Premasekharan G, Gilbert E, Okimoto RA, Hamirani A, Lindquist KJ, Ngo VT, Roy R, Hough J, Edwards M, Paz R, Foye A, Sood R, Copren KA, Gubens M, Small EJ, Bivona TG, Collisson EA, Friedlander TW, Paris PL. An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer.
Cancer Lett 2016;
380:144-52. [PMID:
27343980 DOI:
10.1016/j.canlet.2016.06.017]
[Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/29/2022]
Abstract
Improvements in technologies to yield purer circulating tumor cells (CTCs) will enable a broader range of clinical applications. We have previously demonstrated the use of a commercially available cell-adhesion matrix (CAM) assay to capture invasive CTCs (iCTCs). To improve the purity of the isolated iCTCs, here we used fluorescence-activated cell sorting (FACS) in combination with the CAM assay (CAM + FACS). Our results showed an increase of median purity from the CAM assay to CAM + FACS for the spiked-in cell lines and patient samples analyzed from three different metastatic cancer types: castration resistant prostate cancer (mCRPC), non-small cell lung cancer (mNSCLC) and pancreatic ductal adenocarcinoma cancer (mPDAC). Copy number profiles for spiked-in mCRPC cell line and mCRPC patient iCTCs were similar to expected mCRPC profiles and a matched biopsy. A somatic epidermal growth factor receptor (EGFR) mutation specific to mNSCLC was observed in the iCTCs recovered from EGFR(+) mNSCLC cell lines and patient samples. Next-generation sequencing (NGS) of spiked-in pancreatic cancer cell line and mPDAC patient iCTCs showed mPDAC common mutations. CAM + FACS iCTC enrichment enables multiple downstream genomic characterizations across different tumor types.
Collapse