1
|
Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:198-208. [PMID: 24308505 PMCID: PMC4253037 DOI: 10.1111/tpj.12378] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.
Collapse
|
research-article |
11 |
164 |
2
|
Phenolic profiles and antioxidant activity of defatted camelina and sophia seeds. Food Chem 2017; 240:917-925. [PMID: 28946362 DOI: 10.1016/j.foodchem.2017.07.098] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022]
Abstract
Phenolic compounds in oilseeds occur in the free, esterified and insoluble-bound forms and serve as natural antioxidants by preventing food oxidation as well as oxidative stress and various disorders in the body. In this work, free, esterified and insoluble-bound phenolics were extracted from defatted camelina and sophia seeds. Samples were evaluated for their total contents of phenolics (TPC), flavonoids (TFC) and proanthocyanidins (PC) as well as the antioxidant activity of their various phenolic fractions. Several in vitro methods, namely Trolox equivalent antioxidant capacity (TEAC), reducing power (RP) and metal chelation activity were used for all fractions. High performance liquid chromatography-diode array detection- tandem mass spectrometry (HPLC-DAD-MS/MS) identified 29 phenolics belonging to phenolic acids and their derivatives, flavonoids and procyanidins in different fractions of camelina and sophia extracts. Esterified fraction was the predominant form of phenolics in both seeds. Thus, camelina and sophia seeds may serve as viable functional food ingredients with protective antioxidant potential.
Collapse
|
Journal Article |
8 |
61 |
3
|
Luo Z, Brock J, Dyer JM, Kutchan T, Schachtman D, Augustin M, Ge Y, Fahlgren N, Abdel-Haleem H. Genetic Diversity and Population Structure of a Camelina sativa Spring Panel. FRONTIERS IN PLANT SCIENCE 2019; 10:184. [PMID: 30842785 PMCID: PMC6391347 DOI: 10.3389/fpls.2019.00184] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
There is a need to explore renewable alternatives (e.g., biofuels) that can produce energy sources to help reduce the reliance on fossil oils. In addition, the consumption of fossil oils adversely affects the environment and human health via the generation of waste water, greenhouse gases, and waste solids. Camelina sativa, originated from southeastern Europe and southwestern Asia, is being re-embraced as an industrial oilseed crop due to its high seed oil content (36-47%) and high unsaturated fatty acid composition (>90%), which are suitable for jet fuel, biodiesel, high-value lubricants and animal feed. C. sativa's agronomic advantages include short time to maturation, low water and nutrient requirements, adaptability to adverse environmental conditions and resistance to common pests and pathogens. These characteristics make it an ideal crop for sustainable agricultural systems and regions of marginal land. However, the lack of genetic and genomic resources has slowed the enhancement of this emerging oilseed crop and exploration of its full agronomic and breeding potential. Here, a core of 213 spring C. sativa accessions was collected and genotyped. The genotypic data was used to characterize genetic diversity and population structure to infer how natural selection and plant breeding may have affected the formation and differentiation within the C. sativa natural populations, and how the genetic diversity of this species can be used in future breeding efforts. A total of 6,192 high-quality single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing (GBS) technology. The average polymorphism information content (PIC) value of 0.29 indicate moderate genetic diversity for the C. sativa spring panel evaluated in this report. Population structure and principal coordinates analyses (PCoA) based on SNPs revealed two distinct subpopulations. Sub-population 1 (POP1) contains accessions that mainly originated from Germany while the majority of POP2 accessions (>75%) were collected from Eastern Europe. Analysis of molecular variance (AMOVA) identified 4% variance among and 96% variance within subpopulations, indicating a high gene exchange (or low genetic differentiation) between the two subpopulations. These findings provide important information for future allele/gene identification using genome-wide association studies (GWAS) and marker-assisted selection (MAS) to enhance genetic gain in C. sativa breeding programs.
