1
|
Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, Gueddari NEE, Moerschbacher BM, Podile AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 2013; 35:29-43. [PMID: 24020506 DOI: 10.3109/07388551.2013.798255] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Collapse
|
Review |
12 |
77 |
2
|
Lee DX, Xia WS, Zhang JL. Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chem 2008; 111:291-5. [PMID: 26047425 DOI: 10.1016/j.foodchem.2008.03.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/22/2008] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
Abstract
The effect of a commercial lipase on chitosan degradation was investigated. When four chitosans with various degrees of deacetylation were used as substrates, the lipase showed higher optimal pH toward chitosan with higher DD (degree of deacetylation). The optimal temperature of the lipase was 55°C for all chitosans. The enzyme exhibited higher activity to chitosans which were 82.8% and 73.2% deacetylated. Kinetics experiments show that chitosans with DD of 82.8% and 73.2% which resulted in lower Km values had stronger affinity for the lipase. The chitosan hydrolysis carried out at 37°C produced larger quantity of COS (chitooligosaccharides) than that at 55°C when the reaction time was longer than 6h, and COS yield of 24h hydrolysis at 37°C was 93.8%. Products analysis results demonstrate that the enzyme produced glucosamine and chitooligosaccharides with DP (degree of polymerization) of 2-6 and above, and it acted on chitosan in both exo- and endo-hydrolytic manner.
Collapse
|
Journal Article |
17 |
72 |
3
|
Liu B, Liu WS, Han BQ, Sun YY. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 2007; 13:725-31. [PMID: 17278195 PMCID: PMC4066005 DOI: 10.3748/wjg.v13.i5.725] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of chitooligosaccharides on proliferation of pancreatic islet cells, release of insulin and 2 h plasma glucose in streptozotocin-induced diabetic rats.
METHODS: In vitro, the effect of chitooligosaccharides on proliferation of pancreatic islet cells and release of insulin was detected with optical microscopy, colorimetric assay, and radioimmunoassay respectively. In vivo, the general clinical symptoms, 2 h plasma glucose, urine glucose, oral glucose tolerance were examined after sixty days of feeding study to determine the effect of chitooligosaccharides in streptozotocin-induced diabetic rats.
RESULTS: Chitooligosaccharides could effectively accelerate the proliferation of pancreatic islet cells. Chitooligosaccharides (100 mg/L) had direct and prominent effect on pancreastic β cells and insulin release from islet cells. All concentrations of chitooligosaccharides could improve the general clinical symptoms of diabetic rats, decrease the 2 h plasma glucose and urine glucose, and normalize the disorders of glucose tolerance.
CONCLUSION: Chitooligosaccharides possess various biological activities and can be used in the treatment of diabetes mellitus.
Collapse
|
Basic Research |
18 |
60 |
4
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
|
Review |
6 |
54 |
5
|
Lin SM, Jiang Y, Chen YJ, Luo L, Doolgindachbaporn S, Yuangsoi B. Effects of Astragalus polysaccharides (APS) and chitooligosaccharides (COS) on growth, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2017; 70:40-47. [PMID: 28863890 DOI: 10.1016/j.fsi.2017.08.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The effects of oral administration of Astragalus polysaccharides (APS) and chitooligosaccharides (COS), single or combined, on the growth performance, immunity and disease resistance of M. salmoides were investigated. Largemouth bass juvenile were divided into 4 groups and each group was fed with diets supplemented with or without immunostimulant for 8 weeks. After 8 weeks of feeding trial, five fish per tank were sampled for immunity determination, ten fish per tank were challenged by A. hydrophila. The results showed that the largemouth bass fed with two immunostimulants alone or in combination significantly enhanced the final weight and specific growth rate (SGR), decreased feed conversion ratio (FCR) (P < 0.05). However, there were no significant differences (P < 0.05) in specific growth rate (SGR) between dietary COS and dietary APS. In addition, both COS and APS upregulated respiratory burst activity (RBA), phagocytic activity (PA), lysozyme activity and superoxide dismutase (SOD) activity. Meanwhile, COS also exhibited a increase in total leukocyte count, nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity compared to the control. When challenged with A. hydrophila, the mortality of groups fed with COS and/or APS was lower than the control (P < 0.05). Under the experimental conditions, dietary APS and COS had a synergistic effect on lysozme activity, iNOS activity, NO content and disease resistance of fish (P < 0.05).
