1
|
Wong CW, Yanagi Y, Lee WK, Ogura Y, Yeo I, Wong TY, Cheung CMG. Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians. Prog Retin Eye Res 2016; 53:107-139. [PMID: 27094371 DOI: 10.1016/j.preteyeres.2016.04.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in elderly people globally. It is estimated that there will be more Asians with AMD than the rest of the world combined by 2050. In Asian populations, polypoidal choroidal vasculopathy (PCV) is a common subtype of exudative AMD, while choroidal neovascularization secondary to AMD (CNV-AMD) is the typical subtype in Western populations. The two subtypes share many common clinical features and risk factors, but also have different epidemiological and clinical characteristics, natural history and treatment outcomes that point to distinct pathophysiological processes. Recent research in the fields of genetics, proteomics and imaging has provided further clarification of differences between PCV and CNV-AMD. Importantly, these differences have manifested as disparity in response to intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) treatment between PCV and CNV-AMD, emphasizing the need for accurate diagnosis of PCV and in distinguishing PCV from CNV-AMD, particularly in Asian patients. Current clinical trials of intravitreal anti-VEGF therapy and photodynamic therapy will provide clearer perspectives of evidence-based management of PCV and may lead to paradigm shifts in therapeutic strategies away from those currently employed in the treatment of CNV-AMD. Further research is needed to clarify the relative contribution of specific pathways in inflammation, complement activation, extracellular matrix dysregulation, lipid metabolism and angiogenesis to the pathogenesis of PCV. Findings from this research, together with improved diagnostic technology and new therapeutics, will facilitate more optimal management of Asian AMD.
Collapse
|
Review |
9 |
261 |
2
|
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res 2021; 82:100906. [PMID: 33022379 PMCID: PMC10368393 DOI: 10.1016/j.preteyeres.2020.100906] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular age-related macular degeneration (NVAMD). However, many patients suffer from incomplete response to anti-VEGF therapy (IRT), which is defined as (1) persistent (plasma) fluid exudation; (2) unresolved or new hemorrhage; (3) progressive lesion fibrosis; and/or (4) suboptimal vision recovery. The first three of these collectively comprise the problem of persistent disease activity (PDA) in spite of anti-VEGF therapy. Meanwhile, the problem of suboptimal vision recovery (SVR) is defined as a failure to achieve excellent functional visual acuity of 20/40 or better in spite of sufficient anti-VEGF treatment. Thus, incomplete response to anti-VEGF therapy, and specifically PDA and SVR, represent significant clinical unmet needs. In this review, we will explore PDA and SVR in NVAMD, characterizing the clinical manifestations and exploring the pathobiology of each. We will demonstrate that PDA occurs most frequently in NVAMD patients who develop high-flow CNV lesions with arteriolarization, in contrast to patients with capillary CNV who are highly responsive to anti-VEGF therapy. We will review investigations of experimental CNV and demonstrate that both types of CNV can be modeled in mice. We will present and consider a provocative hypothesis: formation of arteriolar CNV occurs via a distinct pathobiology, termed neovascular remodeling (NVR), wherein blood-derived macrophages infiltrate the incipient CNV lesion, recruit bone marrow-derived mesenchymal precursor cells (MPCs) from the circulation, and activate MPCs to become vascular smooth muscle cells (VSMCs) and myofibroblasts, driving the development of high-flow CNV with arteriolarization and perivascular fibrosis. In considering SVR, we will discuss the concept that limited or poor vision in spite of anti-VEGF may not be caused simply by photoreceptor degeneration but instead may be associated with photoreceptor synaptic dysfunction in the neurosensory retina overlying CNV, triggered by infiltrating blood-derived macrophages and mediated by Müller cell activation Finally, for each of PDA and SVR, we will discuss current approaches to disease management and treatment and consider novel avenues for potential future therapies.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
219 |
3
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
|
Review |
8 |
113 |
4
|
Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 2017; 3:31. [PMID: 28835854 PMCID: PMC5563895 DOI: 10.1186/s40942-017-0084-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/01/2017] [Indexed: 11/10/2022] Open
Abstract
Retinal and choroidal neovascularization are a major cause of significant visual impairment, worldwide. Understanding the various factors involved in the accompanying physiopathology is vital for development of novel treatments, and most important, for preserving patient vision. The intraocular use of anti-vascular endothelial growth factor therapeutics has improved management of the retinal and choroidal neovascularization but some patients do not respond, suggesting other vascular mediators may also contribute to ocular angiogenesis. Several recent studies examined possible new targets for future anti-angiogenic therapies. Potential targets of retinal and choroidal neovascularization therapy include members of the platelet-derived growth factor family, vascular endothelial growth factor sub-family, epidermal growth factor family, fibroblast growth factor family, transforming growth factor-β superfamily (TGF-β1, activins, follistatin and bone morphogenetic proteins), angiopoietin-like family, galectins family, integrin superfamily, as well as pigment epithelium derived factor, hepatocyte growth factor, angiopoietins, endothelins, hypoxia-inducible factors, insulin-like growth factors, cytokines, matrix metalloproteinases and their inhibitors and glycosylation proteins. This review highlights current antiangiogenic therapies under development, and discusses future retinal and choroidal pro- and anti-angiogenic targets as wells as the importance of developing of new drugs.
