1
|
Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017; 62:29-41. [PMID: 28851666 DOI: 10.1016/j.actbio.2017.08.033] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. STATEMENT OF SIGNIFICANCE Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes.
Collapse
|
Review |
8 |
179 |
2
|
Abstract
Programmable hydrogels are defined as hydrogels that are able to change their properties and functions periodically, reversibly and/or sequentially on demand. They are different from those responsive hydrogels whose changes are passive or cannot be stopped or reversed once started and vice versa. The purpose of this review is to summarize major progress in developing programmable hydrogels from the viewpoints of principles, functions and biomedical applications. The principles are first introduced in three categories including biological, chemical and physical stimulation. With the stimulation, programmable hydrogels can undergo functional changes in dimension, mechanical support, cell attachment and molecular sequestration, which are introduced in the middle of this review. The last section is focused on the introduction and discussion of four biomedical applications including mechanistic studies in mechanobiology, tissue engineering, cell separation and protein delivery.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
57 |
3
|
Sarno B, Heineck D, Heller MJ, Ibsen SD. Dielectrophoresis: Developments and applications from 2010 to 2020. Electrophoresis 2021; 42:539-564. [PMID: 33191521 PMCID: PMC7986072 DOI: 10.1002/elps.202000156] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
The 20th century has seen tremendous innovation of dielectrophoresis (DEP) technologies, with applications being developed in areas ranging from industrial processing to micro- and nanoscale biotechnology. From 2010 to present day, there have been 981 publications about DEP. Of over 2600 DEP patents held by the United States Patent and Trademark Office, 106 were filed in 2019 alone. This review focuses on DEP-based technologies and application developments between 2010 and 2020, with an aim to highlight the progress and to identify potential areas for future research. A major trend over the last 10 years has been the use of DEP techniques for biological and clinical applications. It has been used in various forms on a diverse array of biologically derived molecules and particles to manipulate and study them including proteins, exosomes, bacteria, yeast, stem cells, cancer cells, and blood cells. DEP has also been used to manipulate nano- and micron-sized particles in order to fabricate different structures. The next 10 years are likely to see the increase in DEP-related patent applications begin to result in a greater level of technology commercialization. Also during this time, innovations in DEP technology will likely be leveraged to continue the existing trend to further biological and medical-focused applications as well as applications in microfabrication. As a tool leveraged by engineering and imaginative scientific design, DEP offers unique capabilities to manipulate small particles in precise ways that can help solve problems and enable scientific inquiry that cannot be addressed using conventional methods.
Collapse
|
Review |
4 |
46 |
4
|
Nagase K, Sakurada Y, Onizuka S, Iwata T, Yamato M, Takeda N, Okano T. Thermoresponsive polymer-modified microfibers for cell separations. Acta Biomater 2017; 53:81-92. [PMID: 28219809 DOI: 10.1016/j.actbio.2017.02.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
Thermoresponsive polymer-modified microfibers were prepared through electrospinning of poly(4-vinylbenzyl chloride) (PVBC) and subsequent surface-initiated atom transfer radical polymerization for grafting poly(N-isopropylacrylamide) (PIPAAm). Electrospinning conditions were optimized to produce large-diameter (20μm) PVBC microfibers. The amount of PIPAAm grafted on the microfibers was controlled via the IPAAm monomer concentration. The microfibers exhibited thermally controlled cell separation by selective adhesion of normal human dermal fibroblasts in a mixed cell suspension that also contained human umbilical vein endothelial cells. In addition, adipose-derived stem cells (ADSCs) exhibited thermally modulated cell adhesion and detachment, while adhesion of other ADSC-related cells was low. Thus, ADSCs could be separated from a mixture of adipose tissue-derived cells simply by changing the temperature. Overall, the PIPAAm-modified microfibers are potentially applicable as temperature-modulated cell separation materials. STATEMENT OF SIGNIFICANCE Thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) polymer-modified poly(4-vinylbenzyl chloride) (PVBC) microfibers were prepared via electrospinning of PVBC, followed by surface-initiated ATRP. They formed effective thermally-modulated cell separation materials with large surface areas. Cells adhered and extended along the modified microfibers; this was not observed on previously reported PIPAAm-modified flat substrates. The cellular adhesion enabled separation of fibroblast cells, as well as that of adipose-derived mesenchymal stem cells, from mixtures of similar cells. Thus, the temperature-controlled thermoresponsive microfibers would be potentially useful as cell separation materials.