Collapse
|
research-article |
6 |
61 |
4
|
Roy Choudhury S, Riesselman AJ, Pandey S. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:49-59. [PMID: 24102738 DOI: 10.1111/pbi.12115] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 05/07/2023]
Abstract
Heterotrimeric G-proteins consisting of Gα, Gβ and Gγ subunits play an integral role in mediating multiple signalling pathways in plants. A novel, recently identified plant-specific Gγ protein, AGG3, has been proposed to be an important regulator of organ size and mediator of stress responses in Arabidopsis, whereas its potential homologs in rice are major quantitative trait loci for seed size and panicle branching. To evaluate the role of AGG3 towards seed and oil yield improvement, the gene was overexpressed in Camelina sativa, an oilseed crop of the Brassicaceae family. Analysis of multiple homozygous T4 transgenic Camelina lines showed that constitutive overexpression of AGG3 resulted in faster vegetative as well as reproductive growth accompanied by an increase in photosynthetic efficiency. Moreover, when expressed constitutively or specifically in seed tissue, AGG3 was found to increase seed size, seed mass and seed number per plant by 15%-40%, effectively resulting in significantly higher oil yield per plant. AGG3 overexpressing Camelina plants also exhibited improved stress tolerance. These observations draw a strong link between the roles of AGG3 in regulating two critical yield parameters, seed traits and plant stress responses, and reveal an effective biotechnological tool to dramatically increase yield in agricultural crops.
Collapse
|
|
11 |
57 |
5
|
Ozseyhan ME, Kang J, Mu X, Lu C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:1-7. [PMID: 29216494 DOI: 10.1016/j.plaphy.2017.11.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/08/2017] [Accepted: 11/30/2017] [Indexed: 05/20/2023]
Abstract
Camelina sativa is a re-emerging low-input oilseed crop that has great potentials. It is necessary to ameliorate camelina oils for optimized fatty acid composition that can meet different application requirements. Camelina seed contains significant amounts of C20-C24 very long-chain fatty acids (VLCFAs) that may not be desirable. We demonstrated that these VLCFAs can be effectively reduced by deactivating the Fatty Acid Elongase1 (FAE1) in camelina. The allohexaploid camelina contains three alleles of FAE1 genes. Ethyl methanesulfonate (EMS) induced mutation at the FAE1-B gene caused over 60% reduction of VLCFAs in seed. Homozygous knockout mutants were successfully created in a single generation by simultaneously targeting three FAE1 alleles using the CRISPR technology with an egg cell-specific Cas9 expression. VLCFAs were reduced to less than 2% of total fatty acids compared to over 22% in the wild type, and the C18 unsaturated fatty acids were concomitantly increased. The fae1 mutants were indistinguishable from wild type in seed physiology and plant growth. This study demonstrated that the CRISPR/Cas9 technology can be effectively applied to the polyploid crop camelina to rapidly obtain desired traits such as optimal fatty acid composition in its seed oil. Knocking out FAE1 also provides a means to increase the levels of oleic acid or α-linolenic acid in camelina oils that are desirable for industrial or food/feed uses.
Collapse
|
|
7 |
56 |
6
|
Liu J, Rice A, McGlew K, Shaw V, Park H, Clemente T, Pollard M, Ohlrogge J, Durrett TP. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:858-65. [PMID: 25756355 DOI: 10.1111/pbi.12325] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications.
Collapse
|
|
10 |
46 |
7
|
Heydarian Z, Yu M, Gruber M, Glick BR, Zhou R, Hegedus DD. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa. Front Microbiol 2016; 7:1966. [PMID: 28018305 PMCID: PMC5159422 DOI: 10.3389/fmicb.2016.01966] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.