Collapse
|
|
8 |
50 |
6
|
Kidibule PE, Santos-Moriano P, Jiménez-Ortega E, Ramírez-Escudero M, Limón MC, Remacha M, Plou FJ, Sanz-Aparicio J, Fernández-Lobato M. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Fact 2018; 17:47. [PMID: 29566690 PMCID: PMC5863366 DOI: 10.1186/s12934-018-0895-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-d-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Results Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5–6.5 and 30–40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the kcat/Km ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (d-glucosamine)1–8-GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Conclusions Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities. Electronic supplementary material The online version of this article (10.1186/s12934-018-0895-x) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
44 |
7
|
Effect of chitooligosaccharides on human gut microbiota and antiglycation. Carbohydr Polym 2020; 242:116413. [PMID: 32564858 DOI: 10.1016/j.carbpol.2020.116413] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Chitooligosaccharides (COS) have garnered great attention in the field of human healthcare. The prebiotic activities and antiglycation of COS were investigated using a combination of in vitro and in vivo studies. COS supplementation dramatically increased the levels of acetic acid, while reducing the concentrations of propionic and butyric acids. It also decreased the total bacterial population; however, it did not affect diversity and richness of the gut microbiota. In addition, COS modulated the gut microbiota composition by increasing Bacteroidetes, decreasing Proteobacteria and Actinobacteria, and lowering the Firmicutes/Bacteroidetes ratio. COS promoted the generation of beneficial Bacteroides and Faecalibacterium genera, while suppressing the pathogenic Klebsiella genus. The antiglycation activity of COS and acetic acid was dose-dependent. Furthermore, COS prevented the decrease of serum Nε-(carboxymethyl) lysine (CML) level caused by CML ingestion in a mouse model of diet-induced obesity. To improve host health, COS could be potential prebiotics in food products.
Collapse
|
Journal Article |
5 |
44 |
8
|
Chatelain PG, Pintado ME, Vasconcelos MW. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:134-140. [PMID: 24388524 DOI: 10.1016/j.plantsci.2013.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 06/03/2023]
Abstract
Chitooligosaccharides (COS) - water soluble derivatives from chitin, are an interesting group of molecules for several biological applications, for they can enter plant cells and bind negatively charged molecules. Several studies reported an enhanced plant growth and higher crop yield due to chitosan application in soil grown plants, but no studies have looked on the effect of COS application on plant mineral nutrient dynamics in hydroponically grown plants. In this study, Phaseolus vulgaris was grown in hydroponic culture and the effect of three different concentrations of COS on plant growth and mineral accumulation was assessed. There were significant changes in mineral allocations for Mo, B, Zn, P, Pb, Cd, Mn, Fe, Mg, Ca, Cu, Na, Al and K among treatments. Plant morphology was severely affected in high doses of COS, as well as lignin concentration in the stem and the leaves, but not in the roots. Chlorophyll A, B and carotenoid concentrations did not change significantly among treatments, suggesting that even at higher concentrations, COS application did not affect photosynthetic pigment accumulation. Plants grown at high COS levels had shorter shoots and roots, suggesting that COS can be phytotoxic to the plant. The present study is the first detailed report on the effect of COS application on mineral nutrition in plants, and opens the door for future studies that aim at utilizing COS in biofortification or phytoremediation programs.
