRPM8). However, the intensity of menthol-evoked Ca2+ signals did not correlate with the expression levels of TRPM8 in breast and prostate cancer cells indicating a TRPM8-independent signaling pathway. Menthol-evoked Ca2+ signals were analyzed in detail in Du 145 prostate cancer cells, as well as in CRISPR/Cas9 TRPM8-knockout Du 145 cells. Menthol (500 µM) induced Ca2+ oscillations in both cell lines, thus independent of TRPM8, which were however dependent on the production of inositol trisphosphate. Results based on pharmacological tools point to an involvement of the purinergic pathway in menthol-evoked Ca2+ responses. Finally, menthol (50–500 µM) decreased cell viability and induced oxidative stress independently of the presence of TRPM8 channels, despite that temperature-evoked TRPM8-mediated inward currents were significantly decreased in TRPM8-knockout Du 145 cells compared to wild type Du 145 cells.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
18 |
4
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
|
Review |
7 |
16 |
5
|
Endogenous TRPV1 stimulation leads to the activation of the inositol phospholipid pathway necessary for sustained Ca 2+ oscillations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2905-2915. [PMID: 27663071 DOI: 10.1016/j.bbamcr.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/15/2023]
Abstract
Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca2+ signals in breast and prostate cancer-derived cells. Capsaicin (CAPS; 50μM) evoked intracellular Ca2+ oscillations and/or intercellular Ca2+ waves in all cell lines. As evidenced in prostate cancer Du 145 cells, oscillations were largely dependent on the expression of functional TRPV1 channels in the plasma membrane, phospholipase C activation and on the presence of extracellular Ca2+ ions. Concomitant oscillations of the mitochondrial matrix Ca2+ concentration resulted in mitochondria energization evidenced by increased ATP production. CAPS-induced Ca2+ oscillations also occurred in a subset of sensory neurons, yet already at lower CAPS concentrations (1μM). Stimulation of ectopically expressed TRPV1 channels in CAPS-insensitive NIH-3T3 cells didn't provoke CAPS-triggered Ca2+ oscillations; rather it resulted in low-magnitude, long-lasting elevations of the cytosolic Ca2+ concentration. This indicates that sole TRPV1 activation is not sufficient to generate Ca2+ oscillations. Instead the initial TRPV1-mediated signal leads to the activation of the inositol phospholipid pathway. This in turn suffices to generate a biologically relevant frequency-modulated Ca2+ signal.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
16 |
6
|
Shi W, Han Y, Guo C, Zhao X, Liu S, Su W, Wang Y, Zha S, Chai X, Liu G. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca 2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa. MARINE ENVIRONMENTAL RESEARCH 2017; 130:106-112. [PMID: 28750793 DOI: 10.1016/j.marenvres.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca2+ oscillations. Therefore, the realistic effects of future ocean pCO2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca2+ oscillations.
Collapse
|
|
8 |
8 |
7
|
Kortus S, Srinivasan C, Forostyak O, Ueta Y, Sykova E, Chvatal A, Zapotocky M, Verkhratsky A, Dayanithi G. Physiology of spontaneous [Ca(2+)]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium 2016; 59:280-8. [PMID: 27072326 PMCID: PMC4969632 DOI: 10.1016/j.ceca.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 01/26/2023]
Abstract
Supraoptic fluorescent vasopressin (AVP-eGFP) and oxytocin (OT-mRFP1) neurones exhibit distinct spontaneous [Ca2+]i oscillations. Vasopressin triggers [Ca2+]i oscillations, intensifies existing oscillations, and exceptionally stops oscillations. Hyper- or hypo-osmotic stimuli have an intensifying or inhibitory effect on oscillations, respectively. Nearly 90% of neurones from 3 or 5-day-dehydrated rats exhibit oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats are oscillatory vs. about 44% in virgins. The magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.e. in the SON proper) act through specific autoreceptors, induce distinct Ca2+ signals and regulate cellular events. Here, we demonstrate that about 70% of freshly isolated individual SON neurones from the adult non-transgenic or transgenic rats bearing AVP (AVP-eGFP) or OT (OT-mRFP1) markers, produce distinct spontaneous [Ca2+]i oscillations. In the neurones identified (through specific fluorescence), about 80% of AVP neurones and about 60% of OT neurones exhibited these oscillations. Exposure to AVP triggered [Ca2+]i oscillations in silent AVP neurones, or modified the oscillatory pattern in spontaneously active cells. Hyper- and hypo-osmotic stimuli (325 or 275 mOsmol/l) respectively intensified or inhibited spontaneous [Ca2+]i dynamics. In rats dehydrated for 3 or 5 days almost 90% of neurones displayed spontaneous [Ca2+]i oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats were oscillatory vs. about 44% (OT-mRFP1 neurones) in virgins. Together, these results unveil for the first time that both AVP and OT neurones maintain, via Ca2+ signals, their remarkable intrinsic in vivo physiological properties in an isolated condition.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