Collapse
|
Journal Article |
9 |
43 |
8
|
Abdullah HM, Akbari P, Paulose B, Schnell D, Qi W, Park Y, Pareek A, Dhankher OP. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:136. [PMID: 27382413 PMCID: PMC4932711 DOI: 10.1186/s13068-016-0555-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/23/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Camelina sativa is an emerging dedicated oilseed crop designed for biofuel and biodiesel applications as well as a source for edible and general-purpose oils. Such valuable oilseed crop is subjected to plant breeding programs and is suggested for large-scale production of better seed and oil quality. To accomplish this objective and to further enhance its oil content, a better understanding of lipid metabolism at the molecular level in this plant is critical. Here, we applied tissue transcriptomics and lipid composition analysis to identify and profile the genes and gene networks associated with triacylglycerol (TAG) biosynthesis, and to investigate how those genes are interacting to determine the quantity and quality of Camelina oil during seed development. RESULTS Our Camelina transcriptome data analysis revealed an approximate of 57,854 and 57,973 genes actively expressing in developing seeds (RPKM ≥ 0.1) at 10-15 (Cs-14) and 16-21 (Cs-21) days after flowering (DAF), respectively. Of these, 7932 genes showed temporal and differential gene expression during the seed development (log2 fold change ≥1.5 or ≤-1.5; P ≤ 0.05). The differentially expressed genes (DEGs) were annotated and were found to be involved in distinct functional categories and metabolic pathways. Furthermore, performing quantitative real-time PCR for selected candidate genes associated with TAG biosynthesis validated RNA-seq data. Our results showed strong positive correlations between the expression abundance measured using both qPCR and RNA-Seq technologies. Furthermore, the analysis of fatty-acid content and composition revealed major changes throughout seed development, with the amount of oil accumulate rapidly at early mid seed development stages (from 16-28 DAF onwards), while no important changes were observed in the fatty-acid profile between seeds at 28 DAF and mature seeds. CONCLUSIONS This study is highly useful for understanding the regulation of TAG biosynthesis and identifying the rate-limiting steps in TAG pathways at seed development stages, providing a precise selection of candidate genes for developing Camelina varieties with improved seed and oil yields.
Collapse
|
research-article |
9 |
41 |
9
|
Hixson SM, Parrish CC, Anderson DM. Full substitution of fish oil with camelina ( Camelina sativa) oil, with partial substitution of fish meal with camelina meal, in diets for farmed Atlantic salmon (Salmo salar) and its effect on tissue lipids and sensory quality. Food Chem 2014; 157:51-61. [PMID: 24679751 DOI: 10.1016/j.foodchem.2014.02.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
Camelina oil (CO) and meal (CM) are potential replacements of fish meal (FM) and oil (FO) in aquaculture feeds. CO is high in α-linolenic acid (18:3ω3, ALA) (30%), with an ω3/ω6 ratio >1. This study tested diets with 100% CO, solvent extracted FM (SEFM) and partially substituted FM with 10% CM, in a 16 week feeding trial with Atlantic salmon (initial weight 240 g fish(-1)). Final weight (529-691 g fish(-1)) was not affected by using 100% CO; however it was lower in groups fed SEFM and 10% CM diets. Total lipid in salmon flesh fed a diet with CO, SEFM and CM (22% ww(-1)) was significantly higher than FO flesh (14% ww(-1)). There was no difference in the sensory quality of salmon fillets that were fed either FO or 100% CO diets. This was the first study to use CO as a complete FO replacement in diets for farmed Atlantic salmon.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
41 |
10
|
Horn PJ, Liu J, Cocuron JC, McGlew K, Thrower NA, Larson M, Lu C, Alonso AP, Ohlrogge J. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:322-348. [PMID: 26991237 DOI: 10.1111/tpj.13163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.
Collapse
|
|
9 |
34 |
11
|
Yuan L, Mao X, Zhao K, Ji X, Ji C, Xue J, Li R. Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses. Biol Open 2017; 6:1024-1034. [PMID: 28679505 PMCID: PMC5550922 DOI: 10.1242/bio.026534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an important oilseed worldwide, Camelina sativa is being increasingly explored for its use in production of food, feed, biofuel and industrial chemicals. However, detailed mechanisms of camelina oil biosynthesis and accumulation, particularly in vegetative tissues, are understood to a very small extent. Here, we present genome-wide identification, cloning and functional analysis of phospholipid diacylglycerol acyltransferase (PDAT) in C. sativa, which catalyses the final acylation step in triacylglycerol (TAG) biosynthesis by transferring a fatty acyl moiety from a phospholipid to diacylglycerol (DAG). We identified five genes (namely CsPDAT1-A, B, and C and CsPDAT2-A and B) encoding PDATs from the camelina genome. CsPDAT1-A is mainly expressed in seeds, whereas CsPDAT1-C preferentially accumulates in flower and leaf tissues. High expression of CsPDAT2-A and CsPDAT2-B was detected in stem and root tissues, respectively. Cold stress induced upregulation of CsPDAT1-A and CsPDAT1-C expression by 3.5- and 2.5-fold, respectively, compared to the control. Salt stress led to an increase in CsPDAT2-B transcripts by 5.1-fold. Drought treatment resulted in an enhancement of CsPDAT2-A mRNAs by twofold and a reduction of CsPDAT2-B expression. Osmotic stress upregulated the expression of CsPDAT1-C by 3.3-fold. Furthermore, the cDNA clones of these CsPDAT genes were isolated for transient expression in tobacco leaves. All five genes showed PDAT enzymatic activity and substantially increased TAG accumulation in the leaves, with CsPDAT1-A showing a higher preference for ɑ-linolenic acid (18:3 ω-3). Overall, this study demonstrated that different members of CsPDAT family contribute to TAG synthesis in different tissues. More importantly, they are involved in different types of stress responses in camelina seedlings, providing new evidence of their roles in oil biosynthesis and regulation in camelina vegetative tissue. The identified CsPDATs may have practical applications in increasing oil accumulation and enhancing stress tolerance in other plants as well. Summary: Five CsPDAT family members were identified from Camelina sativa and they contribute to TAG synthesis in different tissues and various stress responses, offering new targets for lipid metabolic engineering.
