1
|
Hendy GN, Canaff L. Calcium-sensing receptor, proinflammatory cytokines and calcium homeostasis. Semin Cell Dev Biol 2015; 49:37-43. [PMID: 26612442 DOI: 10.1016/j.semcdb.2015.11.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
The calcium-sensing receptor (CaSR) expressed in the parathyroid gland and the kidney tubule acts as the calciostat and orchestrates blood calcium homeostasis by modulating production and release of parathyroid hormone (PTH) and active vitamin D that influence Ca(2+) fluxes across the bone, kidney and intestine. Here we consider the role of the CaSR as a responder to proinflammatory cytokines released as part of the innate immune response to tissue injury and inflammation with resetting of the calciostat on the one hand and as a promoter and mediator of the initial inflammatory response on the other. The importance of the CaSR in systemic calcium homeostasis is exemplified by the fact that inactivating and activating mutations in the gene result in hypercalcemia and hypocalcemia, respectively. Proinflammatory cytokines interleukin-1β and interleukin-6 upregulate CaSR expression in parathyroid and kidney and do this through defined response elements in the CASR gene promoters. This results in decreased serum PTH and 1,25-dihydroxyvitamin D and calcium levels. This is likely to underlie the hypocalcemia that commonly occurs in critically ill patients, those with burn injury and sepsis, for example. The level of calcium in extracellular fluid bathing necrotic cells is often elevated and acts as a chemokine to attract monocytes/macrophages that express the CaSR to sites of tissue injury. Elevated levels of calcium acting via the CaSR can function as a danger signal that stimulates assembly of myeloid cell cytosolic multiprotein inflammasomes resulting in maturation of the proinflammatory cytokine IL-1β by caspase-1. Thus the CaSR is both promoter of and responder to the inflammation.
Collapse
|
Review |
10 |
78 |
2
|
Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C. Physiology of Calcium Homeostasis: An Overview. Endocrinol Metab Clin North Am 2021; 50:575-590. [PMID: 34774235 DOI: 10.1016/j.ecl.2021.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium plays a key role in skeletal mineralization and several intracellular and extracellular homeostatic networks. It is an essential element that is only available to the body through dietary sources. Daily acquisition of calcium depends, in addition to the actual intake, on the hormonally regulated state of calcium homeostasis through three main mechanisms: bone turnover, intestinal absorption, and renal reabsorption. These procedures are regulated by a group of interacting circulating hormones and their key receptors. This includes parathyroid hormone (PTH), PTH-related peptide, 1,25-dihydroxyvitamin D, calcitonin, fibroblast growth factor 23, the prevailing calcium concentration itself, the calcium-sensing receptor, as well as local processes in the bones, gut, and kidneys.
Collapse
|
Review |
4 |
65 |
3
|
Cheng SX, Lightfoot YL, Yang T, Zadeh M, Tang L, Sahay B, Wang GP, Owen JL, Mohamadzadeh M. Epithelial CaSR deficiency alters intestinal integrity and promotes proinflammatory immune responses. FEBS Lett 2014; 588:4158-66. [PMID: 24842610 PMCID: PMC4234694 DOI: 10.1016/j.febslet.2014.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022]
Abstract
The intestinal epithelium is equipped with sensing receptor mechanisms that interact with luminal microorganisms and nutrients to regulate barrier function and gut immune responses, thereby maintaining intestinal homeostasis. Herein, we clarify the role of the extracellular calcium-sensing receptor (CaSR) using intestinal epithelium-specific Casr(-/-) mice. Epithelial CaSR deficiency diminished intestinal barrier function, altered microbiota composition, and skewed immune responses towards proinflammatory. Consequently, Casr(-/-) mice were significantly more prone to chemically induced intestinal inflammation resulting in colitis. Accordingly, CaSR represents a potential therapeutic target for autoinflammatory disorders, including inflammatory bowel diseases.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
63 |
4
|
Nemeth EF, Goodman WG. Calcimimetic and Calcilytic Drugs: Feats, Flops, and Futures. Calcif Tissue Int 2016; 98:341-58. [PMID: 26319799 DOI: 10.1007/s00223-015-0052-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
Abstract
The actions of extracellular Ca(2+) in regulating parathyroid gland and kidney functions are mediated by the extracellular calcium receptor (CaR), a G protein-coupled receptor. The CaR is one of the essential molecules maintaining systemic Ca(2+) homeostasis and is a molecular target for drugs useful in treating bone and mineral disorders. Ligands that activate the CaR are termed calcimimetics and are classified as either agonists (type I) or positive allosteric modulators (type II); calcimimetics inhibit the secretion of parathyroid hormone (PTH). Cinacalcet is a type II calcimimetic that is used to treat secondary hyperparathyroidism in patients receiving dialysis and to treat hypercalcemia in some forms of primary hyperparathyroidism. The use of cinacalcet among patients with secondary hyperparathyroidism who are managed with dialysis effectively lowers circulating PTH levels, reduces serum phosphorus and FGF23 concentrations, improves bone histopathology, and may diminish skeletal fracture rates and the need for parathyroidectomy. A second generation type II calcimimetic (AMG 416) is currently under regulatory review. Calcilytics are CaR antagonists that stimulate the secretion of PTH. Several calcilytic compounds have been evaluated as orally active anabolic therapies for postmenopausal osteoporosis but clinical development of all of them has been abandoned because they lacked clinical efficacy. Calcilytics might be repurposed for new indications like autosomal dominant hypocalcemia or other disorders beyond those involving systemic Ca(2+) homeostasis.