Collapse
|
|
8 |
40 |
5
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
|
Review |
9 |
40 |
6
|
Li C, Zhao M, Ma X, Wen Z, Ying P, Peng M, Ning X, Xia R, Wu H, Li J. The HD-Zip transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5189-5203. [PMID: 31173099 PMCID: PMC6793447 DOI: 10.1093/jxb/erz276] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/30/2019] [Indexed: 05/05/2023]
Abstract
Cellulases play important roles in the shedding of plant organs; however, little is yet known about the functions of cellulase genes during the process of organ abscission. Abnormal fruitlet abscission is a serious problem in the production of litchi (Litchi chinensis), an economically important fruit widely grown in South Asia. In this study, two abscission-accelerating treatments (carbohydrate stress and application of ethephon) were evaluated in litchi fruitlets. Cell wall degradation and cell separation were clearly observed in the abscission zones of treated fruitlets, consistent with enhanced cellulase activities and reduced cellulose contents. The expression of two cellulase genes (LcCEL2 and LcCEL8) was strongly associated with abscission. Floral organs of transgenic Arabidopsis overexpressing LcCEL2 or LcCEL8 showed remarkably precocious abscission. Electrophoretic mobility shift assays and transient expression experiments demonstrated that a novel homeodomain-leucine zipper transcription factor, LcHB2, could directly bind to and activate HD-binding cis-elements in the LcCEL2 and LcCEL8 promoters. Our results provide new information regarding the transcriptional regulation of the cellulase genes responsible for cell wall degradation and cell separation during plant organ shedding, and raise the possibility of future manipulation of litchi fruitlet abscission by modulation of the activities of these two cellulases.
Collapse
|
research-article |
6 |
39 |
7
|
Verdon TJ, Mitchell RJ, Chen W, Xiao K, van Oorschot RAH. FACS separation of non-compromised forensically relevant biological mixtures. Forensic Sci Int Genet 2014; 14:194-200. [PMID: 25450793 DOI: 10.1016/j.fsigen.2014.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/23/2014] [Indexed: 11/28/2022]
Abstract
Although focusing attention on the statistical analysis of complex mixture profiles is important, the forensic science community will also benefit from directing research to improving the reduction of the incidence of mixtures before DNA extraction. This preliminary study analysed the use of fluorescence assisted cell sorting (FACS) for separation of cellular mixtures before DNA extraction, specifically mixtures of relatively fresh blood and saliva from two donors, prepared in 14 different mixture ratios. Improvements in the number of detectable alleles from the targeted cell type and overall profile quality were seen when compared to the results from unseparated samples. STRmix calculations revealed increases in likelihood ratios after separation, demonstrating the potential for higher probative values to be obtained from forensically relevant mixtures after subjecting them to FACS than from unsorted samples.
Collapse
|
Journal Article |
11 |
38 |
8
|
Cushing K, Undvall E, Ceder Y, Lilja H, Laurell T. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis. Anal Chim Acta 2017; 1000:256-264. [PMID: 29289318 DOI: 10.1016/j.aca.2017.11.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
Cancer cells display acoustic properties enabling acoustophoretic separation from white blood cells (WBCs) with 2-3 log suppression of the WBC background. However, a subset of WBCs has overlapping acoustic properties with cancer cells, which is why label-free acoustophoretic cancer cell isolation needs additional purification prior to analysis. This paper reports for the first time a proof of concept for continuous flow acoustophoretic negative selection of WBCs from cancer cells using negative acoustic contrast elastomeric particles (EPs) activated with CD45-antibodies that specifically bind to WBCs. The EP/WBC complexes align at the acoustic pressure anti-nodes along the channel walls while unbound cancer cells focus to the pressure node in the channel center, enabling continuous flow based depletion of WBC background in a cancer cell product. The method does not provide a single process solution for the CTC separation challenge, but provides an elegant part to a multi-step process by further reducing the WBC background in cancer cell separation products derived from an initial step of label-free acoustophoresis. We report the recorded performance of the negative selection immuno-acoustophoretic WBC depletion and cancer cell recovery. To eliminate the negative impact of the separation due to the known problems of aggregation of negative acoustic contrast particles along the sidewalls of the acoustophoresis channel and to enable continuous separation of EP/WBC complexes from cancer cells, a new acoustic actuation method has been implemented where the ultrasound frequency is scanned (1.991MHz ± 100 kHz, scan rate 200 kHz ms-1). Using this frequency scanning strategy EP/WBC complexes were acoustophoretically separated from mixtures of WBCs spiked with breast and prostate cancer cells (DU145 and MCF-7). An 86-fold (MCF-7) and 52-fold (DU145) reduction of WBCs in the cancer cell fractions were recorded with separation efficiencies of 98.6% (MCF-7) and 99.7% (DU145) and cancer cell recoveries of 89.8% (MCF-7) and 85.0% (DU145).
