Shoueir KR, El-Desouky N, Rashad MM, Ahmed MK, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting.
Int J Biol Macromol 2021;
167:1176-1197. [PMID:
33197477 DOI:
10.1016/j.ijbiomac.2020.11.072]
[Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, β, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.
Collapse