1
|
Müller S, Ackloo S, Arrowsmith CH, Bauser M, Baryza JL, Blagg J, Böttcher J, Bountra C, Brown PJ, Bunnage ME, Carter AJ, Damerell D, Dötsch V, Drewry DH, Edwards AM, Edwards J, Elkins JM, Fischer C, Frye SV, Gollner A, Grimshaw CE, IJzerman A, Hanke T, Hartung IV, Hitchcock S, Howe T, Hughes TV, Laufer S, Li VMJ, Liras S, Marsden BD, Matsui H, Mathias J, O'Hagan RC, Owen DR, Pande V, Rauh D, Rosenberg SH, Roth BL, Schneider NS, Scholten C, Singh Saikatendu K, Simeonov A, Takizawa M, Tse C, Thompson PR, Treiber DK, Viana AYI, Wells CI, Willson TM, Zuercher WJ, Knapp S, Mueller-Fahrnow A. Donated chemical probes for open science. eLife 2018; 7:e34311. [PMID: 29676732 PMCID: PMC5910019 DOI: 10.7554/elife.34311] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.
Collapse
|
discussion |
7 |
67 |
2
|
de Bus I, Witkamp R, Zuilhof H, Albada B, Balvers M. The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins Other Lipid Mediat 2019; 144:106351. [PMID: 31260750 DOI: 10.1016/j.prostaglandins.2019.106351] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Notwithstanding the ongoing debate on their full potential in health and disease, there is general consensus that n-3 PUFAs play important physiological roles. Increasing dietary n-3 PUFA intake results in increased DHA and EPA content in cell membranes as well as an increase in n-3 derived oxylipin and -endocannabinoid concentrations, like fatty acid amides and glycerol-esters. These shifts are believed to (partly) explain the pharmacological and anti-inflammatory effects of n-3 PUFAs. Recent studies discovered that n-3 PUFA-derived endocannabinoids can be further metabolized by the oxidative enzymes CYP-450, LOX and COX, similar to the n-6 derived endocannabinoids. Interestingly, these oxidized n-3 PUFA derived endocannabinoids of eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) have higher anti-inflammatory and anti-proliferative potential than their precursors. In this review, an overview of recently discovered n-3 PUFA derived endocannabinoids and their metabolites is provided. In addition, the use of chemical probes will be presented as a promising technique to study the n-3 PUFA and n-3 PUFA metabolism within the field of lipid biochemistry.
Collapse
|
Review |
6 |
66 |
3
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
|
Review |
9 |
47 |
4
|
Petretich M, Demont EH, Grandi P. Domain-selective targeting of BET proteins in cancer and immunological diseases. Curr Opin Chem Biol 2020; 57:184-193. [PMID: 32741705 DOI: 10.1016/j.cbpa.2020.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Cancer and inflammation are strongly interconnected processes. Chronic inflammatory pathologies can be at the heart of tumor development; similarly, tumor-elicited inflammation is a consequence of many cancers. The mechanistic interdependence between cancer and inflammatory pathologies points toward common protein effectors which represent potential shared targets for pharmacological intervention. Epigenetic mechanisms often drive resistance to cancer therapy and immunomodulatory strategies. The bromodomain and extraterminal domain (BET) proteins are epigenetic adapters which play a major role in controlling cell proliferation and the production of inflammatory mediators. A plethora of small molecules aimed at inhibiting BET protein function to treat cancer and inflammatory diseases have populated academic and industry efforts in the last 10 years. In this review, we will discuss recent pharmacological approaches aimed at targeting a single or a subset of the eight bromodomains within the BET family which have the potential to tease apart clinical efficacy and safety signals of BET inhibitors.