Collapse
|
Review |
9 |
60 |
5
|
Wang Y, Bikle DD, Chang W. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development. Bone Res 2013; 1:249-59. [PMID: 26273506 DOI: 10.4248/br201303003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) regulates cell growth, survival, and differentiation by acting on the IGF-I receptor, (IGF-IR)-a tyrosine kinase receptor, which elicits diverse intracellular signaling responses. All skeletal cells express IGF-I and IGF-IR. Recent studies using tissue/cell-specific gene knockout mouse models and cell culture techniques have clearly demonstrated that locally produced IGF-I is more critical than the systemic IGF-I in supporting embryonic and postnatal skeletal development and bone remodeling. Local IGF-I/IGF-IR signaling promotes the growth, survival and differentiation of chondrocytes and osteoblasts, directly and indirectly, by altering other autocrine/paracrine signaling pathways in cartilage and bone, and by enhancing interactions among these skeletal cells through hormonal and physical means. Moreover, local IGF-I/IGF-IR signaling is critical for the anabolic bone actions of growth hormone and parathyroid hormone. Herein, we review evidence supporting the actions of local IGF-I/IGF-IR in the above aspects of skeletal development and remodeling.
Collapse
|
Review |
12 |
49 |
6
|
Aggarwal A, Prinz-Wohlgenannt M, Tennakoon S, Höbaus J, Boudot C, Mentaverri R, Brown EM, Baumgartner-Parzer S, Kállay E. The calcium-sensing receptor: A promising target for prevention of colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2158-67. [PMID: 25701758 PMCID: PMC4549785 DOI: 10.1016/j.bbamcr.2015.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
The inverse correlation between dietary calcium intake and the risk of colorectal cancer (CRC) is well known, but poorly understood. Expression of the calcium-sensing receptor (CaSR), a calcium-binding G protein-coupled receptor is downregulated in CRC leading us to hypothesize that the CaSR has tumor suppressive roles in the colon. The aim of this study was to understand whether restoration of CaSR expression could reduce the malignant phenotype in CRC. In human colorectal tumors, expression of the CaSR negatively correlated with proliferation markers whereas loss of CaSR correlated with poor tumor differentiation and reduced apoptotic potential. In vivo, dearth of CaSR significantly increased expression of proliferation markers and decreased levels of differentiation and apoptotic markers in the colons of CaSR/PTH double knock-out mice confirming the tumor suppressive functions of CaSR. In vitro CRC cells stably overexpressing wild-type CaSR showed significant reduction in proliferation, as well as increased differentiation and apoptotic potential. The positive allosteric modulator of CaSR, NPS R-568 further enhanced these effects, whereas treatment with the negative allosteric modulator, NPS 2143 inhibited these functions. Interestingly, the dominant-negative mutant (R185Q) was able to abrogate these effects. Our results demonstrate a critical tumor suppressive role of CaSR in the colon. Restoration of CaSR expression and function is linked to regulation of the balance between proliferation, differentiation, and apoptosis and provides a rationale for novel strategies in CRC therapy.
Collapse
MESH Headings
- Amino Acid Substitution
- Aniline Compounds/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Caco-2 Cells
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/prevention & control
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Male
- Mice
- Mice, Knockout
- Mutation, Missense
- Naphthalenes/pharmacology
- Phenethylamines
- Propylamines
- Receptors, Calcium-Sensing/antagonists & inhibitors
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
|
research-article |
10 |
48 |
7
|
Armato U, Chiarini A, Chakravarthy B, Chioffi F, Pacchiana R, Colarusso E, Whitfield JF, Dal Prà I. Calcium-sensing receptor antagonist (calcilytic) NPS 2143 specifically blocks the increased secretion of endogenous Aβ42 prompted by exogenous fibrillary or soluble Aβ25-35 in human cortical astrocytes and neurons-therapeutic relevance to Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1634-52. [PMID: 23628734 DOI: 10.1016/j.bbadis.2013.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022]
Abstract
The "amyloid-β (Aβ) hypothesis" posits that accumulating Aβ peptides (Aβs) produced by neurons cause Alzheimer's disease (AD). However, the Aβs contribution by the more numerous astrocytes remains undetermined. Previously we showed that fibrillar (f)Aβ25-35, an Aβ42 proxy, evokes a surplus endogenous Aβ42 production/accumulation in cortical adult human astrocytes. Here, by using immunocytochemistry, immunoblotting, enzymatic assays, and highly sensitive sandwich ELISA kits, we investigated the effects of fAβ25-35 and soluble (s)Aβ25-35 on Aβ42 and Aβ40 accumulation/secretion by human cortical astrocytes and HCN-1A neurons and, since the calcium-sensing receptor (CaSR) binds Aβs, their modulation by NPS 2143, a CaSR allosteric antagonist (calcilytic). The fAβ25-35-exposed astrocytes and surviving neurons produced, accumulated, and secreted increased amounts of Aβ42, while Aβ40 also accrued but its secretion was unchanged. Accordingly, secreted Aβ42/Aβ40 ratio values rose for astrocytes and neurons. While slightly enhancing Aβ40 secretion by fAβ25-35-treated astrocytes, NPS 2143 specifically suppressed the fAβ25-35-elicited surges of endogenous Aβ42 secretion by astrocytes and neurons. Therefore, NPS 2143 addition always kept Aβ42/Aβ40 values to baseline or lower levels. Mechanistically, NPS 2143 decreased total CaSR protein complement, transiently raised proteasomal chymotrypsin activity, and blocked excess NO production without affecting the ongoing increases in BACE1/β-secretase and γ-secretase activity in fAβ25-35-treated astrocytes. Compared to fAβ25-35, sAβ25-35 also stimulated Aβ42 secretion by astrocytes and neurons and NPS 2143 specifically and wholly suppressed this effect. Therefore, since NPS 2143 thwarts any Aβ/CaSR-induced surplus secretion of endogenous Aβ42 and hence further vicious cycles of Aβ self-induction/secretion/spreading, calcilytics might effectively prevent/stop the progression to full-blown AD.