Collapse
|
Review |
8 |
109 |
5
|
Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: Technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol 2017; 7:115-129. [PMID: 28966909 PMCID: PMC5617355 DOI: 10.4103/tjo.tjo_31_17] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Optical coherence tomography angiography (OCTA) is a functional extension of OCT that provides information on retinal and choroidal circulations without the need for dye injections. With the recent development of high-speed OCT systems and efficient algorithms, OCTA has become clinically feasible. In this review article, we discuss the technical principles of OCTA, including image processing and artifacts, and its clinical applications in ophthalmology. We summarize recent studies which qualitatively or quantitatively assess disease presentation, progression, and/or response to treatment.
Collapse
|
Journal Article |
8 |
102 |
6
|
Abstract
A healthy gut microbiota is essential in maintaining the human body in a homeostatic state by its functions in digestion and immune tolerance. Under states of aberrant microbial composition or function (dysbiosis), the gut microbiota induces systemic inflammation that can lead to the onset of many diseases. In this review, we describe some evidence, largely from rodent studies, that supports the possible role of a dysbiotic gut microbiota in the onset and exacerbation of ocular diseases, primarily diabetic retinopathy, age-related macular degeneration, choroidal neovascularization, and uveitis. Furthermore, we examine several potential therapeutic measures that show promise in restoring the gut microbiota to a eubiotic state, preventing the aforementioned disease pathologies.
Collapse
|
Review |
5 |
68 |
7
|
Chew EY, Clemons TE, Bressler SB, Elman MJ, Danis RP, Domalpally A, Heier JS, Kim JE, Garfinkel RA. Randomized trial of the ForeseeHome monitoring device for early detection of neovascular age-related macular degeneration. The HOme Monitoring of the Eye (HOME) study design - HOME Study report number 1. Contemp Clin Trials 2014; 37:294-300. [PMID: 24530651 PMCID: PMC11554420 DOI: 10.1016/j.cct.2014.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/25/2014] [Accepted: 02/05/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the effects of a home-monitoring device with tele-monitoring compared with standard care in detection of progression to choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD), the leading cause of blindness in the US. PATIENTS AND METHODS Participants, aged 55 to 90 years, at high risk of developing CNV associated with AMD were recruited to the HOme Monitoring of Eye (HOME) Study, an unmasked, multi-center, randomized trial of the ForeseeHome (FH) device plus standard care vs. standard care alone. The FH device utilizes preferential hyperacuity perimetry and tele-monitoring to detect changes in vision function associated with development of CNV, potentially prior to symptom and visual acuity loss. After establishing baseline measurements, subsequent changes on follow-up are detected by the device, causing the monitoring center to alert the clinical center to recall participants for an exam. Standard care consists of instructions for self-monitoring visual changes with subsequent self-report to the clinical center. The primary objective of this study is to determine whether home monitoring plus standard care in comparison with standard care alone, results in earlier detection of incident CNV with better present visual acuity. The primary outcome is the decline in visual acuity at CNV diagnosis from baseline. Detection of CNV prior to substantial vision loss is critical as vision outcome following anti-angiogenic therapy is dependent on the visual acuity at initiation of treatment. DISCUSSION HOME Study is the first large scale study to test the use of home tele-monitoring system in the management of AMD patients.
Collapse
|
Multicenter Study |
11 |
56 |
8
|
Sacconi R, Fragiotta S, Sarraf D, Sadda SR, Freund KB, Parravano M, Corradetti G, Cabral D, Capuano V, Miere A, Costanzo E, Bandello F, Souied E, Querques G. Towards a better understanding of non-exudative choroidal and macular neovascularization. Prog Retin Eye Res 2023; 92:101113. [PMID: 35970724 DOI: 10.1016/j.preteyeres.2022.101113] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Non-exudative macular and choroidal neovascularization (MNV and CNV) usually refers to the entity of treatment-naïve type 1 neovascularization in the absence of associated signs of exudation. Histopathological studies, dating back in the early 70s, identified the presence of non-exudative MNV, but the first clinical report of this finding was in the late 90s using indocyanine green angiography in eyes with age-related macular degeneration (AMD). With more advanced retinal imaging, there has been an ever increasing appreciation of non-exudative MNV associated with AMD and CNV with other macular disorders. However, consensus regarding the exact definition and the clinical management of this entity is lacking. Furthermore, there may be variation in the imaging features and clinical course suggesting that a spectrum of disease may exist. Herein, we review the large body of published work that has provided a better understanding of non-exudative MNV and CNV in the last decade. The prevalence, multimodal imaging features, clinical course, and response to treatment are discussed to elucidate further key insights about this entity. Based on these observations, this review also proposes a new theory about the origin and course of different sub-types of non-exudative MNV/CNV which can have different etiologies and pathways according to the clinical context of disease.