Collapse
|
Review |
5 |
39 |
5
|
Julio AR, Backus KM. New approaches to target RNA binding proteins. Curr Opin Chem Biol 2021; 62:13-23. [PMID: 33535093 PMCID: PMC8823266 DOI: 10.1016/j.cbpa.2020.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
RNA binding proteins (RBPs) are a large and diverse class of proteins that regulate all aspects of RNA biology. As RBP dysregulation has been implicated in a number of human disorders, including cancers and neurodegenerative disease, small molecule chemical probes that target individual RBPs represent useful tools for deciphering RBP function and guiding the production of new therapeutics. While RBPs are often thought of as tough-to-drug, the discovery of a number of small molecules that target RBPs has spurred considerable recent interest in new strategies for RBP chemical probe discovery. Here we review current and emerging technologies for high throughput RBP-small molecule screening that we expect will help unlock the full therapeutic potential of this exciting protein class.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
37 |
6
|
Agarwal P, Jackson SP. G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status. Cancer Lett 2016; 380:467-475. [PMID: 27431310 PMCID: PMC5011428 DOI: 10.1016/j.canlet.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/03/2022]
Abstract
Cancer cells often exhibit altered epigenetic signatures that can misregulate genes involved in processes such as transcription, proliferation, apoptosis and DNA repair. As regulation of chromatin structure is crucial for DNA repair processes, and both DNA repair and epigenetic controls are deregulated in many cancers, we speculated that simultaneously targeting both might provide new opportunities for cancer therapy. Here, we describe a focused screen that profiled small-molecule inhibitors targeting epigenetic regulators in combination with DNA double-strand break (DSB) inducing agents. We identify UNC0638, a catalytic inhibitor of histone lysine N-methyl-transferase G9a, as hypersensitising tumour cells to low doses of DSB-inducing agents without affecting the growth of the non-tumorigenic cells tested. Similar effects are also observed with another, structurally distinct, G9a inhibitor A-366. We also show that small-molecule inhibition of G9a or siRNA-mediated G9a depletion induces tumour cell death under low DNA damage conditions by impairing DSB repair in a p53 independent manner. Furthermore, we establish that G9a promotes DNA non-homologous end-joining in response to DSB-inducing genotoxic stress. This study thus highlights the potential for using G9a inhibitors as anti-cancer therapeutic agents in combination with DSB-inducing chemotherapeutic drugs such as etoposide.
Collapse
|
research-article |
9 |
30 |
7
|
Ursu A, Waldmann H. Hide and seek: Identification and confirmation of small molecule protein targets. Bioorg Med Chem Lett 2015; 25:3079-86. [PMID: 26115575 DOI: 10.1016/j.bmcl.2015.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 12/14/2022]
Abstract
Target identification and confirmation for small molecules is often the rate limiting step in drug discovery. A robust method to identify proteins addressed by small molecules is affinity chromatography using chemical probes. These usually consist of the compound of interest equipped with a linker molecule and a proper tag. Recently, methods emerged that allow the identification of protein targets without prior functionalization of the small molecule of interest. The digest offers an update on the newest developments in the area of target identification with special focus on confirmation techniques.
Collapse
|
Review |
10 |
29 |
8
|
Small molecule targeting of PTPs in cancer. Int J Biochem Cell Biol 2017; 96:171-181. [PMID: 28943273 DOI: 10.1016/j.biocel.2017.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023]
Abstract
Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.
Collapse
|
Review |
8 |
28 |
9
|
Machine learning for target discovery in drug development. Curr Opin Chem Biol 2019; 56:16-22. [PMID: 31734566 DOI: 10.1016/j.cbpa.2019.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery.