Collapse
|
|
12 |
46 |
8
|
Abstract
Calcium signaling and its interacting networks are involved in mediating numerous processes including gene expression, excitation-contraction coupling, stimulus-secretion coupling, synaptic transmission, induction of synaptic plasticity, and embryonic development. Many structures, organelles, receptors, channels, calcium-binding proteins, pumps, transporters, enzymes, and transcription factors are involved in the generation and decoding of the different calcium signals in different cells. Powerful methods for measuring calcium concentrations, advanced statistical methods, and biophysical simulations are being used for modelling calcium signals. Calcium signaling is being studied in many cells, and in many model organisms to understand the mechanisms of many physiological processes, and the pathogenesis of many diseases, including cancers, diabetes, and neurodegenerative disorders. Studies in calcium signaling are being used for understanding the mechanisms of actions of drugs, and for discovery of new drugs for the prevention and treatment of many diseases.
Collapse
|
Review |
5 |
45 |
9
|
Jensen AA, Bräuner-Osborne H. Allosteric modulation of the calcium-sensing receptor. Curr Neuropharmacol 2010; 5:180-6. [PMID: 19305800 PMCID: PMC2656812 DOI: 10.2174/157015907781695982] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 04/05/2007] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-sensing receptor (CaR) belongs to family C of the G-protein coupled receptors (GPCRs). The receptor is activated by physiological levels of Ca2+ (and Mg2+) and positively modulated by a range of proteinogenic L-α-amino acids. Recently, several synthetic allosteric modulators of the receptor have been developed, which either act as positive modulators (termed calcimimetics) or negative modulators (termed calcilytics). These ligands do not activate the wild-type receptor directly, but rather shift the concentration-response curves of Ca2+ to the left or right, respectively. Like other family C GPCRs, the CaR contains a large amino-terminal domain and a 7-transmembrane domain. Whereas the endogenous ligands for the receptor, Ca2+, Mg2+ and the L-α-amino acids, bind to the amino-terminal domain, most if not all of the synthetic modulators published so far bind to the 7-transmembrane domain. The most prominent physiological function of the CaR is to maintain the extracellular Ca2+ level in a very tight range via control of secretion of parathyroid hormone (PTH). Influence on e.g. secretion of calcitonin from thyroid C-cells and direct action on the tubule of the kidney also contribute to the control of the extracellular Ca2+ level. This control over PTH and Ca2+ levels is partially lost in patients suffering from primary and secondary hyperparathyroidism. The perspectives in CaR as a therapeutic target have been underlined by the recent approval of the calcimimetic cinacalcet for the treatment of certain forms of primary and secondary hyperparathyroidism. Cinacalcet is the first clinically administered allosteric modulator acting on a GPCR, and thus the compound constitutes an important proof-of-concept for future development of allosteric modulators on other GPCR drug targets.
Collapse
|
Journal Article |
15 |
42 |
10
|
Owen JL, Cheng SX, Ge Y, Sahay B, Mohamadzadeh M. The role of the calcium-sensing receptor in gastrointestinal inflammation. Semin Cell Dev Biol 2015; 49:44-51. [PMID: 26709005 DOI: 10.1016/j.semcdb.2015.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
The gastrointestinal (GI) tract must balance the extraction of energy and metabolic end-products from ingested nutrition and resident gut microbes and the maintenance of a symbiotic relationship with this microbiota, with the ability to mount functional immune responses to pathogenic organisms to maintain GI health. The gut epithelium is equipped with bacteria-sensing mechanisms that discriminate between pathogenic and commensal microorganisms and regulate host responses between immunity and tolerance. The epithelium also expresses numerous nutrient-sensing receptors, but their importance in the preservation of the gut microbiota and immune homeostasis remains largely unexplored. Observations that a deficiency in the extracellular calcium-sensing receptor (CaSR) using intestinal epithelium-specific receptor knockout mice resulted in diminished intestinal barrier integrity, altered composition of the gut microbiota, modified expression of intestinal pattern recognition receptors, and a skewing of local and systemic innate responses from regulatory to stimulatory, may change the way that this receptor is considered as a potential immunotherapeutic target in gut homeostasis. These findings suggest that pharmacologic CaSR activators and CaSR-based nutrients such as calcium, polyamines, phenylalanine, tryptophan, and oligo-peptides might be useful in conditioning the gut microenvironment, and thus, in the prevention and treatment of disorders such as inflammatory bowel disease (IBD), infectious enterocolitis, and other inflammatory and secretory diarrheal diseases. Here, we review the emerging roles of the CaSR in intestinal homeostasis and its therapeutic potential for gut pathology.