Collapse
|
Journal Article |
8 |
38 |
9
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
|
Review |
5 |
35 |
10
|
Zhu Z, Wu D, Li S, Han Y, Xiang N, Wang C, Ni Z. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation. Anal Chim Acta 2021; 1143:306-314. [PMID: 33384126 DOI: 10.1016/j.aca.2020.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022]
Abstract
A polymer-film inertial microfluidic jigsaw (PIMJ) sorter with trapezoidal spiral channels using the jigsaw puzzle method was proposed to realize precise and high-throughput rare cell separation. The PIMJ sorter was fabricated by assembling laser-patterned polymer-film layers of different thicknesses. After illustrating the conceptual design and fabrication process, the effects of the cross-sectional dimension, particle size, and operational flow rate on particle focusing were systematically explored under a broad flow rate range. Then, the separation performances of the PIMJ sorter were characterized using the binary particle mixture and the blood samples spiked with four types of tumor cells. The results indicated that the complete separation of the binary particles with a minimum size difference of 2 μm was successfully realized at a high throughput up to 3000 μL/min. A high recovery ratio of 90.57%-94.14% and a high purity of 48.67%-79.05% were achieved for the separation of rare tumor cells from white blood cells (WBCs). Finally, the PIMJ sorter was successfully employed for separating rare circulating tumor cells (CTCs) from the metastatic breast and lung cancer patients with a capture ratio of 7-226 CTCs per 5 mL sample. The results proved the high sensitivity and high reliability of the PIMJ sorter. The PIMJ sorter is expected to be a potential device for precise CTC separation towards the clinical applications.
Collapse
|
|
4 |
32 |
11
|
Lin R, Li Y, MacDonald T, Wu H, Provenzale J, Peng X, Huang J, Wang L, Wang AY, Yang J, Mao H. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 2017; 150:261-270. [PMID: 28029547 PMCID: PMC5253252 DOI: 10.1016/j.colsurfb.2016.10.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/29/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023]
Abstract
Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×105 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads®).