Collapse
|
Review |
6 |
25 |
10
|
Forster M, Gehringer M, Laufer SA. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg Med Chem Lett 2017; 27:4229-4237. [PMID: 28844493 DOI: 10.1016/j.bmcl.2017.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) are a family of four cytosolic protein kinases with a high degree of structural similarity. Due to its very restricted role in immune regulation, JAK3 was promoted as an excellent target for immunosuppression for more than a decade, but clinical validation of this concept is still elusive. During the last years, speculation arose that kinase activity of JAK1, which cooperates with JAK3 in cytokine receptor signaling, may have a dominant role over the one of JAK3. Until recently, however, this issue could not be appropriately addressed due to a lack of highly isoform-selective tool compounds. With the recent resurgence of covalent drugs, targeting of a specific cysteine that distinguishes JAK3 from other JAK family members became an attractive design option. By applying this strategy, a set of JAK3 inhibitors with excellent selectivity against other JAK isoforms and the kinome was developed during the last three years and used to decipher JAK3-dependent signaling. The data obtained with these tool compounds demonstrates that selective JAK3 inhibition is sufficient to block downstream signaling. Since one of these inhibitors is currently under evaluation in phase II clinical studies against several inflammatory disorders, it will soon become apparent whether selective JAK3 inhibition translates into clinical efficacy.
Collapse
|
Review |
8 |
18 |
11
|
Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur J Med Chem 2019; 168:87-109. [PMID: 30802730 DOI: 10.1016/j.ejmech.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
PIM kinase family (PIM-1, PIM-2 and PIM-3) is an appealing target for the discovery and development of selective inhibitors, useful in various disease conditions in which these proteins are highly expressed, such as cancer. The significant effort put, in the recent years, towards the development of small molecules exhibiting inhibitory activity against this protein family has ended up with several molecules entering clinical trials. As part of our ongoing exploration for potential drug candidates that exhibit affinity towards this protein family, we have generated a novel chemical series of triazolo[4,3-b]pyridazine based tricycles by applying a scaffold hopping strategy over our previously reported potent pan-PIM inhibitor ETP-47453 (compound 2). The structure-activity relationship studies presented herein demonstrate a rather selective PIM-1/PIM-3 biochemical profile for this novel series of tricycles, although pan-PIM and PIM-1 inhibitors have also been identified. Selected examples show significant inhibition of the phosphorylation of BAD protein in a cell-based assay. Moreover, optimized and highly selective compounds, such as 42, did not show significant hERG inhibition at 20 μM concentration, and proved its antiproliferative activity and utility in combination with particular antitumoral agents in several tumor cell lines.
Collapse
|
Journal Article |
6 |
18 |
12
|
Sharifzadeh S, Brown NW, Shirley JD, Bruce KE, Winkler ME, Carlson EE. Chemical tools for selective activity profiling of bacterial penicillin-binding proteins. Methods Enzymol 2020; 638:27-55. [PMID: 32416917 DOI: 10.1016/bs.mie.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Penicillin-binding proteins (PBPs) are membrane-associated proteins involved in the biosynthesis of peptidoglycan (PG), the main component of bacterial cell walls. These proteins were discovered and named for their affinity to bind the β-lactam antibiotic penicillin. The importance of the PBPs has long been appreciated; however, specific roles of individual family members in each bacterial strain, as well as their protein-protein interactions, are yet to be understood. The apparent functional redundancy of the 4-18 PBPs that most eubacteria possess makes determination of their individual roles difficult. Existing techniques to study PBPs are not ideal because they do not directly visualize protein activity and can suffer from artifacts and perturbations of native PBP function. Therefore, development of new methods for studying the roles of individual PBPs in cell wall synthesis is required. We recently generated a library of fluorescent chemical probes containing a β-lactone scaffold that specifically targets the PBPs, enabling the visualization of their catalytic activity. Herein, we describe a general protocol to label and detect the activity of individual PBPs in Streptococcus pneumoniae using our fluorescent β-lactone probes.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
13 |
13
|
Workman P. Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:163-179. [PMID: 32297218 DOI: 10.1007/978-3-030-40204-4_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This personal perspective focuses on small-molecule inhibitors of proteostasis networks in cancer-specifically the discovery and development of chemical probes and drugs acting on the molecular chaperones HSP90 and HSP70, and on the HSF1 stress pathway. Emphasis is on progress made and lessons learned and a future outlook is provided. Highly potent, selective HSP90 inhibitors have proved invaluable in exploring the role of this molecular chaperone family in biology and disease pathology. Clinical activity was observed, especially in non small cell lung cancer and HER2 positive breast cancer. Optimal use of HSP90 inhibitors in oncology will likely require development of creative combination strategies. HSP70 family members have proved technically harder to drug. However, recent progress has been made towards useful chemical tool compounds and these may signpost future clinical drug candidates. The HSF1 stress pathway is strongly validated as a target for cancer therapy. HSF1 itself is a ligandless transcription factor that is extremely challenging to drug directly. HSF1 pathway inhibitors have been identified mostly by phenotypic screening, including a series of bisamides from which a clinical candidate has been identified for treatment of ovarian cancer, multiple myeloma and potentially other cancers.