Collapse
|
Review |
10 |
42 |
11
|
Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol 2016; 49:11-23. [PMID: 26688334 PMCID: PMC4761456 DOI: 10.1016/j.semcdb.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 12/01/2022]
Abstract
Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
40 |
12
|
Bell G, Huang S, Martin KJ, Block GA. A randomized, double-blind, phase 2 study evaluating the safety and efficacy of AMG 416 for the treatment of secondary hyperparathyroidism in hemodialysis patients. Curr Med Res Opin 2015; 31:943-52. [PMID: 25786369 DOI: 10.1185/03007995.2015.1031731] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Secondary hyperparathyroidism (SHPT) is a frequent complication of chronic kidney disease. We evaluated AMG 416, a long-acting peptide agonist of the calcium-sensing receptor, to assess its safety, tolerability, and efficacy and to determine a safe and effective starting dose for subsequent phase 2 studies. The study was not designed to titrate AMG 416 dosing to achieve a specific PTH treatment goal. RESEARCH DESIGN AND METHODS This is a multicenter, double-blind, randomized, placebo-controlled, dose-escalation study designed to evaluate the safety and efficacy of AMG 416 administered thrice weekly by IV bolus at the end of hemodialysis for up to 4 weeks. Eligible subjects were enrolled in one of three cohorts and treated with 5 mg of AMG 416 or placebo for 2 weeks (Cohort 1) or 5 or 10 mg of AMG 416 or placebo for 4 weeks (Cohorts 2 and 3). The primary endpoint was mean percentage change from baseline in PTH during the efficacy assessment phase (EAP) in Cohorts 2 and 3. RESULTS Analysis of the primary endpoint showed that treatment with AMG 416 at 10 mg (Cohort 2) and 5 mg (Cohort 3) for up to 4 weeks resulted in mean 49.4% and 33.0% reductions from baseline in PTH during the efficacy assessment phase, respectively (p < 0.05 for both cohorts compared to placebo group within the cohort). A substantial proportion of subjects treated with AMG 416 achieved PTH ≤300 pg/mL and ≥30% reduction in PTH from baseline in both cohorts. The observed decreases in serum-corrected calcium were well tolerated and serum phosphate levels also tended to decrease. CONCLUSIONS The present clinical findings support the continued development of AMG 416 as a treatment for SHPT in hemodialysis patients.
Collapse
|
Clinical Trial, Phase II |
10 |
35 |
13
|
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24:4119-4131. [PMID: 30271078 PMCID: PMC6158479 DOI: 10.3748/wjg.v24.i36.4119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) is best known for its action in the parathyroid gland and kidneys where it controls body calcium homeostasis. However, the CaSR has different roles in the gastrointestinal tract, where it is ubiquitously expressed. In the colon, the CaSR is involved in controlling multiple mechanisms, including fluid transport, inflammation, cell proliferation and differentiation. Although the expression pattern and functions of the CaSR in the colonic microenvironment are far from being completely understood, evidence has been accumulating that the CaSR might play a protective role against both colonic inflammation and colorectal cancer. For example, CaSR agonists such as dipeptides have been suggested to reduce colonic inflammation, while dietary calcium was shown to reduce the risk of colorectal cancer. CaSR expression is lost in colonic malignancies, indicating that the CaSR is a biomarker for colonic cancer progression. This dual anti-inflammatory and anti-tumourigenic role of the CaSR makes it especially interesting in colitis-associated colorectal cancer. In this review, we describe the clinical and experimental evidence for the role of the CaSR in colonic inflammation and colorectal cancer, the intracellular signalling pathways which are putatively involved in these actions, and the possibilities to exploit these actions of the CaSR for future therapies of colonic inflammation and cancer.