Collapse
|
|
11 |
39 |
9
|
Kumar M, Brar A, Vivekanand V, Pareek N. Production of chitinase from thermophilic Humicola grisea and its application in production of bioactive chitooligosaccharides. Int J Biol Macromol 2017; 104:1641-1647. [PMID: 28487199 DOI: 10.1016/j.ijbiomac.2017.04.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/14/2023]
Abstract
A novel thermophilic chitinase producing strain Humicola grisea ITCC 10,360.16 was isolated from soil of semi-arid desert region of Rajasthan. Maximum enzyme production (116±3.45Ul-1) was achieved in submerged fermentation. Nutritional requirement for maximum production of chitinase under submerged condition was optimized using response surface methodology. Among the eight nutritional elements studied, chitin, colloidal chitin, KCl and yeast-extract were identified as the most critical variables for chitinase production by Plackett-Burman design first. Further optimization of these variables was done by four-factor central composite design. The model came out to be significant and statistical analysis of results showed that an appropriate ratio of chitin and colloidal chitin had resulted into enhancement in enzyme production levels. Optimum concentration of the variables for enhanced chitinase production were 7.49, 4.91, 0.19 and 5.50 (gl-1) for chitin, colloidal chitin, KCl and yeast extract, respectively. 1.43 fold enhancement in chitinase titres was attained in shake flasks, when the variables were used at their optimum levels. Thin layer chromatography revealed that enzyme can effectively hydrolyze colloidal chitin to produce chitooligosaccharides. Chitinase production from H. grisea and optimization of economic production medium heighten the employment of enzyme for large scale production of bioactive chitooligosaccharides.
Collapse
|
Journal Article |
8 |
36 |
10
|
Zhai X, Li C, Ren D, Wang J, Ma C, Abd El-Aty AM. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydr Polym 2021; 266:118132. [PMID: 34044948 DOI: 10.1016/j.carbpol.2021.118132] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Chitooligosaccharides (COS) are the degraded products of chitin or chitosan. COS is water-soluble, non-cytotoxic to organisms, readily absorbed through the intestine, and eliminated primarily through the kidneys. COS possess a wide range of biological activities, including immunomodulation, cholesterol-lowering, and antitumor activity. Although work on COS goes back at least forty years, several aspects remain unclear. This review narrates the recent developments in COS antitumor activities, while paying considerable attention to the impacts of physicochemical properties (such as molecular weight and degrees of deacetylation) and chemical modifications both in vitro and in vivo. COS derivatives not only improve some physicochemical properties, but also expand the range of applications in drug and gene delivery. COS (itself or as a drug carrier) can inhibit tumor cell proliferation and metastasis, which might be attributed to its ability to stimulate the immune response along with its anti-angiogenic activity. Further, an attempt has been made to report limitations and future research. The potential health benefits of COS and its derivatives against cancer may offer a new insight on their applications in food and medical fields.
Collapse
|
Review |
4 |
36 |
11
|
Hui A, Yan R, Wang W, Wang Q, Zhou Y, Wang A. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities. Carbohydr Polym 2020; 247:116685. [PMID: 32829813 DOI: 10.1016/j.carbpol.2020.116685] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Quaternary ammonium chitooligosaccharides (QACOS) was incorporated onto the ZnO/palygorskite (ZnO/PAL) nanocomposite by a simple electrostatic self-assembly process to produce a new organic-inorganic nanocomposite (QACOS/ZnO/PAL) with excellent antibacterial activity. After loading QACOS, the Zeta potential of ZnO/PAL was changed from -26.7 to +30.3 mV, which facilitates to improve the targeting behavior of ZnO/PAL towards bacteria and its contact with bacteria, resulting in a significant improvement of antibacterial capability. The MIC values of QACOS/ZnO/PAL for inhibiting bacteria (0.5 mg/mL for E. coli and 1 mg/L for S. aureus) were superior to ZnO/PAL and QACOS, demonstrated an expected synergistic antibacterial effect between QACOS and ZnO/PAL. The improved contact and interface interaction between QACOS/ZnO/PAL and bacteria makes it easier to destroy the structural integrity of bacteria. As a whole, the incorporation of polysaccharide as regulators of surface charge opens up a new way to further enhance the antibacterial activity of inorganic antibacterial materials.