Collapse
|
Journal Article |
8 |
24 |
12
|
Singh R, Bollina V, Higgins EE, Clarke WE, Eynck C, Sidebottom C, Gugel R, Snowdon R, Parkin IAP. Single-nucleotide polymorphism identification and genotyping in Camelina sativa. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:35. [PMID: 25620879 PMCID: PMC4300397 DOI: 10.1007/s11032-015-0224-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/18/2014] [Indexed: 05/09/2023]
Abstract
Camelina sativa, a largely relict crop, has recently returned to interest due to its potential as an industrial oilseed. Molecular markers are key tools that will allow C. sativa to benefit from modern breeding approaches. Two complementary methodologies, capture of 3' cDNA tags and genomic reduced-representation libraries, both of which exploited second generation sequencing platforms, were used to develop a low density (768) Illumina GoldenGate single nucleotide polymorphism (SNP) array. The array allowed 533 SNP loci to be genetically mapped in a recombinant inbred population of C. sativa. Alignment of the SNP loci to the C. sativa genome identified the underlying sequenced regions that would delimit potential candidate genes in any mapping project. In addition, the SNP array was used to assess genetic variation among a collection of 175 accessions of C. sativa, identifying two sub-populations, yet low overall gene diversity. The SNP loci will provide useful tools for future crop improvement of C. sativa.
Collapse
|
research-article |
10 |
21 |
13
|
Heydarian Z, Gruber M, Glick BR, Hegedus DD. Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Front Microbiol 2018; 9:1297. [PMID: 30013518 PMCID: PMC6036250 DOI: 10.3389/fmicb.2018.01297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Camelina sativa treated with plant growth-promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate deaminase (acdS) or transgenic lines expressing acdS exhibit increased salinity tolerance. AcdS reduces the level of stress ethylene to below the point where it is inhibitory to plant growth. The study determined that several mechanisms appear to be responsible for the increased salinity tolerance and that the effect of acdS on gene expression patterns in C. sativa roots during salt stress is a function of how it is delivered. Growth in soil treated with the PGPB (Pseudomonas migulae 8R6) mostly affected ethylene- and abscisic acid-dependent signaling in a positive way, while expression of acdS in transgenic lines under the control of the broadly active CaMV 35S promoter or the root-specific rolD promoter affected auxin, jasmonic acid and brassinosteroid signaling and/biosynthesis. The expression of genes involved in minor carbohydrate metabolism were also up-regulated, mainly in roots of lines expressing acdS. Expression of acdS also affected the expression of genes involved in modulating the level of reactive oxygen species (ROS) to prevent cellular damage, while permitting ROS-dependent signal transduction. Though the root is not a photosynthetic tissue, acdS had a positive effect on the expression of genes involved in photosynthesis.