Collapse
|
Review |
7 |
35 |
14
|
Involvement of calcium-sensing receptor activation in the alleviation of intestinal inflammation in a piglet model by dietary aromatic amino acid supplementation. Br J Nutr 2018; 120:1321-1331. [PMID: 30375295 DOI: 10.1017/s0007114518002891] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ca2+-sensing receptor (CaSR) represents a potential therapeutic target for inflammatory bowel diseases and strongly prefers aromatic amino acid ligands. We investigated the regulatory effects of dietary supplementation with aromatic amino acids - tryptophan, phenylalanine and tyrosine (TPT) - on the CaSR signalling pathway and intestinal inflammatory response. The in vivo study was conducted with weanling piglets using a 2 × 2 factorial arrangement in a randomised complete block design. Piglets were fed a basal diet or a basal diet supplemented with TPT and with or without inflammatory challenge. The in vitro study was performed in porcine intestinal epithelial cell line to investigate the effects of TPT on inflammatory response using NPS-2143 to inhibit CaSR. Dietary supplementation of TPT alleviated histopathological injury and decreased myeloperoxidase activity in intestine challenged with lipopolysaccharide. Dietary supplementation of TPT decreased serum concentration of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12, granulocyte-macrophage colony-stimulating factor, TNF-α), as well as the mRNA abundances of pro-inflammatory cytokines in intestine but enhanced anti-inflammatory cytokines IL-4 and transforming growth factor-β mRNA levels compared with pigs fed control diet and infected by lipopolysaccharide. Supplementation of TPT increased CaSR and phospholipase Cβ2 protein levels, but decreased inhibitor of NF-κB kinase α/β and inhibitor of NF-κB (IκB) protein levels in the lipopolysaccharide-challenged piglets. When the CaSR signalling pathway was blocked by NPS-2143, supplementation of TPT decreased the CaSR protein level, but enhanced phosphorylated NF-κB and IκB levels in IPEC-J2 cells. To conclude, supplementation of aromatic amino acids alleviated intestinal inflammation as mediated through the CaSR signalling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
34 |
15
|
Wu QY, Sun MR, Wu CL, Li Y, Du JJ, Zeng JY, Bi HL, Sun YH. Activation of calcium-sensing receptor increases TRPC3/6 expression in T lymphocyte in sepsis. Mol Immunol 2014; 64:18-25. [PMID: 25467798 DOI: 10.1016/j.molimm.2014.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 01/17/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome induced by infection. T Lymphocytes play an important role in this disease. Transient receptor potential (TRP) channels and calcium-sensing receptors (CaSR) are expressed in lymphocytes to promote intracellular Ca(2+) release. However, data about the link between CaSR and TRP channels in septic T lymphocytes are few. In this study, by Ca(2+) imaging and Western blotting, we found that in septic rat peripheral blood T lymphocytes expressions of TRPC3 and TRPC6 proteins are higher. The SR/ER Ca(2+) ATPase inhibitor thapsigargin (TG) and CaSR agonist NPS R-568 also increased expressions of TRPC3 and TRPC6 proteins, which were reversed by PLC-IP3 channel blocker U73122 and TRPC channels inhibitor SKF96365. By Ca(2+) imaging, we found that the depletion of ER Ca(2+) stores by TG elicited a transient rise in cytoplasmic Ca(2+), followed by sustained increase depending on extracellular Ca(2+). But, SKF96365, not Verapamil (L-type channels inhibitor) and NiCl2 (Na(+)/Ca(2+) exchanger inhibitor), inhibited the relatively high [Ca(2+)]i. NPS R-568 also resulted in the same effect, and the duration of [Ca(2+)]i increase was eliminated completely by U73122 and was reduced in the absence of [Ca(2+)]o. NPS R-568 and TG increased the apoptotic ratio of septic T lymphocytes, which can be suppressed by SKF96365 and U73122. These results suggested that CaSR activation promoted the expression of TRPC3 and TRPC6 and enhanced T lymphocytes apoptosis through PLC-IP3 signaling pathway in sepsis.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
33 |
16
|
Jouret F, Wu J, Hull M, Rajendran V, Mayr B, Schöfl C, Geibel J, Caplan MJ. Activation of the Ca²+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J Cell Sci 2013; 126:5132-42. [PMID: 24013548 DOI: 10.1242/jcs.127555] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays essential roles in divalent ion homeostasis and cell differentiation. Because extracellular Ca(2+) is essential for the development of stable epithelial tight junctions (TJs), we hypothesized that the CaSR participates in regulating TJ assembly. We first assessed the expression of the CaSR in Madin-Darby canine kidney (MDCK) cells at steady state and following manipulations that modulate TJ assembly. Next, we examined the effects of CaSR agonists and antagonists on TJ assembly. Immunofluorescence studies indicate that endogenous CaSR is located at the basolateral pole of MDCK cells. Stable transfection of human CaSR in MDCK cells further reveals that this protein co-distributes with β-catenin on the basolateral membrane. Switching MDCK cells from low-Ca(2+) medium to medium containing a normal Ca(2+) concentration significantly increases CaSR expression at both the mRNA and protein levels. Exposure of MDCK cells maintained in low-Ca(2+) conditions to the CaSR agonists neomycin, Gd(3+) or R-568 causes the transient relocation of the tight junction components ZO-1 and occludin to sites of cell-cell contact, while inducing no significant changes in the expression of mRNAs encoding junction-associated proteins. Stimulation of CaSR also increases the interaction between ZO-1 and the F-actin-binding protein I-afadin. This effect does not involve activation of the AMP-activated protein kinase. By contrast, CaSR inhibition by NPS-2143 significantly decreases interaction of ZO-1 with I-afadin and reduces deposition of ZO-1 at the cell surface following a Ca(2+) switch from 5 µM to 200 µM [Ca(2+)]e. Pre-exposure of MDCK cells to the cell-permeant Ca(2+) chelator BAPTA-AM, similarly prevents TJ assembly caused by CaSR activation. Finally, stable transfection of MDCK cells with a cDNA encoding a human disease-associated gain-of-function mutant form of the CaSR increases the transepithelial electrical resistance of these cells in comparison to expression of the wild-type human CaSR. These observations suggest that the CaSR participates in regulating TJ assembly.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
31 |
17
|
Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to deoxynivalenol (vomitoxin). Arch Toxicol 2016; 91:495-507. [PMID: 26979077 DOI: 10.1007/s00204-016-1687-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/24/2016] [Indexed: 12/26/2022]
Abstract
Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.