Collapse
|
|
5 |
13 |
14
|
Shi Y, Carroll KS. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility. Redox Biol 2021; 46:102072. [PMID: 34298464 PMCID: PMC8321940 DOI: 10.1016/j.redox.2021.102072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Cysteine sulfenic acids (Cys-SOH) are pivotal modifications in thiol-based redox signaling and central intermediates en route to disulfide and sulfinic acid states. A core mission in our lab is to develop bioorthogonal chemical tools with the potential to answer mechanistic questions involving cysteine oxidation. Our group, among others, has contributed to the development of nucleophilic chemical probes for detecting sulfenic acids in living cells. Recently, another class of Cys-SOH probes based on strained alkene and alkyne electrophiles has emerged. However, the use of different models of sulfenic acid and methodologies, has confounded clear comparison of these probes with respect to chemical reactivity, kinetics, and selectivity. Here, we perform a parallel evaluation of nucleophilic and electrophilic chemical probes for Cys-SOH. Among the key findings, we demonstrate that a probe for Cys-SOH based on the norbornene scaffold does not react with any of the validated sulfenic acid models in this study. Furthermore, we show that purported cross-reactivity of dimedone-like probes with electrophiles, like aldehydes and cyclic sulfenamides, is a not meaningful in a biological setting. In summary, nucleophilic probes remain the most viable tools for bioorthogonal detection of Cys-SOH.
Collapse
|
Journal Article |
4 |
12 |
15
|
Shchepinova MM, Hanyaloglu AC, Frost GS, Tate EW. Chemical biology of noncanonical G protein-coupled receptor signaling: Toward advanced therapeutics. Curr Opin Chem Biol 2020; 56:98-110. [PMID: 32446179 DOI: 10.1016/j.cbpa.2020.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs), the largest family of signaling membrane proteins, are the target of more than 30% of the drugs on the market. Recently, it has become clear that GPCR functions are far more multidimensional than previously thought, with multiple noncanonical aspects coming to light, including biased, oligomeric, and compartmentalized signaling. These additional layers of functional selectivity greatly expand opportunities for advanced therapeutic interventions, but the development of new chemical biology tools is absolutely required to improve our understanding of noncanonical GPCR regulation and pave the way for future drugs. In this opinion, we highlight the most notable examples of chemical and chemogenetic tools addressing new paradigms in GPCR signaling, discuss their promises and limitations, and explore future directions.
Collapse
|
Review |
5 |
12 |
16
|
Engelberg IA, Foley CA, James LI, Frye SV. Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Curr Opin Chem Biol 2021; 63:132-144. [PMID: 33852996 DOI: 10.1016/j.cbpa.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Responsible for interpreting histone post-translational modifications, epigenetic reader proteins have emerged as novel therapeutic targets for a wide range of diseases. Chemical probes have been critical in enabling target validation studies and have led to translational advances in cancer and inflammation-related pathologies. Here, we present the most recently reported probes of reader proteins that recognize acylated and methylated lysine. We will discuss challenges associated with achieving potent antagonism of reader domains and review ongoing efforts to overcome these hurdles, focusing on targeting strategies including the use of peptidomimetic ligands, allosteric modulators, and protein degraders.
