Di Costanzo LF, Sgueglia G, Orlando C, Polentarutti M, Leone L, La Gatta S, De Fenza M, De Gioia L, Lombardi A, Arrigoni F, Chino M. Structural insights into temperature-dependent dynamics of METPsc1, a miniaturized electron-transfer protein.
J Inorg Biochem 2025;
264:112810. [PMID:
39689412 DOI:
10.1016/j.jinorgbio.2024.112810]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K. Our findings reveal that METPsc1, composed of two similar halves stabilized by intramolecular hydrogen bonds, exhibits a unique "clothespin-like" recoil mechanism. This allows it to adapt to metal ions of varying radii, mirroring the flexibility observed in natural rubredoxins. High-resolution crystallography and molecular dynamics simulations unveil concerted backbone motions and subtle temperature-dependent shifts in side-chain conformations, particularly for residues involved in crystal packing. Notably, CdS bond lengths increase with temperature, correlating with anisotropic motions of the sulfur atoms involved in second-shell hydrogen bonding. This suggests a dynamic role of protein matrix upon redox cycling. These insights into METPsc1 highlight its potential for catalysis and contribute to the designing of artificial metalloproteins with functional plasticity.
Collapse