Collapse
|
Journal Article |
9 |
30 |
18
|
Fetahu IS, Hummel DM, Manhardt T, Aggarwal A, Baumgartner-Parzer S, Kállay E. Regulation of the calcium-sensing receptor expression by 1,25-dihydroxyvitamin D3, interleukin-6, and tumor necrosis factor alpha in colon cancer cells. J Steroid Biochem Mol Biol 2014; 144 Pt A:228-31. [PMID: 24176760 PMCID: PMC4220008 DOI: 10.1016/j.jsbmb.2013.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/03/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
Anti-proliferative effects of calcium in the colon are mediated, at least in part, via the calcium-sensing receptor (CaSR), a vitamin D target gene. The expression of CaSR decreases during colorectal tumor progression and the mechanisms regulating its expression are poorly understood. The CaSR promoter harbors vitamin D elements responsive to 1,25-dihydroxyvitamin D3 (1,25D3) and NF-κB, STAT, and SP1 binding sites accounting for responsiveness to proinflammatory cytokines. Therefore, in the current study we investigated the impact of 1,25D3, tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 on CaSR expression in a differentiated (Caco2/AQ) and in a moderately differentiated (Coga1A) colon cancer cell line. 1,25D3 induced CaSR expression in both cell lines. Treatment with TNFα was accompanied by a 134-fold induction of CaSR in Coga1A (p<0.01). In Caco2/AQ cells the expression of CaSR was upregulated also by IL-6 (3.5-fold). Our data demonstrated transcriptional and translational activation of the CaSR by 1,25D3, TNFα, and IL-6 in a time- and cell line-dependent manner. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
|
Review |
11 |
30 |
19
|
Hu B, Tong F, Xu L, Shen Z, Yan L, Xu G, Shen R. Role of Calcium Sensing Receptor in Streptozotocin-Induced Diabetic Rats Exposed to Renal Ischemia Reperfusion Injury. Kidney Blood Press Res 2018; 43:276-286. [PMID: 29490306 DOI: 10.1159/000487685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal ischemia/reperfusion (I/R) injury (RI/RI) is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations at its onset, which can result in inflammation, abnormal lipid metabolism, the production of reactive oxygen species (ROS), and nitroso-redox imbalance. The calcium-sensing receptor (CaSR) is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic RI/ RI remains unclear. The present study was intended to investigate the role of CaSR on RI/RI in diabetes mellitus (DM). METHODS The bilateral renal arteries and veins of streptozotocin (STZ)-induced diabetic rats were subjected to 45-min ischemia followed by 2-h reperfusion with or without R-568 (agonist of CaSR) and NPS-2143 (antagonist of CaSR) at the beginning of I/R procedure. DM without renal I/R rats served as control group. The expressions of CaSR, calmodulin (CaM), and p47phox in the renal tissue were analyzed by qRT-PCR and Western blot. The renal pathomorphology, renal function, oxidative stress, inflammatory response, and calcium disorder were evaluated by detection of a series of indices by hematoxylin-eosin (HE) staining, transmission electron microscope (TEM), commercial kits, enzyme-linked immunosorbent assay (ELISA), and spectrophotofluorometry, respectively. RESULTS Results showed that the expressions of CaSR, CaM, and p47phox in I/R group were significantly up-regulated as compared with those in DM group, which were accompanied by renal tissue injury, increased calcium, oxidative stress, inflammation, and nitroso-redox imbalance. CONCLUSION These results suggest that activation of CaSR is involved in the induction of damage of renal tubular epithelial cell during diabetic RI/RI, resulting in lipid peroxidation, inflammatory response, nitroso-redox imbalance, and apoptosis.
