Savijoki K, Skogman M, Fallarero A, Nyman TA, Sukura A, Vuorela P, Varmanen P. Penicillin G increases the synthesis of a suicidal marker (
CidC) and virulence (HlgBC) proteins in Staphylococcus aureus biofilm cells.
Int J Med Microbiol 2016;
306:69-74. [PMID:
26725755 DOI:
10.1016/j.ijmm.2015.11.006]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/30/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022] Open
Abstract
The present study reports the effect of Penicillin G (PenG) on the proteome dynamics of the Staphylococcus aureus strain Newman during biofilm mode of growth. The viability of the 18-h-old biofilm cells challenged with PenG at the concentration of 1mgmL(-1) was first assessed by plate counting, resazurin and LIVE/DEAD fluorescence staining, which indicated that the viability was reduced by ∼35% and ∼90% at 2h and 24h, respectively, after the addition of PenG. Subsequent two-dimensional difference gel electrophoresis (2D DIGE) assay of the treated and non-treated biofilm cells at the indicated time points revealed 45 proteins showing time- and treatment-specific change (1.5-fold, p<0.01). The 2D DIGE results suggested that the PenG-induced decrease in viability was accompanied by an increased synthesis of pyruvate oxidase (CidC), a suicidal marker known to potentiate acetate-dependent cell death in S. aureus. Increased abundance was also found for the TCA cycle associated malate-quinone oxidoreductase (Mqo), the ClpC ATPase, the HlgBC toxin and phage-associated proteins, which suggests that surviving cells have induced these activities as a last effort to overcome lethal doses of PenG. Proteomic results also revealed that the surviving cells were likely to strengthen their peptidoglycan due to the increased abundance of cell-wall biogenesis associated proteins, FemA and Pbp2; a phenomenon associated with dormancy in S. aureus.
Collapse