You K, Xie L, Li J, Liu Q, Zhuang L, Chen W. Versatile platforms of mussel-inspired agarose scaffold for
cell cultured meat.
J Adv Res 2025:S2090-1232(25)00043-8. [PMID:
39826611 DOI:
10.1016/j.jare.2025.01.024]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION
Biomaterial scaffolds are critical for cell cultured meat production. polysaccharide scaffolds lack essential animal cell adhesion receptors, leading to significant challenges in cell proliferation and myogenic differentiation. Thus, enhancing cell adhesion and growth on polysaccharide scaffolds is strongly required to supply the gaps in cell-cultured meat production.
OBJECTIVES
This study aims to develop a multifunctional cell-responsive hydrogel scaffold for the in vitro production of myofibers and structured cell cultured meat through a "cell adhesion-proliferation-differentiation" strategy.
METHODS
A polydopamine coating was applied to agarose hydrogel scaffolds using a dipping technique. The capability of scaffolds for myofiber preparation was assessed by evaluating cell adhesion, proliferation, and myogenic differentiation. Utilizing isolated porcine skeletal muscle satellite cells (PSMSCs), the feasibility of structured cell cultured pork tissue supported by agarose hydrogel film scaffolds was further investigated through three-dimensional imaging and scanning electron microscopy analysis. The physicochemical properties of the structured cell cultured pork tissue were evaluated through staining and texture analysis.
RESULTS
The incorporation of a polydopamine coating facilitated a remarkable 100 % cell adhesion rate on agarose hydrogel scaffolds, which also demonstrated reusability. The agarose hydrogel scaffolds retained adequate mechanical properties, enabling the adhered cells to proliferate effectively and differentiate into myofiber. Moreover, isolated PSMSCs maintained growth potential on the agarose hydrogel scaffolds, thereby imparting the scaffolds with the ability to generate substantial quantities of multinucleated myofibers. Furthermore, we established a structured cell culture pork meat model, characterized by high-density myofibers and agarose hydrogel film scaffolds, which exhibited the texture and color typical of real pork.
CONCLUSION
The innovative agarose/polydopamine scaffold functions as a multifunctional platform for cell culture, offering novel avenues for the diversification and scalable production of cultured meat, and promising significant reductions in production costs for cell cultured meat.
Collapse