Collapse
|
Review |
2 |
56 |
9
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration. J Mol Neurosci 2017; 62:368-379. [PMID: 28689265 DOI: 10.1007/s12031-017-0947-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Exudative age-related macular degeneration (AMD) is characterized by molecular mechanisms responsible for the initiation of choroidal neovascularization (CNV). Inflammatory processes are associated with upregulation of the canonical WNT/beta-catenin pathway in exudative AMD. We focus this review on the link between WNT/beta-catenin pathway activation and neovascular progression in exudative AMD through activation of aerobic glycolysis for production of angiogenic factors. Increased WNT/beta-catenin pathway involves hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). WNT/beta-catenin pathway stimulates PI3K/Akt pathway and then HIF-1alpha which activates glycolytic enzymes: glucose transporter (Glut), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDH-A), and monocarboxylate lactate transporter (MCT-1). This phenomenon is called aerobic glycolysis or the Warburg effect. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. Cytosolic pyruvate is converted into lactate through the action of LDH-A. In exudative AMD, high level of cytosolic lactate is correlated with increase of VEGF expression, the angiogenic factor of CNV. Photoreceptors in retina cells can metabolize glucose through aerobic glycolysis to protect them against oxidative damage, as cancer cells do.
Collapse
|
Review |
8 |
55 |
10
|
Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of ocular angiogenesis. Exp Eye Res 2014; 129:161-71. [PMID: 25304218 DOI: 10.1016/j.exer.2014.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
Abstract
Natural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with anti-angiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease-relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable drugs with minimal side effects.
Collapse
|
Review |
11 |
55 |
11
|
Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology. J Mol Med (Berl) 2017; 95:535-552. [PMID: 28132078 DOI: 10.1007/s00109-017-1506-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
A critical target tissue in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from attenuation/disruption of intercellular tight junctions. Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A connexin43-based peptide mimetic, αCT1, was developed to competitively block interactions at the PDZ2 domain of ZO-1, thereby inhibiting ligands that selectively bind to this domain. We hypothesized that targeting ZO-1 signaling using αCT1 would maintain BRB integrity and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. RPE-cell barrier dysfunction was generated in mice using laser photocoagulation triggering choroidal neovascularization (CNV) or bright light exposure leading to morphological damage. αCT1 was delivered via eye drops. αCT1 treatment reduced CNV development and fluid leakage as determined by optical coherence tomography, and damage was correlated with disruption in cellular integrity of surrounding RPE cells. Light damage significantly disrupted RPE cell morphology as determined by ZO-1 and occludin staining and tiling pattern analysis, which was prevented by αCT1 pre-treatment. In vitro experiments using RPE and MDCK monolayers indicated that αCT1 stabilizes tight junctions, independent of its effects on Cx43. Taken together, stabilization of intercellular junctions by αCT1 was effective in ameliorating RPE dysfunction in models of AMD-like pathology. KEY MESSAGE The connexin43 mimetic αCT1 accumulates in the mouse retinal pigment epithelium following topical delivery via eye drops. αCT1 eye drops prevented RPE-cell barrier dysfunction in two mouse models. αCT1 stabilizes intercellular tight junctions. Stabilization of cellular junctions via αCT1 may serve as a novel therapeutic approach for both wet and dry age-related macular degeneration.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
47 |
12
|
Agrón E, Domalpally A, Cukras CA, Clemons TE, Chen Q, Lu Z, Chew EY, Keenan TDL. Reticular Pseudodrusen: The Third Macular Risk Feature for Progression to Late Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report 30. Ophthalmology 2022; 129:1107-1119. [PMID: 35660417 PMCID: PMC9509418 DOI: 10.1016/j.ophtha.2022.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To analyze reticular pseudodrusen (RPD) as an independent risk factor for progression to late age-related macular degeneration (AMD), alongside traditional macular risk factors (soft drusen and pigmentary abnormalities) considered simultaneously. DESIGN Post hoc analysis of 2 clinical trial cohorts: Age-Related Eye Disease Study (AREDS) and AREDS2. PARTICIPANTS Eyes with no late AMD at baseline in AREDS (6959 eyes, 3780 participants) and AREDS2 (3355 eyes, 2056 participants). METHODS Color fundus photographs (CFPs) from annual visits were graded for soft drusen, pigmentary abnormalities, and late AMD. Presence of RPD was from grading of fundus autofluorescence images (AREDS2) and deep learning grading of CFPs (AREDS). Proportional hazards regression analyses were performed, considering AREDS AMD severity scales (modified simplified severity scale [person] and 9-step scale [eye]) and RPD presence simultaneously. MAIN OUTCOME MEASURES Progression to late AMD, geographic atrophy (GA), and neovascular AMD. RESULTS In AREDS, for late AMD analyses by person, in a model considering the simplified severity scale simultaneously, RPD presence was associated with a higher risk of progression: hazard ratio (HR), 2.15 (95% confidence interval [CI], 1.75-2.64). However, the risk associated with RPD presence differed at different severity scale levels: HR, 3.23 (95% CI, 1.60-6.51), HR, 3.81 (95% CI, 2.38-6.10), HR, 2.28 (95% CI, 1.59-3.27), and HR, 1.64 (95% CI, 1.20-2.24), at levels 0-1, 2, 3, and 4, respectively. Considering the 9-step scale (by eye), RPD presence was associated with higher risk: HR, 2.54 (95% CI, 2.07-3.13). The HRs were 5.11 (95% CI, 3.93-6.66) at levels 1-6 and 1.78 (95% CI, 1.43-2.22) at levels 7 and 8. In AREDS2, by person, RPD presence was not associated with higher risk: HR, 1.18 (95% CI, 0.90-1.56); by eye, it was HR, 1.57 (95% CI, 1.31-1.89). In both cohorts, RPD presence carried a higher risk for GA than neovascular AMD. CONCLUSIONS Reticular pseudodrusen represent an important risk factor for progression to late AMD, particularly GA. However, the added risk varies markedly by severity level, with highly increased risk at lower/moderate levels and less increased risk at higher levels. Reticular pseudodrusen status should be included in updated AMD classification systems, risk calculators, and clinical trials.