Collapse
|
Journal Article |
5 |
33 |
12
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
Review |
5 |
33 |
13
|
Luo S, Qin Z, Chen Q, Fan L, Jiang L, Zhao L. High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation. Int J Biol Macromol 2020; 149:1034-1041. [PMID: 32027900 DOI: 10.1016/j.ijbiomac.2020.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides (COS) are hydrolytic products of chitosan that are essential in functional food, medicine, and other fields due to their biological activities. Commercial COS are often prepared by the hydrolysis of chitosan by chitosanase. In this study, a glycoside hydrolase family 46 cluster B chitosanase from Bacillus amyloliquefaciens (BaCsn46B) was efficiently expressed in Pichia pastoris. The recombinant enzyme was secreted into the culture medium that reached a total extracellular protein concentration of 4.5 g/L with an activity of 8907.2 U/mL in a high cell density fermenter (5 L). The molecular mass of deglycosylated BaCsn46B was 29.0 kDa. Purified BaCsn46B exhibited excellent enzymatic properties, which had high specific activity (2380.5 U/mg) under optimal reaction conditions (55 °C and pH 6.5). BaCsn46B hydrolyzed chitosan yielded a series of COS with different degrees of polymerization by endo-type cleavage. The end hydrolytic products of BaCsn46B were chitobiose and chitotriose, while no monosaccharide yield was evident in the hydrolytic reaction. The excellent secreted expression level and hydrolytic performance make the enzyme a desirable biocatalyst for the industrial preparation of COS.
Collapse
|
Journal Article |
5 |
31 |
14
|
Wu SJ, Pan SK, Wang HB, Wu JH. Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. Int J Biol Macromol 2013; 62:348-51. [PMID: 24095661 DOI: 10.1016/j.ijbiomac.2013.09.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 11/25/2022]
Abstract
In this study, chitooligosaccharides were prepared from cicada slough of Cryptotympana atrata Fabricius by hydrolysis using hydrogen peroxide (H2O2). Factors affecting the hydrolysis of chitosan were investigated and the optimum hydrolysis conditions were as follows: time, 4 h; temperature, 65 °C; amount of H2O2, 2% (v/v); and pH, 5. Under these conditions, the average degree of polymerisation decreased to ~4.5. The Fourier transform infrared spectra and product sugar composition indicate that there were no significant chemical changes in the backbones of the chitosan treated with H2O2.The chitooligosaccharides had high antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli at the concentration of 100mg/mL.
Collapse
|
Journal Article |
12 |
31 |
15
|
Li R, Lyu Y, Luo S, Wang H, Zheng X, Li L, Ao N, Zha Z. Fabrication of a multi-level drug release platform with liposomes, chitooligosaccharides, phospholipids and injectable chitosan hydrogel to enhance anti-tumor effectiveness. Carbohydr Polym 2021; 269:118322. [PMID: 34294334 DOI: 10.1016/j.carbpol.2021.118322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Some anti-cancer drugs have poor solubility and availability, and are easily eliminated by rapid metabolism in vivo. To fix the drugs at the administration site and delay their release, a release platform with multi-level and multi-function was designed. The results showed that the curcumin (Cur) loaded liposomes (Cur@Lip) were coated sequentially with positive Chitooligosaccharides (Cur@Lip-Cos) and negative phospholipids (Cur@Lip-Cos-PC), to enhance water solubility, encapsulation efficiency, and delayed the release of the Cur, stability and cell intake of the liposomes, and the bioactivity of the system. The Cur@Lip-Cos could significantly enhance the inhibitory effect of MCF-7, better than the Cur@Lip-Cos-PC. The Lips were then fixed in an injectable thiolated chitosan hydrogel for local immobilization and sustained release which can effectively delay the release of Cur to inhibit MCF-7 growth. In summary, the innovative and biomimetic liposomal hydrogels are expected to provide more ideas for the design of drug carriers.