Collapse
|
Journal Article |
7 |
20 |
14
|
Aryal N, Lu C. A Phospholipase C-Like Protein From Ricinus communis Increases Hydroxy Fatty Acids Accumulation in Transgenic Seeds of Camelina sativa. FRONTIERS IN PLANT SCIENCE 2018; 9:1576. [PMID: 30443260 PMCID: PMC6221933 DOI: 10.3389/fpls.2018.01576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/09/2018] [Indexed: 05/23/2023]
Abstract
There have been strong interests in producing unusual fatty acids in oilseed crops to provide renewable industrial feedstock. Results are so far largely disappointing since much lower amounts of such fatty acids accumulate in genetically engineered seeds than in their original natural sources. It has been suggested that the flux of unusual fatty acids through phosphatidylcholine (PC) represents a major bottleneck for high accumulation of such fatty acids in triacylglycerol (TAG). We show here that a phospholipase C-like protein (RcPLCL1) from castor bean, which accumulates nearly 90% of the hydroxylated ricinoleic acid in its seed TAG, increases the amount of hydroxy fatty acids (HFAs) when co-expresses with the fatty acid hydroxylase (RcFAH12) in transgenic seed of Camelina sativa. RcPLCL1 shows hydrolyzing activities on both PC and phosphatidylinositol substrates in our in vitro assay conditions. The PC-PLC activity of the RcPLCL1 may have increased the efficiency of HFA-PC to diacylglycerol conversion, which explains our observation of increased HFA contents in TAG concomitant with decreased HFA in the membrane lipid PC during seed development. Consequently, this may also alleviate the potential detrimental effect of HFA on germination of the engineered camelina seeds. Our results provide new knowledge that will help design effective strategies to engineer high levels of HFAs in transgenic oilseeds.
Collapse
|
research-article |
7 |
20 |
15
|
Razeq FM, Kosma DK, Rowland O, Molina I. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. PHYTOCHEMISTRY 2014; 106:188-196. [PMID: 25081105 DOI: 10.1016/j.phytochem.2014.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Camelina sativa (L.) Crantz is an emerging low input, stress tolerant crop with seed oil composition suitable for biofuel and bioproduct production. The chemical compositions and ultrastructural features of surface waxes from C. sativa aerial cuticles, seeds, and roots were analyzed using gas chromatography and microscopy. Alkanes, primary fatty alcohols, and free fatty acids were common components of all analyzed organs. A particular feature of leaf waxes was the presence of alkyl esters of long-chain fatty acids and very long-chain fatty alcohols, ranging from C38 to C50 and dominated by C42, C44 and C46 homologues. Stem waxes were mainly composed of non-sterol pentacyclic triterpenes. Flowers accumulated significant amounts of methyl-branched iso-alkanes (C29 and C31 total carbon number) in addition to straight-chain alkanes. Seed waxes were mostly primary fatty alcohols of up to 32 carbons in length and unbranched C29 and C31 alkanes. The total amount of identified wax components extracted by rapid chloroform dipping of roots was 280μgg(-1) (fresh weight), and included alkyl hydroxycinnamates, predominantly alkyl coumarates and alkyl caffeates. This study provides qualitative and quantitative information on the waxes of C. sativa root, shoot, and seed boundary tissues, allowing the relative activities of wax biosynthetic pathways in each respective plant organ to be assessed. This detailed description of the protective surface waxes of C. sativa may provide insights into its drought-tolerant and pathogen-resistant properties, and also identifies C. sativa as a potential source of renewable high-value natural products.