Collapse
|
research-article |
8 |
29 |
12
|
Song S, Choi S. Design rules for size-based cell sorting and sheathless cell focusing by hydrophoresis. J Chromatogr A 2013; 1302:191-6. [PMID: 23838306 DOI: 10.1016/j.chroma.2013.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
We describe the effects of geometric and operational parameters on the performances of hydrophoresis devices for optimal size-based cell sorting and sheathless cell focusing. Hydrophoresis has been recently demonstrated to precisely control cells in a continuous flow with advantages of sheathless, high resolution, and easy parallelization. To date, key parameters for optimal design and operation of hydrophoresis systems have yet to be fully studied. In this study we have investigated geometric parameters such as channel width and oblique angle of slanted grooves, and an operational parameter, flow rate that can potentially influence the device performances. The channel width is found to be the most significant geometric factor that affects the device performances, while the oblique angle of slanted grooves has no significant influence. Size-based separation of cells having size diversity (≈11% in a coefficient of variation (CV)), as well as sheathless cell focusing, was performed with optimal designs, demonstrating the potential use of hydrophoresis as a microfluidic component to precisely control cells for integrated cell sorting and analysis systems.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
13
|
Nagase K, Inanaga D, Ichikawa D, Mizutani Akimoto A, Hattori Y, Kanazawa H. Temperature-modulated cell-separation column using temperature-responsive cationic copolymer hydrogel-modified silica beads. Colloids Surf B Biointerfaces 2019; 178:253-262. [PMID: 30875584 DOI: 10.1016/j.colsurfb.2019.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Abstract
There is strong demand for cell separation methods that do not decrease cell activity or modify cell surfaces. Here, new temperature-modulated cell-separation columns not requiring cell-surface premodification are described. The columns were packed with temperature-responsive cationic polymer hydrogel-modified silica beads. Poly(N-isopropylacrylamide-co-n-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) hydrogels with various cationic moieties were attached to silica-bead surfaces by radical polymerization using N,N'-methylenebisacrylamide as a crosslinking agent. The beads were packed into solid-phase extraction columns, and temperature-dependent cell elution from the columns was found using HL-60 and Jurkat cells. The retention HL-60 and Jurkat cells in columns containing cationic beads at 37 °C was 95.3% to 99.6% and 95.0% to 98.8%, respectively. By contrast, beads without cationic properties exhibited low cell retention (20.6% for HL-60 and 32.5% for Jurkat cells). The cells were mainly retained through both electrostatic and hydrophobic interactions. The retained HL-60 (4.9%) and Jurkat cells (40%) were eluted at 4 °C from the column with a low composition of cationic monomer (DMAPAAm, 1 mol% in copolymer), because the temperature-responsive hydrogels on the beads became hydrophilic, decreasing the hydrophobic interactions between the cells and the beads. A higher number of Jurkat cells than HL-60 cells were eluted because of differences in their electrostatic properties (Jurkat cells: -2.53 mV; HL-60 cells: -20.7 mV). The results indicated that cell retention by the hydrogel-coated beads packed in a solid phase extraction column could be modulated simply by changing the temperature.
Collapse
|
Journal Article |
6 |
25 |
14
|
Douglas TA, Cemazar J, Balani N, Sweeney DC, Schmelz EM, Davalos RV. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Electrophoresis 2017; 38:1507-1514. [PMID: 28342274 DOI: 10.1002/elps.201600530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 02/01/2023]
Abstract
A common problem with cancer treatment is the development of treatment resistance and tumor recurrence that result from treatments that kill most tumor cells yet leave behind aggressive cells to repopulate. Presented here is a microfluidic device that can be used to isolate tumor subpopulations to optimize treatment selection. Dielectrophoresis (DEP) is a phenomenon where particles are polarized by an electric field and move along the electric field gradient. Different cell subpopulations have different DEP responses depending on their bioelectrical phenotype, which, we hypothesize, correlate with aggressiveness. We have designed a microfluidic device in which a region containing posts locally distorts the electric field created by an AC voltage and forces cells toward the posts through DEP. This force is balanced with a simultaneous drag force from fluid motion that pulls cells away from the posts. We have shown that by adjusting the drag force, cells with aggressive phenotypes are influenced more by the DEP force and trap on posts while others flow through the chip unaffected. Utilizing single-cell trapping via cell-sized posts coupled with a drag-DEP force balance, we show that separation of similar cell subpopulations may be achieved, a result that was previously impossible with DEP alone. Separated subpopulations maintain high viability downstream, and remain in a native state, without fluorescent labeling. These cells can then be cultured to help select a therapy that kills aggressive subpopulations equally or better than the bulk of the tumor, mitigating resistance and recurrence.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
23 |
15
|