Collapse
|
Journal Article |
7 |
29 |
20
|
Atay Z, Bereket A, Haliloglu B, Abali S, Ozdogan T, Altuncu E, Canaff L, Vilaça T, Wong BYL, Cole DEC, Hendy GN, Turan S. Novel homozygous inactivating mutation of the calcium-sensing receptor gene (CASR) in neonatal severe hyperparathyroidism-lack of effect of cinacalcet. Bone 2014; 64:102-7. [PMID: 24735972 DOI: 10.1016/j.bone.2014.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND NSHPT is a life-threatening disorder caused by homozygous inactivating calcium-sensing receptor (CASR) mutations. In some cases, the CaSR allosteric activator, cinacalcet, may reduce serum PTH and calcium levels, but surgery is the treatment of choice. OBJECTIVE To describe a case of NSHPT unresponsive to cinacalcet. PATIENT AND RESULTS A 23-day-old girl was admitted with hypercalcemia, hypotonia, bell-shaped chest and respiratory distress. The parents were first-degree cousins once removed. Serum Ca was 4.75 mmol/l (N: 2.10-2.62), P: 0.83 mmol/l (1.55-2.64), PTH: 1096 pg/ml (9-52) and urinary Ca/Cr ratio: 0.5mg/mg. First, calcitonin was given (10 IU/kg × 4/day), and then 2 days later, pamidronate (0.5mg/kg) for 2 days. Doses of cinacalcet were given daily from day 28 of life starting at 30 mg/m2 and increasing to 90 mg/m2 on day 43. On day 33, 6 days after pamidronate, serum Ca levels had fallen to 2.5 mmol/l but, thereafter, rose to 5 mmol/l despite the cinacalcet. Total parathyroidectomy was performed at day 45. Hungry bone disease after surgery required daily Ca replacement and calcitriol for 18 days. At 3 months, the girl was mildly hypercalcemic, with no supplementation, and at 6 months, she developed hypocalcemia and has since been maintained on Ca and calcitriol. By CASR mutation analysis, the infant was homozygous and both parents heterozygous for a deletion-frameshift mutation. CONCLUSION The predicted nonfunctional CaSR is consistent with lack of response to cinacalcet, but total parathyroidectomy was successful. An empiric trial of the drug and/or prompt mutation testing should help minimize the period of unnecessary pharmacotherapy.
Collapse
|
Case Reports |
11 |
26 |
21
|
Fonseca JE. Rebalancing bone turnover in favour of formation with strontium ranelate: implications for bone strength. Rheumatology (Oxford) 2008; 47 Suppl 4:iv17-19. [PMID: 18556645 PMCID: PMC2427167 DOI: 10.1093/rheumatology/ken165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This review updates our current knowledge on the mechanism of action of strontium ranelate and analyses the way it rebalances bone turnover and how it influences bone biomechanics. Strontium ranelate is able to increase pre-osteoblast replication, osteoblast differentiation, collagen type I synthesis and bone matrix mineralization probably through a calcium-sensing receptor (CaR)-dependent mechanism. Paralleling this anabolic effect there is inhibition of osteoclast differentiation and activity mediated by an increase in osteoprotegerin (OPG) and a decrease in RANK ligand (RANKL). The overall effect is a rebalanced bone turnover in favour of improved bone geometry, cortical thickness, trabecular bone morphology and intrinsic bone tissue quality, which translates into enhanced bone strength.
Collapse
|
Review |
17 |
23 |
22
|
Calcium-sensing receptor: evidence and hypothesis for its role in nephrolithiasis. Urolithiasis 2018; 47:23-33. [PMID: 30446806 DOI: 10.1007/s00240-018-1096-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
Calcium-sensing receptor (CaSR) is a plasma-membrane G protein-coupled receptor activated by extracellular calcium and expressed in kidney tubular cells. It inhibits calcium reabsorption in the ascending limb and distal convoluted tubule when stimulated by the increase of serum calcium levels; therefore, these tubular segments are enabled by CaSR to play a substantial role in the regulation of serum calcium levels. In addition, CaSR increases water and proton excretion in the collecting duct and promotes phosphate reabsorption and citrate excretion in the proximal tubule. These CaSR activities form a network in which they are integrated to protect the kidney against the negative effects of high calcium concentrations and calcium precipitates in urine. Therefore, the CaSR gene has been considered as a candidate to explain calcium nephrolithiasis. Epidemiological studies observed that calcium nephrolithiasis was associated with polymorphisms of the CaSR gene regulatory region, rs6776158, located within the promoter-1, rs1501899 located in the intron 1, and rs7652589 in the 5'-untranslated region. These polymorphisms were found to reduce the transcriptional activity of promoter-1. Activating rs1042636 polymorphism located in exon 7 was associated with calcium nephrolithiasis and hypercalciuria. Genetic polymorphisms decreasing CaSR expression could predispose individuals to stones because they may impair CaSR protective effects against precipitation of calcium phosphate and oxalate. Activating polymorphisms rs1042636 could predispose to calcium stones by increasing calcium excretion. These findings suggest that CaSR may play a complex role in lithogenesis through different pathways having different relevance under different clinical conditions.
Collapse
|
Review |
7 |
23 |
23
|
Akizawa T, Ikejiri K, Kondo Y, Endo Y, Fukagawa M. Evocalcet: A New Oral Calcimimetic for Dialysis Patients With Secondary Hyperparathyroidism. Ther Apher Dial 2019; 24:248-257. [PMID: 31486206 PMCID: PMC7317959 DOI: 10.1111/1744-9987.13434] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
Patients with chronic kidney disease often develop secondary hyperparathyroidism (SHPT), marked by high levels of circulating parathyroid hormone (PTH) and increased risk of morbidity and mortality. Patients with SHPT are treated with a therapeutic combination that commonly includes calcimimetics, which have recently become popular in clinical settings, and other agents such as vitamin D preparations. Calcimimetics are a drug class that reduces PTH levels by targeting the calcium‐sensing receptor. Cinacalcet, a representative calcimimetic, is widely used; however, a high incidence of upper gastrointestinal (GI) tract‐related adverse events (AEs) can result in insufficient dosage and poor long‐term compliance. The newly approved evocalcet has equivalent efficacy to cinacalcet at a lower clinical dose, with improved bioavailability, fewer upper GI tract‐related AEs, and fewer safety concerns. This review gives an overview of calcimimetic agents, with a special focus on evocalcet, and describes the clinical advantages of evocalcet in the treatment of dialysis patients with SHPT.