Collapse
|
|
11 |
20 |
16
|
Xu Y, Chen G, Greer MS, Caldo KMP, Ramakrishnan G, Shah S, Wu L, Lemieux MJ, Ozga J, Weselake RJ. Multiple mechanisms contribute to increased neutral lipid accumulation in yeast producing recombinant variants of plant diacylglycerol acyltransferase 1. J Biol Chem 2017; 292:17819-17831. [PMID: 28900030 DOI: 10.1074/jbc.m117.811489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/07/2017] [Indexed: 11/06/2022] Open
Abstract
The apparent bottleneck in the accumulation of oil during seed development in some oleaginous plant species is the formation of triacylglycerol (TAG) by the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol catalyzed by diacylglycerol acyltransferase (DGAT, EC 2.3.1.20). Improving DGAT activity using protein engineering could lead to improvements in seed oil yield (e.g. in canola-type Brassica napus). Directed evolution of B. napus DGAT1 (BnaDGAT1) previously revealed that one of the regions where amino acid residue substitutions lead to higher performance in BnaDGAT1 is in the ninth predicted transmembrane domain (PTMD9). In this study, several BnaDGAT1 variants with amino acid residue substitutions in PTMD9 were characterized. Among these enzyme variants, the extent of yeast TAG production was affected by different mechanisms, including increased enzyme activity, increased polypeptide accumulation, and possibly reduced substrate inhibition. The kinetic properties of the BnaDGAT1 variants were affected by the amino acid residue substitutions, and a new kinetic model based on substrate inhibition and sigmoidicity was generated. Based on sequence alignment and further biochemical analysis, the amino acid residue substitutions that conferred increased TAG accumulation were shown to be present in the DGAT1-PTMD9 region of other higher plant species. When amino acid residue substitutions that increased BnaDGAT1 enzyme activity were introduced into recombinant Camelina sativa DGAT1, they also improved enzyme performance. Thus, the knowledge generated from directed evolution of DGAT1 in one plant species can be transferred to other plant species and has potentially broad applications in genetic engineering of oleaginous crops and microorganisms.
Collapse
|
Journal Article |
8 |
19 |
17
|
West AL, Miles EA, Lillycrop KA, Han L, Napier JA, Calder PC, Burdge GC. Dietary supplementation with seed oil from transgenic Camelina sativa induces similar increments in plasma and erythrocyte DHA and EPA to fish oil in healthy humans. Br J Nutr 2020; 124:922-930. [PMID: 32513312 PMCID: PMC7547888 DOI: 10.1017/s0007114520002044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
EPA and DHA are required for normal cell function and can also induce health benefits. Oily fish are the main source of EPA and DHA for human consumption. However, food choices and concerns about the sustainability of marine fish stocks limit the effectiveness of dietary recommendations for EPA + DHA intakes. Seed oils from transgenic plants that contain EPA + DHA are a potential alternative source of EPA and DHA. The present study investigated whether dietary supplementation with transgenic Camelina sativa seed oil (CSO) that contained EPA and DHA was as effective as fish oil (FO) in increasing EPA and DHA concentrations when consumed as a dietary supplement in a blinded crossover study. Healthy men and women (n 31; age 53 (range 20-74) years) were randomised to consume 450 mg/d EPA + DHA provided either as either CSO or FO for 8 weeks, followed by 6 weeks washout and then switched to consuming the other test oil. Fasting venous blood samples were collected at the start and end of each supplementation period. Consuming the test oils significantly (P < 0·05) increased EPA and DHA concentrations in plasma TAG, phosphatidylcholine and cholesteryl esters. There were no significant differences between test oils in the increments of EPA and DHA. There was no significant difference between test oils in the increase in the proportion of erythrocyte EPA + DHA (CSO, 12 %; P < 0·0001 and FO, 8 %; P = 0·02). Together, these findings show that consuming CSO is as effective as FO for increasing EPA and DHA concentrations in humans.
Collapse
|
Randomized Controlled Trial |
5 |
19 |
18
|
Cais-Sokolińska D, Pikul J, Wójtowski J, Danków R, Teichert J, Czyżak-Runowska G, Bagnicka E. Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1343-1349. [PMID: 25042847 DOI: 10.1002/jsfa.6828] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The composition of bioactive components in dairy products depends on their content in raw milk and the processing conditions. The experimental material consisted of the milk of dairy goats supplemented with 120 g d(-1) per head of false flax cake. The aim of the study was to evaluate the quality of kefir produced from goat's milk with a higher content of bioactive components resulting from supplementation of the goats' diet with false flax cake. RESULTS The administration of false flax cake to goats had a positive effect on the fatty acid profile of the raw milk, causing an increase in the proportion of polyunsaturated fatty acids (PUFA), including conjugated linoleic acid (CLA) and n-3 fatty acids. Their increased percentage was detected in the kefir after production as well as after storage. The processing value of the harvested milk did not differ from the qualitative characteristics of milk from goats of the control group. Increasing the proportion of bioactive components in goat's milk did not result in changes in the acidity, texture, colour, flavour, aroma or consistency of the kefir obtained. CONCLUSION Milk and kefir obtained after the administration of false flax cake to goats contain bioactive components (PUFA including CLA, n-3 and monoenic trans fatty acids) in significant amounts. Kefir from experimental goat's milk did not differ in quality from kefir made from the milk of the control group.
