1
|
Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y, Ma C, Karyala S, Halbleib D, Liu X, Medvedovic M, Puga A. Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1139-46. [PMID: 19654925 PMCID: PMC2717142 DOI: 10.1289/ehp.0800485] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 03/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. OBJECTIVES We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. METHODS The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. RESULTS We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. CONCLUSIONS The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
81 |
2
|
Ngollo M, Lebert A, Daures M, Judes G, Rifai K, Dubois L, Kemeny JL, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 2017; 17:261. [PMID: 28403887 PMCID: PMC5388998 DOI: 10.1186/s12885-017-3256-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND H3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression. METHODS We investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in biopsy samples from prostate cancer patients. H3K27me3 marks were assessed in 34 prostate tumors: 11 with Gleason score > 7 (GS > 7), 10 with Gleason score ≤ 7 (GS ≤ 7), and 13 morphologically normal prostate samples. RESULTS Here, H3K27me3 profiling identified an average of 386 enriched-genes on promoter regions in healthy control group versus 545 genes in GS ≤ 7 and 748 genes in GS > 7 group. We then ran a factorial discriminant analysis (FDA) and compared the enriched genes in prostate-tumor biopsies and normal biopsies using ANOVA to identify significantly differentially-enriched genes. The analysis identified ALG5, EXOSC8, CBX1, GRID2, GRIN3B, ING3, MYO1D, NPHP3-AS1, MSH6, FBXO11, SND1, SPATS2, TENM4 and TRA2A genes. These genes are possibly associated with prostate cancer. Notably, the H3K27me3 histone mark emerged as a novel regulatory mechanism in poor-prognosis prostate cancer. CONCLUSIONS Our findings point to epigenetic mark H3K27me3 as an important event in prostate carcinogenesis and progression. The results reported here provide new molecular insights into the pathogenesis of prostate cancer.
Collapse
|
Journal Article |
8 |
74 |
3
|
Guo L, Guo YY, Li BY, Peng WQ, Tang QQ. Histone demethylase KDM5A is transactivated by the transcription factor C/EBPβ and promotes preadipocyte differentiation by inhibiting Wnt/β-catenin signaling. J Biol Chem 2019; 294:9642-9654. [PMID: 31061100 DOI: 10.1074/jbc.ra119.008419] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
β-Catenin signaling is triggered by WNT proteins and is an important pathway that negatively regulates adipogenesis. However, the mechanisms controlling the expression of WNT proteins during adipogenesis remain incompletely understood. Lysine demethylase 5A (KDM5A) is a histone demethylase that removes trimethyl (me3) marks from lysine 4 of histone 3 (H3K4) and serves as a general transcriptional corepressor. Here, using the murine 3T3-L1 preadipocyte differentiation model and an array of biochemical approaches, including ChIP, immunoprecipitation, RT-qPCR, and immunoblotting assays, we show that Kdm5a is a target gene of CCAAT/enhancer-binding protein β (C/EBPβ), an important early transcription factor required for adipogenesis. We found that C/EBPβ binds to the Kdm5a gene promoter and transactivates its expression. We also found that siRNA-mediated KDM5A down-regulation inhibits 3T3-L1 preadipocyte differentiation. The KDM5A knockdown significantly up-regulates the negative regulator of adipogenesis Wnt6, having increased levels of the H3K4me3 mark on its promoter. We further observed that WNT6 knockdown significantly rescues adipogenesis inhibited by the KDM5A knockdown. Moreover, we noted that C/EBPβ negatively regulates Wnt6 expression by binding to the Wnt6 gene promoter and repressing Wnt6 transcription. Further experiments indicated that KDM5A interacts with C/EBPβ and that their interaction cooperatively inhibits Wnt6 transcription. Of note, C/EBPβ knockdown impaired the recruitment of KDM5A to the Wnt6 promoter, which had higher H3K4me3 levels. Our results suggest a mechanism involving C/EBPβ and KDM5A activities that down-regulates the Wnt/β-catenin pathway during 3T3-L1 preadipocyte differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
37 |
4
|
Finster S, Eggert E, Zoschke R, Weihe A, Schmitz-Linneweber C. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:849-60. [PMID: 24118403 DOI: 10.1111/tpj.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 05/04/2023]
Abstract
Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process.