Collapse
|
Journal Article |
4 |
29 |
16
|
Yu D, Zhao W, Yang F, Jiang Q, Xu Y, Xia W. A strategy of ultrasound-assisted processing to improve the performance of bio-based coating preservation for refrigerated carp fillets (Ctenopharyngodon idellus). Food Chem 2020; 345:128862. [PMID: 33338838 DOI: 10.1016/j.foodchem.2020.128862] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Effects of ultrasound-assisted chitooligosaccharides (COS-UA) coating on the quality attributes and microbial composition of refrigerated grass carp fillets were evaluated. The results showed that COS and COS-UA coatings retarded quality deterioration of fillets during storage. Compared to COS coatings, COS-UA treated samples had lower contents of BAs, simultaneously their levels of total volatile base nitrogen (TVB-N), K value and total viable counts (TVC) were further decreased by 13.6%, 4.2% and 7.8% on day 12, respectively. High-throughput sequencing showed that Aeromonas and Shewanella increased rapidly in control samples and became the main microbiota at day 12. By contrast, both coatings changed the microbial composition and reduced the proportion of spoilage organisms. Based on multiple evaluations, COS-UA extended shelf life of fillets by another 2 days when compared to COS. Therefore, ultrasonic treatment could be considered as an effective supplementary to improve the preservation effect of COS-based coatings for fresh preprocessed fish.
Collapse
|
Journal Article |
5 |
27 |
17
|
Preparation and characterisation of novel water-soluble β-carotene- chitooligosaccharides complexes. Carbohydr Polym 2019; 225:115226. [PMID: 31521299 DOI: 10.1016/j.carbpol.2019.115226] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
β-carotene and chitooligosaccharides are bioactive compounds that find their application in the food industry as well in biomedical fields. However, the application of β-carotene is limited due to its very low water solubility, as well as its air, light and temperature sensitivity. The preparation of β-carotene-chitooligosaccharides complexes by mechanochemical methods was presented. Their physical and chemical properties including solubility, size, zeta potential and radical scavenging activity were investigated. The interaction of the two components was shown by NMR, FT-IR, and Raman spectroscopy. The complexes were analysed by scanning and transmission electron microscopy. Chitooligosaccharides could serve as a carrier for β-carotene delivery. The complexation did not cause the loss of the radical scavenging activity of β-carotene and guaranteed its water solubility.
Collapse
|
Journal Article |
6 |
27 |
18
|
Moynihan PJ, Clarke AJ. Substrate specificity and kinetic characterization of peptidoglycan O-acetyltransferase B from Neisseria gonorrhoeae. J Biol Chem 2014; 289:16748-60. [PMID: 24795044 DOI: 10.1074/jbc.m114.567388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O-acetylation of the essential cell wall polymer peptidoglycan is a major virulence factor identified in many bacteria, both Gram-positive and Gram-negative, including Staphylococcus aureus, Bacillus anthracis, Neisseria gonorrhoeae, and Neisseria meningitidis. With Gram-negative bacteria, the translocation of acetyl groups from the cytoplasm is performed by an integral membrane protein, PatA, for its transfer to peptidoglycan by O-acetyltransferase PatB, whereas a single bimodal membrane protein, OatA, appears to catalyze both reactions of the process in Gram-positive bacteria. Only phenotypic evidence existed in support of these pathways because no in vitro biochemical assay was available for their analysis, which reflected the complexities of investigating integral membrane proteins that act on a totally insoluble and heterogeneous substrate, such as peptidoglycan. In this study, we present the first biochemical and kinetic analysis of a peptidoglycan O-acetyltransferase using PatB from N. gonorrhoeae as the model system. The enzyme has specificity for muropeptides that possess tri- and tetrapeptide stems on muramyl residues. With chitooligosaccharides as substrates, rates of reaction increase with increasing degrees of polymerization to 5/6. This information will be valuable for the identification and development of peptidoglycan O-acetyltransferase inhibitors that could represent potential leads to novel classes of antibiotics.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |
19
|
Abstract
This experiment aimed to evaluate the capacities of two types of chitooligosaccharides (COS) with different molecular weights for the ability to eliminate lipid accumulation in hepatocytes. We have established a lipid accumulation model in HepG2 cells for these studies in vitro, which was established by induction with oleic acid. The capacity of COS to eliminate lipid accumulation was evaluated using three metrics: the thiazolyl blue dye absorbance (MTT value), the morphology of intracellular lipid droplets and the triglyceride level (TG). Two types of COS with different molecular weights (1000 Da and 3000 Da) can significantly reduce intracellular lipid accumulation and decrease TG content in HepG2 cells, in a dose-dependent fashion. We found that low molecular weight COS is more efficacious than high molecular weight COS. Two types of COS can eliminate lipid accumulation induced by oleic acid in HepG2 cells, leading to an obvious hypolipidemic effect in vitro. These results suggest that COS may be effective preventive agents in fatty liver disease.