7 |
8
|
NCX activity generates spontaneous Ca 2+ oscillations in the astrocytic leaflet microdomain. Cell Calcium 2019; 86:102137. [PMID: 31838438 DOI: 10.1016/j.ceca.2019.102137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022]
Abstract
The synergy between synaptic Glu release and astrocytic Glu-Na+ symport is essential to the signalling function of the tripartite synapse. Here we used kinetic data of astrocytic Glu transporters (EAAT) and the Na+/Ca2+ exchanger (NCX) to simulate Glu release, Glu uptake and subsequent Na+ and Ca2+ dynamics in the astrocytic leaflet microdomain following single release event. Model simulations show that Glu-Na+ symport differently affect intracellular [Na+] in synapses with different extent of astrocytic coverage. Surprisingly, NCX activity alone has been shown to generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic leaflet. These on-going oscillations appear when NCX operates either in the forward or reverse direction. We conjecture that intrinsic NCX activity may play a prominent role in the generation of astrocytic Ca2+ oscillations.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
5 |
9
|
Heindorff K, Baumann O. Calcineurin is part of a negative feedback loop in the InsP3/Ca²⁺ signalling pathway in blowfly salivary glands. Cell Calcium 2014; 56:215-24. [PMID: 25108568 DOI: 10.1016/j.ceca.2014.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 02/02/2023]
Abstract
The ubiquitous InsP3/Ca(2+) signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca(2+) and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca(2+)] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca(2+) release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca(2+) signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca(2+) signals; (2) cyclosporin A and FK506, inhibitors of Ca(2+)/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca(2+) oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca(2+) responses does not involve Ca(2+) entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca(2+) release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca(2+) responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca(2+) signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca(2+) signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
4 |
10
|
Kortus S, Srinivasan C, Forostyak O, Zapotocky M, Ueta Y, Sykova E, Chvatal A, Verkhratsky A, Dayanithi G. Sodium-calcium exchanger and R-type Ca(2+) channels mediate spontaneous [Ca(2+)]i oscillations in magnocellular neurones of the rat supraoptic nucleus. Cell Calcium 2016; 59:289-98. [PMID: 27052156 DOI: 10.1016/j.ceca.2016.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Isolated supraoptic neurones generate spontaneous [Ca(2+)]i oscillations in isolated conditions. Here we report in depth analysis of the contribution of plasmalemmal ion channels (Ca(2+), Na(+)), Na(+)/Ca(2+) exchanger (NCX), intracellular Ca(2+) release channels (InsP3Rs and RyRs), Ca(2+) storage organelles, plasma membrane Ca(2+) pump and intracellular signal transduction cascades into spontaneous Ca(2+) activity. While removal of extracellular Ca(2+) or incubation with non-specific voltage-gated Ca(2+) channel (VGCC) blocker Cd(2+) suppressed the oscillations, neither Ni(2+) nor TTA-P2, the T-type VGCC blockers, had an effect. Inhibitors of VGCC nicardipine, ω-conotoxin GVIA, ω-conotoxin MVIIC, ω-agatoxin IVA (for L-, N-, P and P/Q-type channels, respectively) did not affect [Ca(2+)]i oscillations. In contrast, a specific R-type VGCC blocker SNX-482 attenuated [Ca(2+)]i oscillations. Incubation with TTX had no effect, whereas removal of the extracellular Na(+) or application of an inhibitor of the reverse operation mode of Na(+)/Ca(2+) exchanger KB-R7943 blocked the oscillations. The mitochondrial uncoupler CCCP irreversibly blocked spontaneous [Ca(2+)]i activity. Exposure of neurones to Ca(2+) mobilisers (thapsigargin, cyclopiazonic acid, caffeine and ryanodine); 4-aminopyridine (A-type K(+) current blocker); phospholipase C and adenylyl cyclase pathways blockers U-73122, Rp-cAMP, SQ-22536 and H-89 had no effect. Oscillations were blocked by GABA, but not by glutamate, apamin or dynorphin. In conclusion, spontaneous oscillations in magnocellular neurones are mediated by a concerted action of R-type Ca(2+) channels and the NCX fluctuating between forward and reverse modes.