Collapse
|
|
12 |
23 |
5
|
Mirouze N, Bidnenko E, Noirot P, Auger S. Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis. Microbiologyopen 2015; 4:423-35. [PMID: 25755103 PMCID: PMC4475385 DOI: 10.1002/mbo3.249] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 01/13/2023] Open
Abstract
Under nitrogen limitation conditions, Bacillus subtilis induces a sophisticated network of adaptation responses. More precisely, the B. subtilis TnrA regulator represses or activates directly or indirectly the expression of a hundred genes in response to nitrogen availability. The global TnrA regulon have already been identified among which some directly TnrA-regulated genes have been characterized. However, a genome-wide mapping of in vivo TnrA-binding sites was still needed to clearly define the set of genes directly regulated by TnrA. Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we now provide in vivo evidence that TnrA reproducibly binds to 42 regions on the chromosome. Further analysis with real-time in vivo transcriptional profiling, combined with results from previous reports, allowed us to define the TnrA primary regulon. We identified 35 promoter regions fulfilling three criteria necessary to be part of this primary regulon: (i) TnrA binding in ChIP-on-chip experiments and/or in previous in vitro studies; (ii) the presence of a TnrA box; (iii) TnrA-dependent expression regulation. In addition, the TnrA primary regulon delimitation allowed us to improve the TnrA box consensus. Finally, our results reveal new interconnections between the nitrogen regulatory network and other cellular processes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
6
|
Dhamija N, Choudhary D, Ladha JS, Pillai B, Mitra D. Tat predominantly associates with host promoter elements in HIV-1-infected T-cells - regulatory basis of transcriptional repression of c-Rel. FEBS J 2014; 282:595-610. [PMID: 25472883 DOI: 10.1111/febs.13168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
HIV-1 Tat is a multifunctional regulatory protein that, in addition to its primary function of transactivating viral transcription, also tends to modulate cellular gene expression, for which the molecular mechanism remains to be clarified. We have reported earlier nuclear factor kappa B (NFκB) enhancer binding activity of Tat and proposed this DNA binding activity as a possible molecular basis for Tat-mediated regulation of cellular gene expression in infected cells. In the present study, we analyzed the genome-wide occupancy of Tat protein on host cell chromatin in HIV-1-infected T-cells to investigate a potential role of Tat on cellular gene expression. The results obtained identify a spectrum of binding sites of Tat protein on the chromatin and reveal that Tat is also recruited on a number of cellular gene promoters in HIV-1-infected T-cells, indicating its possible involvement in the regulation of gene expression of such cellular genes. Tat was identified as a repressor of one such validated gene, c-Rel, because it downregulates the expression of c-Rel in both Tat expressing and HIV-1-infected T-cells. The results also show that Tat downregulates c-Rel promoter activity by interacting with specific NFκB sites on the c-Rel promoter, thus providing a molecular basis of Tat-mediated regulation of cellular gene expression. Thus, in the present study, we have not only identified recruitment sites of Tat on the chromatin in HIV-1-infected T-cells, but also report for the first time that c-Rel is downregulated in HIV-1-infected cells specifically by interaction of Tat with NFκB binding sites on the promoter.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
7
|
Lybæk H, de Bruijn D, den Engelsman-van Dijk AHA, Vanichkina D, Nepal C, Brendehaug A, Houge G. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts. Epigenetics 2013; 9:416-27. [PMID: 24351654 PMCID: PMC4053460 DOI: 10.4161/epi.27474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of “chromatin-CGH”) and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14–15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
14 |
8
|
Vicente-Muñoz S, Romero P, Magraner-Pardo L, Martinez-Jimenez CP, Tordera V, Pamblanco M. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex. FEBS Open Bio 2014; 4:996-1006. [PMID: 25473596 PMCID: PMC4248121 DOI: 10.1016/j.fob.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
We characterise Sas3p and Gcn5p active HAT complexes in WT and deleted TAP-strains. We confirm that Pdp3p interacts with NuA3, histones and chromatin regulators. Pdp3p MS-analysis reveals its phosphorylation, ubiquitination and methylation. Sas3p can substitute Gcn5p in acetylation of histone H3K14 but not of H3K9. Genome-wide profiling of Sas3p supports its involvement in transcriptional elongation. Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes. The Sas3-dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5-dependent complexes. Here, we report our analysis of Sas3p-interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p-interacting proteins. The PDP3 gene, was TAP-tagged and protein complex purification confirmed that Pdp3p co-purified with the NuA3 protein complex, histones, and several transcription-related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome-wide occupancy of Sas3p using ChIP-on-chip tiled microarrays showed that Sas3p was located preferentially within the 5′-half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post-translational modifications in Pdp3p, additional Pdp3p-co-purifying chromatin regulatory proteins involved in chromatin-modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex.