Collapse
|
Review |
4 |
11 |
17
|
Hansen SVF, Ulven T. Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120). Handb Exp Pharmacol 2017; 236:33-56. [PMID: 27807695 DOI: 10.1007/164_2016_60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The free fatty acid receptor 4 (FFA4), also known as GPR120, is a G protein-coupled receptor that is activated by long-chain fatty acids and that has been associated with regulation of appetite, release of insulin controlling hormones, insulin sensitization, anti-inflammatory and potentially anti-obesity activity, and is progressively appearing as an attractive potential target for the treatment of metabolic dysfunctions such as obesity, type 2 diabetes and inflammatory disorders. Ongoing investigations of the pharmacological functions of FFA4 and validation of its potential as a therapeutic target depend critically on the appropriateness and quality of the available pharmacological probes or tool compounds. After a brief summary of the pharmacological functions of FFA4 and some general considerations on desirable properties for these pharmacological tool compounds, the individual compounds that have been or are currently being used as tools for probing the function of FFA4 in various in vitro and in vivo settings will be discussed and evaluated.
Collapse
|
Review |
8 |
11 |
18
|
Quancard J, Cox B, Finsinger D, Guéret SM, Hartung IV, Koolman HF, Messinger J, Sbardella G, Laufer S. The European Federation for Medicinal Chemistry (EFMC) Best Practice Initiative: Validating Chemical Probes. ChemMedChem 2020; 15:2388-2390. [PMID: 32881363 DOI: 10.1002/cmdc.202000597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/09/2022]
Abstract
As part of an initiative aimed to share best practices in Medicinal Chemistry, the European Federation for Medicinal Chemistry (EFMC) is preparing a series of webinars and slide sets focused on the early phase of drug discovery. This educational material is freely accessible through the EFMC. The main target audiences are students or early career scientists and we also believe it will be valuable for experienced practitioners. The first of the series is focused on the generation and validation of high-quality chemical probes, which are critical for drug discovery and more broadly to further our understanding of human biology and disease.
Collapse
|
Journal Article |
5 |
9 |
19
|
Liu Z, Wadsworth P, Singh AK, Chen H, Wang P, Folorunso O, Scaduto P, Ali SR, Laezza F, Zhou J. Identification of peptidomimetics as novel chemical probes modulating fibroblast growth factor 14 (FGF14) and voltage-gated sodium channel 1.6 (Nav1.6) protein-protein interactions. Bioorg Med Chem Lett 2018; 29:413-419. [PMID: 30587448 DOI: 10.1016/j.bmcl.2018.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
The voltage-gated sodium (Nav) channel is the molecular determinant of action potential in neurons. Protein-protein interactions (PPI) between the intracellular Nav1.6 C-tail and its regulatory protein fibroblast growth factor 14 (FGF14) provide an ideal and largely untapped opportunity for development of neurochemical probes. Based on a previously identified peptide FLPK, mapped to the FGF14:FGF14 PPI interface, we have designed and synthesized a series of peptidomimetics with the intent of increasing clogP values and improving cell permeability relative to the parental lead peptide. In-cell screening using the split-luciferase complementation (LCA) assay identified ZL0177 (13) as the most potent inhibitor of the FGF14:Nav1.6 channel complex assembly with an apparent IC50 of 11 μM. Whole-cell patch-clamp recordings demonstrated that ZL0177 significantly reduced Nav1.6-mediated transient current density and induced a depolarizing shift of the channel voltage-dependence of activation. Docking studies revealed strong interactions between ZL0177 and Nav1.6, mediated by hydrogen bonds, cation-π interactions and hydrophobic contacts. All together these results suggest that ZL0177 retains some key features of FGF14-dependent modulation of Nav1.6 currents. Overall, ZL0177 provides a chemical scaffold for developing Nav channel modulators as pharmacological probes with therapeutic potential of interest for a broad range of CNS and PNS disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
8 |
20
|
Heinzlmeir S, Müller S. Selectivity aspects of activity-based (chemical) probes. Drug Discov Today 2021; 27:519-528. [PMID: 34728376 DOI: 10.1016/j.drudis.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Selective chemical modulators are ideal tools to study the function of a protein. Yet, the poor ligandability of many proteins has hampered the development of specific chemical probes for numerous protein classes. Tools, such as covalent inhibitors and activity-based protein profiling, have enhanced our understanding of thus-far difficult-to-target proteins and have enabled correct assessment of the selectivity of small-molecule modulators. This also requires deeper knowledge of compound and target site reactivity, evaluation of binding to noncovalent targets and protein turnover. The availability of highly selective chemical probes, the evolution of activity-based probes, and the development of profiling methods will open a new era of drugging the undruggable proteome.