Wadajkar AS, Santimano S, Tang L, Nguyen KT. Magnetic-based multi-layer microparticles for endothelial progenitor cell isolation, enrichment, and detachment. Biomaterials 2013; 35:654-63. [PMID: 24144902 DOI: 10.1016/j.biomaterials.2013.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/02/2013] [Indexed: 02/08/2023]
Abstract
Although endothelial progenitor cells (EPCs) are useful in many applications including cell-based therapies, their use is still limited due to issues associated with cell culture techniques like a low isolation efficiency, use of harmful proteolytic enzymes in cell cultures, and difficulty in ex vivo expansion. Here, we report a tool to simultaneously isolate, enrich, and detach EPCs without the use of harmful chemicals. In particular, we developed magnetic-based multi-layer microparticles (MLMPs) that (1) magnetically isolate EPCs via anti-CD34 antibodies to avoid the use of Ficoll and harsh shear forces; (2) provide a 3D surface for cell attachment and growth; (3) produce sequential releases of growth factors (GFs) to enrich ex vivo expansion of cells; and (4) detach cells without using trypsin. MLMPs were successful in isolating EPCs from a cell suspension and provided a sequential release of GFs for EPC proliferation and differentiation. The cell enrichment profiles indicated steady cell growth on MLMPs in comparison to commercial Cytodex3 microbeads. Further, the cells were detached from MLMPs by lowering the temperature below 32 °C. Results indicate that the MLMPs have potential to be an effective tool towards efficient cell isolation, fast expansion, and non-chemical detachment.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
19 |
16
|
Greber MJ, David CN, Holstein TW. A quantitative method for separation of livingHydra cells. ACTA ACUST UNITED AC 1992; 201:296-300. [PMID: 28305833 DOI: 10.1007/bf00592110] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1992] [Accepted: 03/19/1992] [Indexed: 11/28/2022]
Abstract
We describe a rapid method for the isolation of large numbers of livingHydra cells of defined cell type in an isotonic cell medium (Gierer et al. 1972). Intact animals are enzymatically dissociated into a single cell suspension and the various cell types separated in less than one hour by counterflow centrifugation elutriation. Cell loss is minimal. RNA isolated from various fractions can be probed with cell type specific cDNA-clones.
Collapse
|
Journal Article |
33 |
18 |
17
|
Xavier M, Oreffo ROC, Morgan H. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnol Adv 2016; 34:908-923. [PMID: 27236022 DOI: 10.1016/j.biotechadv.2016.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/22/2016] [Indexed: 01/03/2023]
Abstract
Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples.
Collapse
|
Review |
9 |
16 |
18
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
|
Review |
1 |
16 |
19
|
Zhang Y, Lyons V, Pappas D. Fundamentals of affinity cell separations. Electrophoresis 2017; 39:732-741. [PMID: 28960354 DOI: 10.1002/elps.201700311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022]
Abstract
Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture.
Collapse
|
Review |
8 |
15 |
20
|
Ventimilla D, Velázquez K, Ruiz-Ruiz S, Terol J, Pérez-Amador MA, Vives MC, Guerri J, Talon M, Tadeo FR. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC PLANT BIOLOGY 2021; 21:226. [PMID: 34020584 PMCID: PMC8139003 DOI: 10.1186/s12870-021-02994-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Abscission is an active, organized, and highly coordinated cell separation process enabling the detachment of aerial organs through the modification of cell-to-cell adhesion and breakdown of cell walls at specific sites on the plant body known as abscission zones. In Arabidopsis thaliana, abscission of floral organs and cauline leaves is regulated by the interaction of the hormonal peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), a pair of redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2), and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors. However, the functionality of this abscission signaling module has not yet been demonstrated in other plant species. RESULTS The expression of the pair of NbenIDA1 homeologs and the receptor NbenHAE.1 was supressed at the base of the corolla tube by the inoculation of two virus-induced gene silencing (VIGS) constructs in Nicotiana benthamiana. These gene suppression events arrested corolla abscission but did not produce any obvious effect on plant growth. VIGS plants retained a higher number of corollas attached to the flowers than control plants, an observation related to a greater corolla breakstrength. The arrest of corolla abscission was associated with the preservation of the parenchyma tissue at the base of the corolla tube that, in contrast, was virtually collapsed in normal corollas. In contrast, the inoculation of a viral vector construct that increased the expression of NbenIDA1A at the base of the corolla tube negatively affected the growth of the inoculated plants accelerating the timing of both corolla senescence and abscission. However, the heterologous ectopic overexpression of citrus CitIDA3 and Arabidopsis AtIDA in N. benthamiana did not alter the standard plant phenotype suggesting that the proteolytic processing machinery was unable to yield active peptides. CONCLUSION Here, we demonstrate that the pair of NbenIDA1 homeologs encoding small peptides of the IDA-like family and the receptor NbenHAE.1 control cellular breakdown at the base of the corolla tube awhere an adventitious AZ should be formed and, therefore, corolla abscission in N. benthamiana flowers. Altogether, our results provide the first evidence supporting the notion that the IDA-HAE/HSL2 signaling module is conserved in angiosperms.