Collapse
Key Words
- ChIP-on-chip
- ChIP-on-chip, chromatin immunoprecipitation with genome-wide location arrays
- Chromatin
- HAT, histone acetyltransferase
- Histones
- NuA3, nucleosomal acetyltransferase of histone H3
- PTM, post-translational modification
- Pdp3
- RNAPII, RNA polymerase II
- SAGA, Spt-Ada-Gcn acetyltransferase
- TAP, tandem affinity purification
- TAP–MS strategy
- TSS, transcription start site
- WCE, whole cell extract
- WT, wild-type
- Yeast
- nt, nucleotide
Collapse
|
Journal Article |
11 |
13 |
9
|
ChIP-on-chip analysis of thyroid hormone-regulated genes and their physiological significance. Oncotarget 2017; 7:22448-59. [PMID: 26968954 PMCID: PMC5008372 DOI: 10.18632/oncotarget.7988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Triiodothyronine (T3) and its receptor (TR) modulate several physiological processes, including cell development, proliferation, differentiation and metabolism. The regulatory mechanism of T3/TR involves binding to the thyroid hormone response element (TRE) within the target gene promoter. However, the number of target genes directly regulated by TRα1 and the specific pathways of TR-regulated target genes remain largely unknown. Here, we expressed TRα1 in a HepG2 cell line and used chromatin immunoprecipitation coupled with microarray to determine the genes that are directly regulated by TRα1 and also involved in cell metabolism and proliferation. Our analysis identified E74-like factor 2 (ELF2), a transcription factor associated with tumor growth, as a direct target downregulated by T3/TR. Overexpression of ELF2 enhanced tumor cell proliferation, and conversely, its knockdown suppressed tumor growth. Additionally, ELF2 restored the proliferative ability of hepatoma cells inhibited by T3/TR. Our findings collectively support a potential role of T3/TR in tumor growth inhibition through regulation of ELF2.
Collapse
|
Journal Article |
8 |
11 |
10
|
Randazzo P, Aucouturier A, Delumeau O, Auger S. Revisiting the in vivo GlnR-binding sites at the genome scale in Bacillus subtilis. BMC Res Notes 2017; 10:422. [PMID: 28835263 PMCID: PMC5569456 DOI: 10.1186/s13104-017-2703-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/29/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In Bacillus subtilis, two major transcriptional factors, GlnR and TnrA, are involved in a sophisticated network of adaptive responses to nitrogen availability. GlnR was reported to repress the transcription of the glnRA, tnrA and ureABC operons under conditions of excess nitrogen. As GlnR and TnrA regulators share the same DNA binding motifs, a genome-wide mapping of in vivo GlnR-binding sites was still needed to clearly define the set of GlnR/TnrA motifs directly bound by GlnR. METHODS We used chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip) to identify the GlnR DNA-binding sites, in vivo, at the genome scale. RESULTS We provide evidence that GlnR binds reproducibly to 61 regions on the chromosome. Among those, 20 regions overlap the previously defined in vivo TnrA-binding sites. In combination with real-time in vivo transcriptional profiling using firefly luciferase, we identified the alsT gene as a new member of the GlnR regulon. Additionally, we characterized the GlnR secondary regulon, which is composed of promoter regions harboring a GlnR/TnrA box and bound by GlnR in vivo. However, the growth conditions revealing a GlnR-dependent regulation for this second category of genes are still unknown. CONCLUSIONS Our findings show an extended overlap between the GlnR and TnrA in vivo binding sites. This could allow efficient and fine tuning of gene expression in response to nitrogen availability. GlnR appears to be part of complex transcriptional regulatory networks, which involves interactions between different regulatory proteins.
Collapse
|
Journal Article |
8 |
11 |
11
|
Song Y, Dang C, Fu Y, Lian Y, Hottel J, Li X, McCaffrey T, Fu SW. Genome-wide analysis of BP1 transcriptional targets in breast cancer cell line Hs578T. Int J Biol Sci 2008; 5:1-12. [PMID: 19119308 PMCID: PMC2597730 DOI: 10.7150/ijbs.5.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 12/02/2008] [Indexed: 12/17/2022] Open
Abstract
Homeobox genes are known to be critically important in tumor development and progression. The BP1 (Beta Protein 1) gene, an isoform of DLX4, belongs to the Distal-less (DLX) subfamily of homeobox genes and encodes a homeodomain-containing transcription factor. Our studies have shown that the BP1 gene was overexpressed in 81% of primary breast cancer and its expression was closely correlated with the progression of breast cancer. However, the exact role of BP1 in breast has yet to be elucidated. Therefore, it is important to explore the potential transcriptional targets of BP1 via whole genome-scale screening. In this study, we used the chromatin immunoprecipitation on chip (ChIP-on-chip) and gene expression microarray assays to identify candidate target genes and gene networks, which are directly regulated by BP1 in ER negative (ER-) breast cancer cells. After rigorous bioinformatic and statistical analysis for both ChIP-on-chip and expression microarray gene lists, 18 overlapping genes were noted and verified. Those potential target genes are involved in a variety of tumorigenic pathways, which sheds light on the functional mechanisms of BP1 in breast cancer development and progression.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