Collapse
|
Review |
6 |
23 |
24
|
Wu CL, Wu QY, Du JJ, Zeng JY, Li TT, Xu CQ, Sun YH. Calcium-sensing receptor in the T lymphocyte enhanced the apoptosis and cytokine secretion in sepsis. Mol Immunol 2014; 63:337-42. [PMID: 25256599 DOI: 10.1016/j.molimm.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/29/2022]
Abstract
Calcium-sensing receptor (CaSR) is a member of the G protein-coupled receptor superfamily that existed in lymphocytes and promoted cytokine secretion. Lymphocytes are also involved in sepsis. However, the role of CaSR in lymphocytes in sepsis is unclear. In this study, we want to examine whether the CaSR in lymphocytes in sepsis is involved in the cytokine secretions and apoptosis and make clear the relationship between NF-κB and MAPK signal transduction pathways. We investigated the issues mentioned earlier using Western blotting, ELISA, and Flow Cytometry. The sepsis was remodeled by cecal ligation and puncture (CLP). We found that CaSR protein expression increased in the peripheral blood T lymphocytes in CLP rats. The calcimimetic R568 (NPS R568) promoted, whereas the calcilytic NPS 2143 attenuated, signaling pathways proteins P65 (subunit of NF-κB), ERK1/2, and JNK (one subgroup of MAPKs) phosphorylation. However, P-P38 and P-JAKs exhibit no significant changes. Furthermore, the production TNF-α and IL-4 was greater in CLP rats than in normal rats, and NPS R568 promoted secretion of these cytokines. Simultaneously, the apoptotic ratio of T cells in CLP increased, and NPS R 568 exacerbated the apoptosis degree. However, these effects could also be inhibited by U0126 or SP600125 (MAPKs pathway inhibitor) or Bay-11-7082 or (NF-κB pathway inhibitor). From these results, we can conclude that, in the sepsis, CaSR activation promoted T-cell apoptosis and the secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-4 probably through NF-κB and partial MAPK signal transduction pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
22 |
25
|
Aggarwal A, Höbaus J, Tennakoon S, Prinz-Wohlgenannt M, Graça J, Price SA, Heffeter P, Berger W, Baumgartner-Parzer S, Kállay E. Active vitamin D potentiates the anti-neoplastic effects of calcium in the colon: A cross talk through the calcium-sensing receptor. J Steroid Biochem Mol Biol 2016; 155:231-8. [PMID: 25758239 DOI: 10.1016/j.jsbmb.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023]
Abstract
Epidemiological studies suggest an inverse correlation between dietary calcium (Ca(2+)) and vitamin D intake and the risk of colorectal cancer (CRC). It has been shown in vitro that the active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25-D3) can upregulate expression of the calcium-sensing receptor (CaSR). In the colon, CaSR has been suggested to regulate proliferation of colonocytes. However, during tumorigenesis colonic CaSR expression is downregulated and we hypothesized that the loss of CaSR could influence the anti-tumorigenic effects of Ca(2+) and vitamin D. Our aim was to assess the impact of CaSR expression and function on the anti-neoplastic effects of 1,25-D3 in colon cancer cell lines. We demonstrated that in the healthy colon of mice, high vitamin D diet (2500 IU/kg diet) increased expression of differentiation and apoptosis markers, decreased expression of proliferation markers and significantly upregulated CaSR mRNA expression, compared with low vitamin D diet (100 IU/kg diet). To determine the role of CaSR in this process, we transfected Caco2-15 and HT29 CRC cells with wild type CaSR (CaSR-WT) or a dominant negative CaSR mutant (CaSR-DN) and treated them with 1,25-D3 alone, or in combination with CaSR activators (Ca(2+) and NPS R-568). 1,25-D3 enhanced the anti-proliferative effects of Ca(2+) and induced differentiation and apoptosis only in cells with a functional CaSR, which were further enhanced in the presence of NPS R-568, a positive allosteric modulator of CaSR. The mutant CaSR inhibited the anti-tumorigenic effects of 1,25-D3 suggesting that the anti-neoplastic effects of 1,25-D3 are, at least in part, mediated by the CaSR. Taken together, our data provides molecular evidence to support the epidemiological observation that both, vitamin D and calcium are needed for protection against malignant transformation of the colon and that their effect is modulated by the presence of a functional CaSR. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/prevention & control
- Aniline Compounds/pharmacology
- Animals
- Caco-2 Cells
- Calcium/metabolism
- Calcium/pharmacology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colon/drug effects
- Colon/metabolism
- Colon/pathology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Dietary Supplements
- Gene Expression Regulation, Neoplastic
- HT29 Cells
- Humans
- Male
- Mice
- Mice, Transgenic
- Mutation
- Phenethylamines
- Propylamines
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Calcium-Sensing
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Transfection
- Vitamin D/analogs & derivatives
- Vitamin D/pharmacology
Collapse
|
|
9 |
21 |