Collapse
|
|
9 |
3 |
11
|
Young SH, Rey O, Rozengurt E. Intracellular Ca(2+) oscillations generated via the extracellular Ca(2+)-sensing receptor (CaSR) in response to extracellular Ca(2+) or L-phenylalanine: Impact of the highly conservative mutation Ser170Thr. Biochem Biophys Res Commun 2015; 467:1-6. [PMID: 26431875 DOI: 10.1016/j.bbrc.2015.09.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/26/2015] [Indexed: 12/21/2022]
Abstract
The extracellular Ca(2+)-sensing receptor (CaSR) is an allosteric protein that responds to changes in the extracellular concentration of Ca(2+) ([Ca(2+)]e) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). An increase in [Ca(2+)]e stimulates sinusoidal oscillations in [Ca(2+)]i whereas aromatic amino acid-induced CaR activation in the presence of a threshold [Ca(2+)]e promotes transient oscillations in [Ca(2+)]i. Here, we examined spontaneous and ligand-evoked [Ca(2+)]i oscillations in single HEK-293 cells transfected with the wild type CaSR or with a mutant CaSR in which Ser170 was converted to Thr (CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca(2+)]i oscillations in the presence of low concentrations of extracellular Ca(2+) and respond to L-Phe with robust transient [Ca(2+)]i oscillations. Our results indicate that the S170T mutation induces a marked increase in CaSR sensitivity to [Ca(2+)]e and imply that the allosteric regulation of the CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect on Ca(2+) binding cooperativity but, as biased agonists, aromatic amino acids stabilize a CaSR conformation that couples to a different signaling pathway leading to transient [Ca(2+)]i oscillations.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
3 |
12
|
Suppression of Ca 2+ oscillations by SERCA inhibition in human alveolar type 2 A549 cells: rescue by ochratoxin A but not CDN1163. Life Sci 2022; 308:120913. [PMID: 36037871 DOI: 10.1016/j.lfs.2022.120913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
AIMS Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.
Collapse
|
|
3 |
2 |
13
|
Lin YP, Scappini E, Mirams GR, Tucker CJ, Parekh AB. CRAC channel activity pulsates during cytosolic Ca 2+ oscillations. J Biol Chem 2025; 301:108519. [PMID: 40280418 DOI: 10.1016/j.jbc.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Intracellular Ca2+ ions are used as second messengers throughout the phylogenetic tree. They are indispensable for diverse biological processes ranging from fertilization to cell death. In Metazoans, signaling information is conveyed via the amplitude, frequency, and spatial profile of cytosolic Ca2+ oscillations. In non-excitable cells, these oscillations generally arise from regenerative release of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular stores, which are refilled by entry of Ca2+ through Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane. However, the precise contribution of these store-operated CRAC channels to Ca2+ oscillations has remained controversial for decades. One view proposes that CRAC channels remain open throughout stimulation, functioning as the pacemaker in setting Ca2+ oscillation frequency. An alternative hypothesis is that channel activity oscillates in parallel with InsP3-driven regenerative Ca2+ release. Here, by tethering a genetically encoded Ca2+ indicator to the pore-forming subunit of the CRAC channel, Orai1, we distinguish between these hypotheses and demonstrate that CRAC channel activity fluctuates in phase with cytosolic Ca2+ oscillations during physiological levels of stimulation. We also find that spatially distinct CRAC channel clusters fire in a coordinated manner, revealing that CRAC channels are not independent units but might function in a synchronized manner to provide pulses of Ca2+ signal at the same time.
Collapse
|
|
1 |
|
14
|
Yang M, Dyachok O, Xu Y, Gylfe E, Idevall-Hagren O, Tengholm A. Indicator-dependent differences in detection of local intracellular Ca 2+ release events evoked by voltage-gated Ca 2+ entry in pancreatic β-cells. Cell Signal 2023:110805. [PMID: 37437828 DOI: 10.1016/j.cellsig.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Genetically encoded Ca2+ indicators have become widely used in cell signalling studies as they offer advantages over cell-loaded dye indicators in enabling specific cellular or subcellular targeting. Comparing responses from dye and protein-based indicators may provide information about indicator properties and cell physiology, but side-by-side recordings in cells are scarce. In this study, we compared cytoplasmic Ca2+ concentration ([Ca2+]i) changes in insulin-secreting β-cells recorded with commonly used dyes and indicators based on circularly permuted fluorescent proteins. Total internal reflection fluorescence (TIRF) imaging of K+ depolarization-triggered submembrane [Ca2+]i increases showed that the dyes Fluo-4 and Fluo-5F mainly reported stable [Ca2+]i elevations, whereas the proteins R-GECO1 and GCaMP5G more often reported distinct [Ca2+]i spikes from an elevated level. [Ca2+]i spiking occurred also in glucose-stimulated cells. The spikes reflected Ca2+ release from the endoplasmic reticulum, triggered by autocrine activation of purinergic receptors after exocytotic release of ATP and/or ADP, and the spikes were consequently prevented by SERCA inhibition or P2Y1-receptor antagonism. Widefield imaging, which monitors the entire cytoplasm, increased the spike detection by the Ca2+ dyes. The indicator-dependent response patterns were unrelated to Ca2+ binding affinity, buffering and mobility, and probably reflects the much slower dissociation kinetics of protein compared to dye indicators. Ca2+ dyes thus report signalling within the submembrane space excited by TIRF illumination, whereas the protein indicators also catch Ca2+ events originating outside this volume. The study highlights that voltage-dependent Ca2+ entry in β-cells is tightly linked to local intracellular Ca2+ release mediated via an autocrine route that may be more important than previously reported direct Ca2+ effects on phospholipase C or on intracellular channels mediating calcium-induced calcium release.
Collapse
|
|
2 |
|