Collapse
|
Journal Article |
9 |
24 |
20
|
Rakkhumkaew N, Pengsuk C. Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Sci Biotechnol 2018; 27:1201-1208. [PMID: 30263851 DOI: 10.1007/s10068-018-0332-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022] Open
Abstract
Chitosan and chitooligosaccharides were extracted from white-leg shrimp shells by chemical treatment. Low molecular weight (13 kDa) and a high degree of deacetylation (54.83%) in chitooligosaccharides led to high water solubility compared to chitosan. Antimicrobial assays indicated that chitosan and chitooligosaccharides exhibited marked inhibitory activity against food-borne pathogenics, spoilage bacterial, and fungal strains tested. However, chitooligosaccharides revealed greater inhibitory effects than chitosan on tested microorganisms. The substitution of flour by chitosan or chitooligosaccharides in bread formulation (1 g/100 g total weight basis) showed antimicrobial effects against Bacillus cereus and Rhizopus sp. growth. Also, the fruity odor in bread containing chitosan or chitooligosaccharides was delayed. Interestingly, the bread containing chitooligosaccharides showed a stronger inhibitory effect against B. cereus and Rhizopus sp. compared to bread containing chitosan and control, where B. cereus and Rhizopus sp. were observed growing on the surface of bread after 4 days of incubation at 30 °C.
Collapse
|
Journal Article |
7 |
23 |
21
|
Vaikuntapu PR, Rambabu S, Madhuprakash J, Podile AR. A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. BIORESOURCE TECHNOLOGY 2016; 220:200-207. [PMID: 27567481 DOI: 10.1016/j.biortech.2016.08.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The current study describes heterologous expression and biochemical characterization of single-modular chitinase-D from Serratia marcescens (SmChiD) with unprecedented catalytic properties which include chitobiase and transglycosylation (TG) activities besides hydrolytic activity. Without accessory domains, SmChiD, hydrolyzed insoluble polymeric chitin substrates like colloidal, α- and β-chitin. Activity studies on CHOS with degree of polymerization (DP) 2-6 as substrate revealed that SmChiD hydrolyzed DP2 with a chitobiase activity and showed TG activity on CHOS with DP3-6, producing longer chain CHOS. But, the TG products were further hydrolyzed to shorter chain CHOS with DP1-2 products. SmChiD with its unique catalytic properties, could be a potential enzyme for the production of long chain CHOS and also for the preparation of efficient enzyme cocktails for chitin degradation.
Collapse
|
|
9 |
23 |
22
|
Recent Progress in Chitosanase Production of Monomer-Free Chitooligosaccharides: Bioprocess Strategies and Future Applications. Appl Biochem Biotechnol 2016; 180:883-899. [PMID: 27206559 DOI: 10.1007/s12010-016-2140-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Biological activities of chitosan oligosaccharides (COS) are well documented, and numerous reports of COS production using specific and non-specific enzymes are available. However, strategies for improving the overall yield by making it monomer free need to be developed. Continuous enzymatic production from chitosan derived from marine wastes is desirable and is cost-effective. Isolation of potential microbes showing chitosanase activity from various ecological niches, gene cloning, enzyme immobilization, and fractionation/purification of COS are some areas, where lot of work is in progress. This review covers recent measures to improve monomer-free COS production using chitosanase/non-specific enzymes and purification/fractionation of these molecules using ultrafiltration and column chromatographic techniques. Various bioprocess strategies, gene cloning for enhanced chitosanase enzyme production, and other measures for COS yield improvements have also been covered in this review. COS derivative preparation as well as COS-coated nanoparticles for efficient drug delivery are being focused in recent studies.