8 |
12
|
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res 2017; 353:6-15. [PMID: 28238834 DOI: 10.1016/j.yexcr.2017.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
7 |
13
|
Liu C, Sun Q, Zhao L, Li Z, Peng Z, Zhang J. Heterologous Expression of the Transcription Factor EsNAC1 in Arabidopsis Enhances Abiotic Stress Resistance and Retards Growth by Regulating the Expression of Different Target Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1495. [PMID: 30374363 PMCID: PMC6196249 DOI: 10.3389/fpls.2018.01495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
Heterologous expression of a transcription factor (TF) gene in a related species is a useful method for crop breeding and the identification of gene function. The differences in phenotype and target gene expression between HE lines (with the heterologous expression of an ortholog) and OX lines (with an overexpressed native gene) must be understood. EsNAC1, encoding a NAC protein and the ortholog of RD26 in Arabidopsis, was cloned from Eutrema salsugineum and introduced into Arabidopsis. The heterologous expression of EsNAC1 retarded the vegetative growth of Arabidopsis, and the transgenic plants (HE lines) showed much greater resistance to salt and oxidative stress than the wild type, Col-0. The HE lines accumulated 2.8-fold (8-h light) of starch, 1.42-fold of Chlorophyll a and 1.31-fold of Chlorophyll b than Col-0 during the light period, with obvious differences compared to the RD26OX line. A genome-wide ChIP (chromatin immunoprecipitation analysis)-on-chip assay revealed that EsNAC1 targeted promoters of different genes compared to RD26. In HE lines, EsNAC1 could specifically upregulate the expression level of TF genes NAC DOMAIN CONTAINING PROTEIN 62 (ANAC062), INTEGRASE-TYPE DNA-BINDING PROTEIN (TINY2), and MYB HYPOCOTYL ELONGATION-RELATED (MYBH) to show more effective abiotic stress resistance than RD26OX lines. Moreover, DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1), TRYPTOPHAN BIOSYNTHESIS 2 (TRP2) or GALACTINOL SYNTHASE 2 (GOLS2), was also specifically regulated by EsNAC1 to retard the vegetative growth of HE lines, but not the brassinosteroid singling pathway in RD26OX lines. These differences in phenotypes and metabolism between the HE lines and the RD26OX line implied that the differential features could be produced from the diversity of target genes in the transgenic plants when the ortholog was introduced.
Collapse
|
research-article |
7 |
5 |
14
|
Srivastava S, Sowpati DT, Garapati HS, Puri D, Dhawan J, Mishra RK. A ChIP-on-chip tiling array approach detects functional histone-free regions associated with boundaries at vertebrate HOX genes. GENOMICS DATA 2015; 2:78-81. [PMID: 26484075 PMCID: PMC4536032 DOI: 10.1016/j.gdata.2014.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Hox genes impart segment identity to body structures along the anterior–posterior axis and are crucial for proper development. A unique feature of the Hox loci is the collinearity between the gene position within the cluster and its spatial expression pattern along the body axis. However, the mechanisms that regulate collinear patterns of Hox gene expression remain unclear, especially in higher vertebrates. We recently identified novel histone-free regions (HFRs) that can act as chromatin boundary elements demarcating successive murine Hox genes and help regulate their precise expression domains (Srivastava et al., 2013). In this report, we describe in detail the ChIP-chip analysis strategy associated with the identification of these HFRs. We also provide the Perl scripts for HFR extraction and quality control analysis for this custom designed tiling array dataset.
Collapse
|
|
10 |
2 |
15
|
García-Sánchez A, Marqués-García F. Chromatin Immunoprecipitation: Application to the Study of Asthma. Methods Mol Biol 2017; 1434:121-37. [PMID: 27300535 DOI: 10.1007/978-1-4939-3652-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromatin immunoprecipitation (ChIP) is a technique for studying interactions between proteins and DNA in living cells. A protein of interest is selectively immunoprecipitated from a chromatin preparation, to analyze the DNA sequences involved. ChIP can be used to determine whether a transcription factor interacts with a candidate target gene and to map the localization of histones with posttranslational modifications on the genome.The protein-DNA interactions are captured in vivo by chemical cross-linking. Cell lysis, DNA fragmentation, and immunoaffinity purification of the protein of interest allow to co-purify DNA fragments that are associated with that protein. The enriched protein-DNA population is ready to be quantified by PCR to detect precipitated DNA fragments. The combination of ChIP with DNA microarray analysis (ChIP-on-chip) and high-throughput sequencing (ChIP-seq) has enabled to obtain profiles of transcription factor occupancy sites and histone modifications throughout the genome.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
2 |
16
|
Analysis of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray ( ChIP-on-chip). Methods Mol Biol 2017. [PMID: 29027163 DOI: 10.1007/978-1-4939-7380-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.
Collapse
|
|
8 |
0 |