Collapse
|
Research Support, N.I.H., Intramural |
3 |
45 |
13
|
Lutty GA, McLeod DS, Bhutto IA, Edwards MM, Seddon JM. Choriocapillaris dropout in early age-related macular degeneration. Exp Eye Res 2020; 192:107939. [PMID: 31987759 DOI: 10.1016/j.exer.2020.107939] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Loss of choriocapillaris (CC) in advanced age-related macular degeneration (AMD) is well documented but changes in early AMD have not been quantified. Postmortem eyes from donors with clinically documented early AMD were examined in choroidal whole mounts to determine the area, pattern, and severity of CC loss. Choroids from postmortem human eyes without AMD (n = 7; mean age = 86.1) and from eyes with a Grade 2 clinical classification of early AMD (n = 7; mean age = 87) were immunolabeled with Ulex europaeus agglutinin (UEA) lectin-FITC to stain blood vessels. Whole mounts were imaged using confocal microscopy and image analysis was performed to determine the area of vascular changes and density of vasculature (percent vascular area, %VA). All areas evaluated had a complete RPE monolayer upon gross examination. In age-matched control eyes, the CC had broad lumens and a homogenous pattern of freely interconnecting capillaries. The mean %VA ± standard deviation in submacula of control subjects was 78.1 ± 3.25%. In eyes with early AMD, there was a significant decrease in mean %VA to 60.1 ± 10.4% (p < 0.0001). The paramacular %VA was not significantly different in eyes with or without AMD. The area of submacular choroid affected by CC dropout was 0.04 ± 0.09 mm2 in control eyes. In eyes with early AMD, the mean area affected by CC dropout was significantly increased (10.4 ± 6.1 mm2; p < 0.001). In some cases, incipient neovascular buds were observed at the border of regions with CC dropout in early AMD choroids. In conclusion, UEA lectin-labeled choroidal whole mounts from donors with clinically documented early AMD has provided a unique opportunity to examine regional changes in vascular pathology associated with choriocapillaris. The study demonstrated attenuation of submacular CC in early AMD subjects but no vascular pathology was observed outside the submacular region. While the affected area in some eyes was quite extensive histologically, these changes may not be detectable clinically using standard in vivo imaging.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
44 |
14
|
Balser C, Wolf A, Herb M, Langmann T. Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina. J Neuroinflammation 2019; 16:26. [PMID: 30732627 PMCID: PMC6366121 DOI: 10.1186/s12974-019-1419-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of visual impairment in the elderly. The neovascular (wet) form of AMD can be treated with intravitreal injections of different anti-vascular endothelial growth factor (VEGF) agents. Placental growth factor (PGF) is another member of the VEGF family of cytokines with pro-angiogenic and pro-inflammatory effects. Here, we aimed to compare single and combined inhibition of VEGF-A and PGF in the laser-induced mouse model of choroidal neovascularization (CNV) with a focus on the effects on retinal mononuclear phagocytes. Methods CNV was induced in C57BL/6J mice using a YAG-Laser. Immediately after laser damage antibodies against VEGF-A (aVEGF), anti-PGF (aPGF), aVEGF combined with aPGF, aflibercept, or IgG control were injected intravitreally in both eyes. Three and 7 days after laser damage, the vascular leakage was determined by fluorescence angiography. Lectin staining of retinal and RPE/choroidal flat mounts was used to monitor CNV. In situ mRNA co-expression of Iba1, VEGF and PGF were quantified using in situ hybridization. Retinal and RPE/choroidal protein levels of VEGF and PGF as well as the pro-inflammatory cytokines IL-6, IL1-beta, and TNF were determined by ELISA. Results Early (day 3) and intermediate (day 7) vascular leakage and CNV were significantly inhibited by PGF and VEGF-A co-inhibition, most effectively with the trap molecule aflibercept. While VEGF-A blockage alone had no effects, trapping PGF especially with aflibercept prevented the accumulation of reactive microglia and macrophages in laser lesions. The lesion-related mRNA expression and secretion of VEGF-A and PGF by mononuclear phagocytes were potently suppressed by PGF and partially by VEGF-A inhibition. Protein levels of IL-6 and IL1-beta were strongly reduced in all treatment groups. Conclusions Retinal inhibition of PGF in combination with VEGF-A prevents vascular leakage and CNV possibly via modulating their own expression in mononuclear phagocytes. PGF-related, optimized strategies to target inflammation-mediated angiogenesis may help to increase efficacy and reduce non-responders in the treatment of wet AMD patients. Electronic supplementary material The online version of this article (10.1186/s12974-019-1419-2) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
6 |
37 |
15
|
Gong Y, Shao Z, Fu Z, Edin ML, Sun Y, Liegl RG, Wang Z, Liu CH, Burnim SB, Meng SS, Lih FB, SanGiovanni JP, Zeldin DC, Hellström A, Smith LEH. Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis. EBioMedicine 2016; 13:201-211. [PMID: 27720395 PMCID: PMC5264653 DOI: 10.1016/j.ebiom.2016.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases.