Collapse
|
research-article |
4 |
15 |
21
|
Nagase K, Wakayama H, Matsuda J, Kojima N, Kanazawa H. Thermoresponsive mixed polymer brush to effectively control the adhesion and separation of stem cells by altering temperature. Mater Today Bio 2023; 20:100627. [PMID: 37122838 PMCID: PMC10130502 DOI: 10.1016/j.mtbio.2023.100627] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
During the last few decades, thermoresponsive materials for modulating cell adhesion have been investigated for the application of tissue engineering. In this study, we developed thermoresponsive mixed polymer brushes consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm). The mixed polymer brushes were prepared on a glass substrate via the reversible addition-fragmentation chain transfer polymerization of DMAPAAm and subsequent atom transfer radical polymerization of NIPAAm. The mixed polymer brushes grafted to glass exhibited increased cationic properties by increasing the grafted PDMAPAAm length. The shrinking and extension of PNIPAAm exposed and concealed PDMAPAAm, respectively, indicating that the surface cationic properties can be controlled by changing the temperature. At 37 °C, the prepared mixed polymer brushes enhanced cell adhesion through their electrostatic interactions with cells. They also exhibited various thermoresponsive adhesion and detachment properties using various types of cells, such as mesenchymal stem cells. Temperature-controlled cell adhesion and detachment behavior differed between cell types. Using the prepared mixed polymer brush, we separated MSCs from adipocytes and HeLa cells by simply changing the temperature. Thus, the thermoresponsive mixed polymer brushes may be used to separate mesenchymal stem cells from their differentiated or contaminant cells by altering the temperature.
Collapse
|
research-article |
2 |
14 |
22
|
Zhang WW, Zhao SQ, Zhang LC, Xing Y, Jia WS. Changes in the cell wall during fruit development and ripening in Fragaria vesca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:54-65. [PMID: 32526611 DOI: 10.1016/j.plaphy.2020.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Although fruit expansion during ripening has been extensively studied, the structural and metabolic mechanisms remain largely unknown. Here, we report the critical roles of cell separation and cell wall metabolism in the coordinated regulation of fruit expansion in Fragaria vesca. Anatomical observations indicated that a syndrome of cell separation occurred from the very earliest stage of fruit set. Cell separation led to an increase in apoplastic space, and the time course of this increase coincided with the period of fruit development and ripening. Moreover, massive cellulose disassembly occurred when cells were fully separated, which coincided with the expansion of cell and fruit volume. Consistent with the anatomical observations, both histochemistry and composition analysis indicated correlations between cell separation and the cell wall metabolism. These observations suggest that cell separation, cell elongation and cell wall disassembly occur simultaneously during fruit ripening in Fragaria vesca.