Collapse
|
Review |
9 |
22 |
23
|
Ailincai D, Rosca I, Morariu S, Mititelu-Tartau L, Marin L. Iminoboronate- chitooligosaccharides hydrogels with strong antimicrobial activity for biomedical applications. Carbohydr Polym 2022; 276:118727. [PMID: 34823763 DOI: 10.1016/j.carbpol.2021.118727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/10/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023]
Abstract
The paper reports hydrogels prepared from chitooligosaccharides with different polymerization degrees (14 to 51), by crosslinking with 2-formylphenylboronicacid in three molar ratios of their functionalities. The structural, morphological and supramolecular characterization confirmed a hydrogelation mechanism based on self-assembling of newly formed imine units and porous morphology. Rheological measurements confirmed the formation of thixotropic hydrogels, and swelling tests indicated mass equilibrium swelling values up to 25 in water and 9 in phosphate buffer saline. The monitoring of enzymatic degradability demonstrated the enhancing of biodegradation rate as long as the polymerization degrees of the oligomers decreased, the mass loss increasing from 16% to 43%. In vivo and ex-vivo biocompatibility investigation on experimental mice showed no cytotoxic effect, and in vitro antimicrobial tests revealed remarkable antimicrobial properties on nine strains, with a maximum inhibition diameter of 49 mm on Aspergilius brasiliensis and very good results on Cladosporium cladosporioides, Penicillium crysogenum and different Candida species.
Collapse
|
|
3 |
21 |
24
|
Effects of several acetylated chitooligosaccharides on antioxidation, antiglycation and NO generation in erythrocyte. Bioorg Med Chem Lett 2014; 24:4053-7. [PMID: 24986658 DOI: 10.1016/j.bmcl.2014.03.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023]
Abstract
Three kinds of chitooligosaccharides (COS) with different degrees of deacetylation were prepared and named MD90, MD70 and MD50, respectively. Antioxidation, antiglycation and nitric oxide (NO) promotion in erythrocyte of these samples were investigated. The results showed that COS, especially MD90 had obviously inhibitory effects on oxidation and glycation. In addition, MD90 displayed stronger effect on increasing endogenous NO content than both MD70 and MD50, whose degrees of deacetylation were lower. The results indicated that amino group in COS has a certain effect on the activities of COS. As COS have a conformed activity to treat diabetes, the results of this study may be meaningful for further understanding the mechanism of the action.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
25
|
Zhang Y, Guan F, Xu G, Liu X, Zhang Y, Sun J, Yao B, Huang H, Wu N, Tian J. A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem. BIORESOUR BIOPROCESS 2022; 9:54. [PMID: 38647756 PMCID: PMC10991277 DOI: 10.1186/s40643-022-00543-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Chitin is abundant in nature and its degradation products are highly valuable for numerous applications. Thermophilic chitinases are increasingly appreciated for their capacity to biodegrade chitin at high temperatures and prolonged enzyme stability. Here, using deep learning approaches, we developed a prediction tool, Preoptem, to screen thermophilic proteins. A novel thermophilic chitinase, Chi304, was mined directly from the marine metagenome. Chi304 showed maximum activity at 85 ℃, its Tm reached 89.65 ± 0.22℃, and exhibited excellent thermal stability at 80 and 90 °C. Chi304 had both endo- and exo-chitinase activities, and the (GlcNAc)2 was the main hydrolysis product of chitin-related substrates. The product yields of colloidal chitin degradation reached 97% within 80 min, and 20% over 4 days of reaction with crude chitin powder. This study thus provides a method to mine the novel thermophilic chitinase for efficient chitin biodegradation.
Collapse
|
research-article |
3 |
16 |