Fenofibrate inhibits retinal and choroidal neovascularization by inhibiting CYP2C activity as well as by activating PPARα. Fenofibrate augments the protective effects of ω-3 LCPUFAs on pathological ocular angiogenesis. Inhibition of CYP2C is a potential therapeutic approach for treatment of proliferative retinopathy and neovascular AMD. Findings from clinical trials indicate that fenofibrate reduces the progression of proliferative diabetic retinopathy, but the mechanism of this effect is currently unknown. Dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFAs) is generally associated with a suppression of proliferative retinopathy and age-related macular degeneration acting through LCPUFA cyclooxygenase and lipoxygenase metabolites. However, cytochrome P450 epoxygenase (CYP)2C ω-3 and ω-6 LCPUFA metabolites promote retinopathy. Fenofibrate is a potent inhibitor of CYP2C. Our findings suggested that fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition. Combination therapy of dietary ω-3 LCPUFA supplementation with fenofibrate may be a promising approach to prevent incidence or progression of neovascular eye diseases.
Collapse
|
Journal Article |
9 |
35 |
16
|
Kim SY, Kambhampati SP, Bhutto IA, McLeod DS, Lutty GA, Kannan RM. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Exp Eye Res 2020; 203:108391. [PMID: 33307075 DOI: 10.1016/j.exer.2020.108391] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/16/2020] [Accepted: 12/05/2020] [Indexed: 01/19/2023]
Abstract
Oxidative stress, inflammation and neovascularization are the key pathological events that are implicated in human age-related macular degeneration (AMD). There are a limited number of animal models available for evaluating and developing new therapies. Most models represent late exudative or neovascular AMD (nAMD) but there is a relative paucity of models that mimic early events in AMD. The purpose of this study is to characterize the evolution of oxidative stress, inflammation, retinal degeneration and neovascularization in a rat model of AMD, created by subretinal injection of human lipid hydroperoxide (HpODE) that found in the sub-macular region in aged and AMD patients. Subretinal HpODE induced retinal pigment epithelium (RPE) and retinal degeneration resulting in loss of RPE cells, photoreceptors and retinal thinning. RPE degeneration and atrophy were detected by day 5, followed by neural tissue degeneration at day 12 with robust TUNEL positive cells. Western blot analysis confirmed an increase in pro-apoptotic Bak protein at day 12 in retinal tissues. Oxidative damage biomarkers (4-hydroxynonenal, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine) increased in retinal tissue from days 5-12. Müller glial activation was observed in the HpODE injected area at day 5 followed by its remodeling and migration in the outer retina by day 20. RT-qPCR analysis further indicated upregulation of pro-inflammatory genes (TNF-α, IL-1β and IL-6) both in retinal and RPE/choroidal tissue as early as day 2 and persisted until day 12. Upregulation of oxidative stress markers such as NADPH oxidase (NOX and DOUX family) was detected early in retinal tissue by day 2 followed by its upregulation in choroidal tissue at day 5. Neovascularization was demonstrated from day 12 to day 20 post HpODE injection in choroidal tissue. The results from this study indicate that subretinal HpODE induces advanced AMD phenotypes comprising many aspects of both dry/early and late) and neovascular/late AMD as observed in humans. Within 3 weeks via oxidative damage, upregulation of reactive oxygen species and pro-inflammatory genes, pro-apoptotic Bak and pro-angiogenic VEGF upregulation occurs leading to CNV formation. This experimental model of subretinal HpODE is an appropriate model for the study of AMD and provides an important platform for translational and basic research in developing new therapies particularly for early/dry AMD where currently no viable therapies are available.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
32 |
17
|
FGF2-induced STAT3 activation regulates pathologic neovascularization. Exp Eye Res 2019; 187:107775. [PMID: 31449793 DOI: 10.1016/j.exer.2019.107775] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022]
Abstract
Cell-autonomous endothelial cell (EC) fibroblast growth factor receptor (FGFR) signaling through FGFR1/2 is essential for injury-induced wound vascularization and pathologic neovascularization as in blinding eye diseases such as age-related macular degeneration. Which FGF ligand(s) is critical in regulating angiogenesis is unknown. Utilizing ex vivo models of choroidal endothelial sprouting and in vivo models of choroidal neovascularization (CNV), we demonstrate here that only FGF2 is the essential ligand. Though FGF-FGFR signaling can activate multiple intracellular signaling pathways, we show that FGF2 regulates pathogenic angiogenesis via STAT3 activation. The identification of FGF2 as a critical mediator in aberrant neovascularization provides a new opportunity for developing multi-target therapies in blinding eye diseases especially given the limitations of anti-VEGF monotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
31 |
18
|
Safety and complications of intravitreal injections performed in an Asian population in Singapore. Int Ophthalmol 2016; 37:325-332. [PMID: 27236451 DOI: 10.1007/s10792-016-0241-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
There has been a rapid rise in the use of intravitreal injections, such as anti-vascular endothelial growth factor (anti-VEGF) agents, performed over the past few years for the treatment of ocular neovascular diseases. This study aims to review the systemic and ocular adverse events among patients treated at a tertiary eye center over a period of 8 years. A retrospective review of all intravitreal injections of anti-VEGF performed over an 8-year period at a tertiary eye care center in Singapore was done. We report the frequency of systemic and ocular adverse events and compared it among the various anti-VEGF agents. A total of 14 001 intravitreal injections were performed on 2225 patients from January 1, 2007 to December 31, 2014, and this included 9992 bevacizumab (71.4 %), 3306 ranibizumab (23.6 %) and 703 aflibercept (5.0 %) injections. Systemic complications related to treatment were 26 (1.17 %) deaths (from any cause), of which 11 (0.49 %) were from fatal thromboembolic events, 7 (0.31 %) non-fatal thromboembolic events and two (0.09 %) serious non-ocular hemorrhage. Ocular complications included one (0.007 %) endophthalmitis, three (0.021 %) traumatic cataracts, and one (0.007 %) retinal detachment. Rates of death and thromboembolic events were similar among ranibizumab (lucentis), bevacizumab (avastin) and aflibercept (Eylea). The systemic and ocular complications associated with intravitreal injections among Asian patients at a tertiary eye center are relatively low and reflect the safety of the treatments.