Collapse
|
|
5 |
14 |
23
|
Li D, Zielinski J, Kozubowski L, Xuan X. Continuous sheath-free separation of drug-treated human fungal pathogen Cryptococcus neoformans by morphology in biocompatible polymer solutions. Electrophoresis 2018; 39:2362-2369. [PMID: 29466605 PMCID: PMC6737929 DOI: 10.1002/elps.201700428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/13/2022]
Abstract
Cryptococcal meningitis caused by Cryptococcus neoformans is the leading cause of fungal central nervous system infections. Current antifungal treatments for cryptococcal infections are inadequate partly due to the occurrence of drug resistance. Recent studies indicate that the treatment of the azole drug fluconazole changes the morphology of C. neoformans to form enlarged "multimeras" that consist of three or more connected cells/buds. To analyze if these multimeric cells are a prerequisite for C. neoformans to acquire drug resistance, a tool capable of separating them from normal cells is critical. We extend our recently demonstrated sheath-free elasto-inertial particle separation technique to fractionate drug-treated C. neoformans cells by morphology in biocompatible polymer solutions. The separation performance is evaluated for both multimeric and normal cells in terms of three dimensionless metrics: efficiency, purity, and enrichment ratio. The effects of flow rate, polymer concentration, and microchannel height on cell separation are studied.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
13 |
24
|
Agarwal R, Sarkar A, Bhowmik A, Mukherjee D, Chakraborty S. A portable spinning disc for complete blood count (CBC). Biosens Bioelectron 2019; 150:111935. [PMID: 31818760 DOI: 10.1016/j.bios.2019.111935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/03/2023]
Abstract
Complete Blood Count (CBC) is a collection of the most commonly required clinical tests to assess the manifestations of pathological conditions in blood. The existing clinical methods for this test are prohibitively expensive for the underprivileged global population due to the requirements of sophisticated instrumentation and trained personnel. To overcome these, we propose a unique low cost device as a blood cell counting platform. The method exploits the difference in densities of cells for separation in transparent microfluidic channels and implements label-free imaging method for counting the separated cells within the microfluidic disc. The device is a simple spinning disc to estimate the parameters such as hematocrit, hemoglobin, red blood cell (RBC), white blood cell (WBC), and platelet counts with an accuracy > 95% as compared to an automated hematology analyzer. The major advantages of this device over state of the art include multiple sample testing within a single biodegradable disc, simple design and fabrication techniques, potential automation thereby making it portable and eliminating the need of trained personnel, and most significantly, eliminating any need for downstream processing of the separated blood. These results may turn out to be of immense consequence towards developing novel point-of-care hematological analyzers for resource-constrained settings.
Collapse
|
Journal Article |
6 |
13 |
25
|
Zhao J, Han Z, Xu C, Li L, Pei H, Song Y, Wang Z, Tang B. Separation and single-cell analysis for free gastric cancer cells in ascites and peritoneal lavages based on microfluidic chips. EBioMedicine 2023; 90:104522. [PMID: 36933411 PMCID: PMC10034419 DOI: 10.1016/j.ebiom.2023.104522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUNDS Detecting free cancer cells from ascites and peritoneal lavages is crucial for diagnosing gastric cancer (GC). However, traditional methods are limited for early-stage diagnosis due to their low sensitivity. METHODS A label-free, rapid, and high-throughput technique was developed for separating cancer cells from ascites and peritoneal lavages using an integrated microfluidic device, taking advantage of dean flow fractionation and deterministic lateral displacement. Afterward, separated cells were analyzed using a microfluidic single-cell trapping array chip (SCTA-chip). In situ immunofluorescence for EpCAM, YAP-1, HER-2, CD45 molecular expressions, and Wright-Giemsa staining were performed for cells in SCTA-chips. At last, YAP1 and HER-2 expression in tissues was analyzed by immunohistochemistry. FINDINGS Through integrated microfluidic device, cancer cells were successfully separated from simulated peritoneal lavages containing 1/10,000 cancer cells with recovery rate of 84.8% and purity of 72.4%. Afterward, cancer cells were isolated from 12 patients' ascites samples. Cytological examinations showed cancer cells were efficiently enriched with background cells excluded. Afterwards, separated cells from ascites were analyzed by SCTA-chips, and recognized as cancer cells through EpCAM+/CD45- expression and Wright-Giemsa staining. Interestingly, 8 out of 12 ascites samples showed HER-2+ cancer cells. At last, the results through a serial expression analysis showed that YAP1 and HER-2 have discordant expression during metastasis. INTERPRETATION Microfluidic Chips developed in our study could not only rapidly detect label-free free GC cells in ascites and peritoneal lavages with high-throughput, they could also analyze ascites cancer cells at the single-cell level, improving peritoneal metastasis diagnosis and investigation of therapeutic targets. FUNDING This research was supported by National Natural Science Foundation of China (22134004, U1908207, 91859111); Natural Science Foundation of Shandong Province of China (ZR2019JQ06); Taishan Scholars Program of Shandong Province tsqn (201909077); Local Science and Technology Development Fund Guided by the Central Government (YDZX20203700002568); Applied Basic Research Program of Liaoning Province (2022020284-JH2/1013).
Collapse
|
research-article |
2 |
13 |