Collapse
|
Evaluation Study |
10 |
19 |
19
|
Malik MR, Yang W, Patterson N, Tang J, Wellinghoff RL, Preuss ML, Burkitt C, Sharma N, Ji Y, Jez JM, Peoples OP, Jaworski JG, Cahoon EB, Snell KD. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:675-88. [PMID: 25418911 DOI: 10.1111/pbi.12290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production.
Collapse
|
|
10 |
19 |
20
|
Neupane D, Lohaus RH, Solomon JKQ, Cushman JC. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060772. [PMID: 35336654 PMCID: PMC8951600 DOI: 10.3390/plants11060772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 05/09/2023]
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.
Collapse
|
Review |
3 |
18 |
21
|
Mir ZA, Ali S, Shivaraj SM, Bhat JA, Singh A, Yadav P, Rawat S, Paplao PK, Grover A. Genome-wide identification and characterization of Chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics 2019; 112:749-763. [PMID: 31095998 DOI: 10.1016/j.ygeno.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Chitinases belong to the group of Pathogenesis-related (PR) proteins that provides protection against fungal pathogens. This study presents the, genome-wide identification and characterization of chitinase gene family in two important oilseed crops B. juncea and C. sativa belonging to family Brassicaceae. We have identified 47 and 79 chitinase genes in the genomes of B. juncea and C. sativa, respectively. Phylogenetic analysis of chitinases in both the species revealed four distinct sub-groups, representing different classes of chitinases (I-V). Microscopic and biochemical study reveals the role of reactive oxygen species (ROS) scavenging enzymes in disease resistance of B. juncea and C. sativa. Furthermore, qRT-PCR analysis showed that expression of chitinases in both B. juncea and C. sativa was significantly induced after Alternaria brassicae infection. However, the fold change in chitinase gene expression was considerably higher in C. sativa compared to B. juncea, which further proves their role in C. sativa disease resistance to A. brassicae. This study provides comprehensive analysis on chitinase gene family in B. juncea and C. sativa and in future may serve as a potential candidate for improving disease resistance in B. juncea through transgenic approach.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
18 |
22
|
Na G, Aryal N, Fatihi A, Kang J, Lu C. Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:330. [PMID: 30568730 PMCID: PMC6297958 DOI: 10.1186/s13068-018-1334-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Camelina (Camelina sativa L.) is a promising oilseed crop that may provide sustainable feedstock for biofuel production. One of the major drawbacks of Camelina is its smaller seeds compared to other major oil crops such as canola, which limit oil yield and may also pose challenges in successful seedling establishment, especially in dryland cultivation. Previous studies indicate that seed development may be under metabolic control. In oilseeds, starch only accumulates temporarily during seed development but is almost absent in mature seeds. In this study, we explored the effect of altering seed carbohydrate metabolism on Camelina seed size through down-regulating ADP-glucose pyrophosphorylase (AGPase), a major enzyme in starch biosynthesis. RESULTS An RNAi construct comprising sequences of the Camelina small subunit of an AGPase (CsAPS) was expressed in Camelina cultivar Suneson under a seed-specific promoter. The RNAi suppression reduced AGPase activities which concurred with moderately decreased starch accumulation during seed development. Transcripts of genes examined that are involved in storage products were not affected, but contents of sugars and water were increased in developing seeds. The transgenic seeds were larger than wild-type plants due to increased cell sizes in seed coat and embryos, and mature seeds contained similar oil but more protein contents. The larger seeds showed advantages on seedling emergence from deep soils. CONCLUSIONS Changing starch and sugar metabolism during seed development may increase the size and mass of seeds without affecting their final oil content in Camelina. Increased seed size may improve seedling establishment in the field and increase seed yield.