Collapse
|
Journal Article |
9 |
30 |
19
|
Alnawaiseh M, Rosentreter A, Hillmann A, Alex AF, Niekämper D, Heiduschka P, Pap T, Eter N. OCT angiography in the mouse: A novel evaluation method for vascular pathologies of the mouse retina. Exp Eye Res 2016; 145:417-423. [PMID: 26946073 DOI: 10.1016/j.exer.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the application of optical coherence tomography (OCT) angiography in the retinas of healthy mice and to evaluate choroidal neovascularization (CNV) in a mouse model of laser-induced CNV. METHODS C57BL/6J mice aged 18-25 weeks were examined using the spectral-domain optical coherence tomography device RTVue XR Avanti (Optovue, Inc, Fremont, California, USA). Blood flow in different retinal layers was detected using the split-spectrum amplitude-decorrelation angiography algorithm. Fluorescein angiography (FA) images were obtained using the Heidelberg Spectralis device (Heidelberg, Germany). RESULTS Using the RTVue XR Avanti, we were able to obtain high-quality OCT angiography images of normal vasculature in the superficial, deep capillary and choriocapillary layers in laser-treated mice and untreated controls. Whereas no blood flow was detectable in the outer retina of untreated mice, blood flow and hence neovascular vessels were found in laser-treated mice. CONCLUSIONS OCT angiography can clearly visualize the normal vascular plexus in the different retinal layers in the mouse retina and choroid. With OCT angiography, it is possible to verify the choroidal neovascularization induced by laser treatment. Thus, OCT angiography is a helpful imaging tool for non-invasive, in vivo evaluation of laser-induced CNV in the mouse.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
29 |
20
|
Szigiato A, Mohan N, Talcott KE, Mammo DA, Babiuch AS, Kaiser PK, Ehlers JP, Rachitskaya A, Yuan A, Srivastava SK, Sharma S. Short-Term Outcomes of Faricimab in Patients with Neovascular Age-Related Macular Degeneration on Prior Anti-VEGF Therapy. Ophthalmol Retina 2024; 8:10-17. [PMID: 37673396 DOI: 10.1016/j.oret.2023.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE A subset of patients with neovascular age-related macular degeneration (nAMD) experience treatment burden and suboptimal response with anti-VEGF therapy. The aim of this study was to investigate the effect of switching to a novel, bispecific agent, faricimab, in patients with nAMD currently treated with anti-VEGF. DESIGN Retrospective, noncomparative cohort study. SUBJECTS Patients with nAMD previously treated with anti-VEGF and switched to intravitreal faricimab injection (IFI) at the Cleveland Clinic's Cole Eye Institute. METHODS Switching and administration schedule of IFI was at the discretion of the clinician. Visual acuity (VA) and macular OCT parameters, including central subfield thickness (CST), maximum pigment epithelial detachment (PED) height, and presence of subretinal (SRF) or intraretinal fluid (IRF), were assessed at baseline (day of first IFI) and after each IFI. MAIN OUTCOME MEASURES Central subfield thickness and presence of IRF or SRF after ≥ 3 IFIs. RESULTS One hundred twenty-six eyes of 106 patients were included in the analysis with a mean follow-up time of 24.3 ± 5.2 weeks. Before switching to IFI, patients received a mean of either aflibercept (20.0 ± 8.4, mean ± standard deviation), bevacizumab (7 ± 8.9), ranibizumab (1.9 ± 8.5), or brolucizumab (0.3 ± 1.6) injections. The most common agent used before switching to IFI was aflibercept (n = 110, 87%), and the mean treatment interval with any anti-VEGF was 5.6 ± 1.6 weeks before switching. Central subfield thickness was reduced from baseline after the first IFI (266.8 ± 64.7 vs. 249.8 ± 58.6 μm, P = 0.02) and persisted over the 3 IFIs (P = 0.01). Pigment epithelial detachment height was reduced after the third IFI (249.6 ± 179.0 vs. 206.9 ± 130.0 μm, P = 0.01). The mean VA (62.9 vs. 62.7 approximate ETDRS letters, P = 0.42) and interval between injections (6.3 vs. 5.7 weeks, P = 0.16) was similar after the third IFI compared with baseline. Eleven (8.7%) eyes were switched back to their previous anti-VEGF, including 2 (1.6%) eyes from 1 patient with intraocular inflammation requiring cessation of IFI. There were no other adverse events from switching. CONCLUSIONS Switching to faricimab resulted in a reduction in mean CST (-11.6 μm, P = 0.01) and PED height (-44.2 μm, P = 0.01) after 3 injections, with stable VA and at a similar treatment interval to prior anti-VEGF therapy. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
|
|
1 |
29 |
21
|