Collapse
|
Review |
4 |
7 |
21
|
Assoni G, Frapporti G, Colombo E, Gornati D, Perez-Carrion MD, Polito L, Seneci P, Piccoli G, Arosio D. Trehalose-based neuroprotective autophagy inducers. Bioorg Med Chem Lett 2021; 40:127929. [PMID: 33705903 DOI: 10.1016/j.bmcl.2021.127929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
A small set of trehalose-centered putative autophagy inducers was rationally designed and synthesized, with the aim to identify more potent and bioavailable autophagy inducers than free trehalose, and to acquire information about their molecular mechanism of action. Several robust, high yield routes to key trehalose intermediates and small molecule prodrugs (2-5), putative probes (6-10) and inorganic nanovectors (12a - thiol-PEG-triazole-trehalose constructs 11) were successfully executed, and compounds were tested for their autophagy-inducing properties. While small molecules 2-11 showed no pro-autophagic behavior at sub-millimolar concentrations, trehalose-bearing PEG-AuNPs 12a caused measurable autophagy induction at an estimated 40 μM trehalose concentration without any significant toxicity at the same concentration.
Collapse
|
|
4 |
7 |
22
|
Ortiz G, Kutateladze TG, Fujimori DG. Chemical tools targeting readers of lysine methylation. Curr Opin Chem Biol 2023; 74:102286. [PMID: 36948085 PMCID: PMC10264141 DOI: 10.1016/j.cbpa.2023.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/22/2023]
Abstract
Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
7 |
23
|
Abstract
The impressive advances in the generation and interpretation of functional omics data have greatly contributed to a better understanding of the (patho-)physiology of many biological systems and led to a massive increase in the number of specific targets and phenotypes to investigate in both basic and applied research. The obvious complexity revealed by these studies represents a major challenge to the research community and asks for improved target characterisation strategies with the help of reliable, high-quality assays. Thus, the use of living cells has become an integral part of many research activities because the cellular context more closely represents target-specific interrelations and activity patterns. Although still predominant, the use of traditional two-dimensional (2D) monolayer cell culture models has been gradually complemented by studies based on three-dimensional (3D) spheroid (Sutherland 1988) and other 3D tissue culture systems (Santos et al. 2012; Matsusaki et al. 2014) in an attempt to employ model systems more closely representing the microenvironment of cells in the body. Hence, quite a variety of state-of-the-art cell culture models are available for the generation of novel chemical probes or the identification of starting points for drug development in translational research and pharma drug discovery. In order to cope with these information-rich formats and their increasing technical complexity, cell-based assay development has become a scientific research topic in its own right and is used to ensure the provision of significant, reliable and high-quality data outlasting any discussions related to the current "irreproducibility epidemic" (Dolgin 2014; Prinz et al. 2011; Schatz 2014). At the same time the use of cells in microplate assay formats has become state of the art and greatly facilitates rigorous cell-based assay development by providing the researcher with the opportunity to address the multitude of factors affecting the actual assay results in a systematic fashion and a timely manner. This microplate-based assay development strategy should result in the setting up of more robust and reliable test systems that ensure and increase the confidence in the statistical significance of the actual data generated. And, although assay miniaturisation is essential in order to achieve this, most, if not all, cell-based assays can be easily reformatted and adapted to be used in this format in a straightforward manner. This synopsis aims at summarising valuable, general observations made when implementing a diverse set of functional cellular in vitro assays at Bayer Pharma AG without claiming to deeply review all of the literature available in each and every detail. In addition, phenotypic assays (Moffat et al. 2014) or label-free detection methods (Minor 2008) are not discussed. Although this essay tries to cover the most relevant technological developments in the field, it nevertheless may express personal preferences and peculiarities of the author's approach to state-of-the-art cell-based assay development. For additional reviews covering the actual field, see Wunder et al. (2008) and Michelini et al. (2010).