Collapse
|
research-article |
7 |
17 |
23
|
Amy C, Noël G, Hatt S, Uyttenbroeck R, Van de Meutter F, Genoud D, Francis F. Flower Strips in Wheat Intercropping System: Effect on Pollinator Abundance and Diversity in Belgium. INSECTS 2018; 9:E114. [PMID: 30181444 PMCID: PMC6164983 DOI: 10.3390/insects9030114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/11/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
Abstract
The decline of pollinators in agricultural areas has been observed for some decades, this being partly due to landscape simplification in intensive agrosystems. Diversifying agricultural landscapes by sowing flower strips within fields could reduce these adverse effects on biodiversity. In this context, the study presented here aimed at assessing and comparing the abundance and diversity of bees (Hymenoptera: Anthophila) and hoverflies (Diptera: Syrphidae) found and visiting flowers in three types of flower strips in Belgium: (i) a mixture of 11 wild flowers, (ii) a monofloral strip of Dimorphoteca pluvialis (Asteraceae) and (iii) a monofloral strip of Camelina sativa (Brassicaceae), where the last two are considered to be intercrops since they are valuable on the market, all sown within a field of winter wheat (Triticum aestivum L.). Pollinators were captured with pan traps and by netting in standardised transects from May to July 2017. One-thousand one-hundred and eighty-four individuals belonging to 43 bee species and 18 hoverfly species were collected. Significant differences in hoverfly diversity were found between the different flower strips. The multifloral treatment supported a greater diversity of syrphid species. Various pollinator species visited the different flowers composing the mixture and also D. pluvialis. The pollinator community proved to be predominantly generalist, with the exception of an oligolectic species in Belgium, Andrena nitidiuscula. Moreover, the three tested flower strips were effective in attracting hoverflies, among them natural enemies of insect pests. This study opens new perspectives in the design of intercropping systems with flower strips towards the design of sustainable agro-ecosystems. Improving economic profitability of sowing flower strips could encourage farmers to diversify their agricultural systems and foster conservation biology strategies.
Collapse
|
research-article |
7 |
16 |
24
|
Pollard M, Delamarter D, Martin TM, Shachar-Hill Y. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates. PHYTOCHEMISTRY 2015; 118:192-203. [PMID: 26265565 DOI: 10.1016/j.phytochem.2015.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 05/20/2023]
Abstract
Studies on the metabolism of lipids in seeds frequently use radiolabeled acetate and glycerol supplied to excised developing seeds to track the biosynthesis of acyl and lipid head groups, respectively. Such experiments are generally restricted to shorter time periods and the results may not quantitatively reflect in planta rates. These limitations can be removed by using cultured embryos, provided they mimic growth and lipid deposition observed for embryos in planta. Mid-maturation embryos from Camelina sativa were cultured in vitro to assess the use of sufficient acetate or glycerol concentrations and labeling periods for stable isotope labeling and mass spectrometric detection. Maximum incorporation of exogenous acetate into fatty acids occurred at 1mM and above. This provides about 5% of the total carbon flux entering fatty acids, enough for (13)C isotopomer analysis while maintaining normal biosynthetic rates for over 24h. Labeling analysis indicates that acetate reports lipid metabolism uniformly across the embryo. At higher acetate concentrations with longer incubations, the rate of fatty acid synthesis is reduced and the composition of newly synthesized fatty acids changes. While the mole fractions of oleate that undergo Δ12-desaturation or elongation are independent of biosynthetic flux, Δ15-desaturation shows a bimodal dependence. These observations are consistent with changes occurring in planta over seed development. Incorporation rates of the glyceryl moiety into lipids saturates at about 0.5mM exogenous glycerol. At saturation, the exogenous glycerol almost completely replaces the endogenous supply of glycerol-3-phosphate without affecting net lipid accumulation or fatty acid composition. It is concluded that acetate and glycerol labeling of cultured C. sativa embryos can provide an accurate representation of lipid metabolism in embryos in vivo, and that in Camelina embryos glycerol-3-phosphate levels do not co-limit triacylglycerol synthesis.
Collapse
|
|
10 |
16 |
25
|
Postprandial incorporation of EPA and DHA from transgenic Camelina sativa oil into blood lipids is equivalent to that from fish oil in healthy humans. Br J Nutr 2019; 121:1235-1246. [PMID: 30975228 DOI: 10.1017/s0007114519000825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18-30 years or 50-65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
16 |