Tsuji T, Hirose Y, Fujimori K, Hirose T, Oyama A, Saikawa Y, Mimura T, Shiraishi K, Kobayashi T, Mizota A, Kotoku J. Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol 2020; 20:114. [PMID: 32192460 PMCID: PMC7082944 DOI: 10.1186/s12886-020-01382-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Classification of optical coherence tomography (OCT) images can be achieved with high accuracy using classical convolution neural networks (CNN), a commonly used deep learning network for computer-aided diagnosis. Classical CNN has often been criticized for suppressing positional relations in a pooling layer. Therefore, because capsule networks can learn positional information from images, we attempted application of a capsule network to OCT images to overcome that shortcoming. This study is our attempt to improve classification accuracy by replacing CNN with a capsule network. Methods From an OCT dataset, we produced a training dataset of 83,484 images and a test dataset of 1000 images. For training, the dataset comprises 37,205 images with choroidal neovascularization (CNV), 11,348 with diabetic macular edema (DME), 8616 with drusen, and 26,315 normal images. The test dataset has 250 images from each category. The proposed model was constructed based on a capsule network for improving classification accuracy. It was trained using the training dataset. Subsequently, the test dataset was used to evaluate the trained model. Results Classification of OCT images using our method achieved accuracy of 99.6%, which is 3.2 percentage points higher than that of other methods described in the literature. Conclusion The proposed method achieved classification accuracy results equivalent to those reported for other methods for CNV, DME, drusen, and normal images.
Collapse
|
Journal Article |
5 |
28 |
22
|
Liyanage SE, Gardner PJ, Ribeiro J, Cristante E, Sampson RD, Luhmann UFO, Ali RR, Bainbridge JW. Flow cytometric analysis of inflammatory and resident myeloid populations in mouse ocular inflammatory models. Exp Eye Res 2016; 151:160-70. [PMID: 27544307 PMCID: PMC5053376 DOI: 10.1016/j.exer.2016.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/07/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
Myeloid cells make a pivotal contribution to tissue homeostasis during inflammation. Both tissue-specific resident populations and infiltrating myeloid cells can cause tissue injury through aberrant activation and/or dysregulated activity. Reliable identification and quantification of myeloid cells within diseased tissues is important to understand pathological inflammatory processes. Flow cytometry is a valuable technique for leukocyte analysis, but a standardized flow cytometric method for myeloid cell populations in the eye is lacking. Here, we validate a reproducible flow cytometry gating approach to characterize myeloid cells in several commonly used models of ocular inflammation. We profile and quantify myeloid subsets across these models, and highlight the value of this strategy in identifying phenotypic differences using Ccr2-deficient mice. This method will aid standardization in the field and facilitate future investigations into the roles of myeloid cells during ocular inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
27 |
23
|
Theme trends and knowledge structure on choroidal neovascularization: a quantitative and co-word analysis. BMC Ophthalmol 2018; 18:86. [PMID: 29614994 PMCID: PMC5883306 DOI: 10.1186/s12886-018-0752-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/23/2018] [Indexed: 12/27/2022] Open
Abstract
Background The distribution pattern and knowledge structure of choroidal neovascularization (CNV) was surveyed based on literatures in PubMed. Methods Published scientific papers about CNV were retrieved from Jan 1st, 2012 to May 31st, 2017. Extracted MeSH terms were analyzed quantitatively by using Bibliographic Item Co-Occurrence Matrix Builder (BICOMB) and high-frequency MeSH terms were identified. Hierarchical cluster analysis was conducted by SPSS 19.0 according to the MeSH term-source article matrix. High-frequency MeSH terms co-occurrence matrix was constructed to support strategic diagram and social network analysis (SNA). Results According to the searching strategy, all together 2366 papers were included, and the number of annual papers changed slightly from Jan 1st, 2012 to May 31st, 2017. Among all the extracted MeSH terms, 44 high-frequency MeSH terms were identified and hotspots were clustered into 6 categories. In the strategic diagram, clinical drug therapy, pathology and diagnosis related researches of CNV were well developed. In contrast, the metabolism, etiology, complications, prevention and control of CNV in animal models, and genetics related researches of CNV were relatively immature, which offers potential research space for future study. As for the SNA result, the position status of each component was described by the centrality values. Conclusions The studies on CNV are relatively divergent and the 6 research categories concluded from this study could reflect the publication trends on CNV to some extent. By providing a quantitative bibliometric research across a 5-year span, it could help to depict an overall command of the latest topics and provide some hints for researchers when launching new projects.