Collapse
|
Review |
9 |
6 |
24
|
Moustakim M, Felce SL, Zaarour N, Farnie G, McCann FE, Brennan PE. Target Identification Using Chemical Probes. Methods Enzymol 2018; 610:27-58. [PMID: 30390803 DOI: 10.1016/bs.mie.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical probes are small molecules with potency and selectivity for a single or small number of protein targets. A good chemical probe engages its target intracellularly and is accompanied by a chemically similar, but inactive molecule to be used as a negative control in cellular phenotypic screening. The utility of these chemical probes is ultimately governed by how well they are developed and characterized. Chemical probes either as single entities, or in chemical probes sets are being increasingly used to interrogate the biological relevance of a target in a disease model. This chapter lays out the core properties of chemical probes, summarizes the seminal and emerging techniques used to demonstrate robust intracellular target engagement. Translation of target engagement assays to disease-relevant phenotypic assays using primary patient-derived cells and tissues is also reviewed. Two examples of epigenetic chemical probe discovery and utility are presented whereby target engagement pointed to novel disease associations elucidated from poorly understood protein targets. Finally, a number of examples are discussed whereby chemical probe sets, or "chemogenomic libraries" are used to illuminate new target-disease links which may represent future directions for chemical probe utility.
Collapse
|
|
7 |
5 |
25
|
Boutamine Z, Hamdaoui O, Merouani S. Probing the radical chemistry and the reaction zone during the sono-degradation of endocrine disruptor 2-phenoxyethanol in water. ULTRASONICS SONOCHEMISTRY 2018; 41:521-526. [PMID: 29137783 DOI: 10.1016/j.ultsonch.2017.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Sonochemical degradation at 600 kHz of 2-phenoxyethanol (PhE), an endocrine disrupting compound, was performed in the presence of several organic additives, namely: 2-propanol, Triton X-100 and sucrose, of different volatilities to obtain detailed information on the reaction zone and the oxidation pathway of this priority emerging water contaminate. It was found that sonication at 600 kHz and 120 W completely remove PhE (10 mg L-1) from aerated solutions within 100 min of irradiation. Very little removal of PhE (∼7%) and low accumulation of H2O2 took place in the presence of adequate amount of 2-propanol, indicating that reaction with OH radical outside the bubble is the major degradation pathway of PhE. Addition of the hydrophobic surfactant Triton X-100, as an OH-probe for the interfacial region, at 10 and 100 mM reduced the degradation event by 57% and 72% and resulted in more than 50% decrease in the yield of H2O2, confirming that PhE degradation occurs mainly at the bubble/solution interface with hydroxyl radical attack. Addition of the hydrophilic substrate glucose at high doses decreased slightly (∼7%) the degradation of PhE and the formation rate of H2O2, meaning that the bulk of the solution participate marginally in the degradation of the pollutant. Finally, analyzing the degradation rates at various initial PhE concentrations (2-400 mg L-1) with a heterogeneous Langmuir type mechanism underlined the predominance of interfacial radical reactions during the oxidation of PhE, particularly at high initial pollutant concentrations.
Collapse
|
|
7 |
4 |