Collapse
|
Journal Article |
7 |
27 |
24
|
Kambhampati SP, Bhutto IA, Wu T, Ho K, McLeod DS, Lutty GA, Kannan RM. Systemic dendrimer nanotherapies for targeted suppression of choroidal inflammation and neovascularization in age-related macular degeneration. J Control Release 2021; 335:527-540. [PMID: 34058271 DOI: 10.1016/j.jconrel.2021.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Inflammation and neovascularization are key pathological events in human age-related macular degeneration (AMD). Activated microglia/macrophages (mi/ma) and retinal pigmented epithelium (RPE) play an active role in every stage of disease progression. Systemic therapies that can target these cells and address both inflammation and neovascularization will broaden the impact of existing therapies and potentially open new avenues for early AMD where there are no viable therapies. Utilizing a clinically relevant rat model of AMD that mirrors many aspects that of human AMD pathological events, we show that systemic hydroxyl-terminated polyamidoamine dendrimer-triamcinolone acetonide conjugate (D-TA) is selectively taken up by the injured mi/ma and RPE (without the need for targeting ligands). D-TA suppresses choroidal neovascularization significantly (by >80%, >50-fold better than free drug), attenuates inflammation in the choroid and retina, by limiting macrophage infiltration in the pathological area, significantly suppressing pro-inflammatory cytokines and pro-angiogenic factors, with minimal side effects to healthy ocular tissue and other organs. In ex vivo studies on human postmortem diabetic eyes, the dendrimer is also taken up into choroidal macrophages. These results suggest that the systemic hydroxyl dendrimer-drugs can offer new avenues for therapies in treating early/dry AMD and late/neovascular AMD alone, or in combination with current anti-VEGF therapies. This hydroxyl dendrimer platform but conjugated to a different drug is undergoing clinical trials for severe COVID-19, potentially paving the way for faster clinical translation of similar compounds for ocular and retinal disorders.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
27 |
25
|
Kokame GT, Lai JC, Wee R, Yanagihara R, Shantha JG, Ayabe J, Hirai K. Prospective clinical trial of Intravitreal aflibercept treatment for PolypoIdal choroidal vasculopathy with hemorrhage or exudation (EPIC study): 6 month results. BMC Ophthalmol 2016; 16:127. [PMID: 27465105 PMCID: PMC4964097 DOI: 10.1186/s12886-016-0305-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Polypoidal choroidal vasculopathy is a variant of choroidal neovascularization and neovascular age related macular degeneration presenting with hemorrhagic and exudative changes within the macula and/or peripapillary region leading to vision loss. In contrast to neovascular age related macular degeneration, polypoidal choroidal vasculopathy has differing clinical manifestations and treatment strategies. Historically, polypoidal choroidal vasculopathy complexes are less responsive to anti-vascular endothelial growth factor therapy with no prospective clinical trials evaluating aflibercept in management of polypoidal choroidal vasculopathy. Herein we prospectively evaluate the efficacy and safety of intravitreal aflibercept in polypoidal choroidal vasculopathy. Methods A prospective, open-label, investigator-sponsored trial of intravitreal aflibercept for polypoidal choroidal vasculopathy in 21 eyes was conducted. Injections were administered monthly for 3 initial treatments, then every other month with monthly evaluations. The primary outcome measures were the mean change in best corrected visual acuity and adverse events. Secondary outcome measures included stabilization of vision, presence of subretinal hemorrhage, serous detachment, retinal pigment epithelial detachment, and regression of polypoidal complexes on indocyanine green angiography. Results At 6 months, the median visual acuity was 20/40 (range 20/25–20/200) with a mean Early Treatment Diabetic Retinopathy Study vision of 68.4 letters. There was a gain of 2.76 Early Treatment Diabetic Retinopathy Study letters at 6 months (p = 0.15). No patient developed severe vision loss (≤15 letters) and vision was stable or improved in 19/21 eyes (91 %). Subretinal fluid resolved in 13/18 eyes (72 %), and subretinal hemorrhage resolved in 6/8 eyes (75 %) respectively. The polyps regressed in 14/21 eyes (67 %) and the branching vascular network decreased in 1 eye and was stable in all other eyes. The retinal pigment epithelial detachment improved in 13/15 eyes (87 %). Bimonthly treatment occurred in 15/21 patients (71 %). There were no adverse events. Conclusions Intravitreal aflibercept results in stabilization of vision, resolution of exudative and hemorrhagic complications with regression of polyps in polypoidal choroidal vasculopathy. Eyes with polypoidal choroidal vasculopathy previously treated with ranibizumab and bevacizumab can show marked improvement in the retinal pigment epithelial detachments and persistent polyps with aflibercept therapy. Trial registration Clinical trials.gov NCT01871376, June 4th 2013 Electronic supplementary material The online version of this article (doi:10.1186/s12886-016-0305-2) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
9 |
26 |