1
|
Shakeel MU, Zaidi SZJ, Ahmad A, Abahussain AAM, Nazir MH. Benchmarking of key performance factors in textile industry effluent treatment processes for enhanced environmental remediation. Sci Rep 2024; 14:26629. [PMID: 39496653 PMCID: PMC11535231 DOI: 10.1038/s41598-024-72851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
This article presents a comprehensive benchmarking analysis of merit performance factors in the Effluent Treatment Plants (ETP) of the textile industry. The study aims to identify and evaluate key factors that contribute to the efficient operation and performance of ETPs. The performance of ETP was analyzed by valuable data gained from figures of PH, Dissolved oxygen, Dissolved solids, Suspended solids, Density, COD and BOD. The technical trends showed the deviations in the working conditions of Effluent Treatment Plant by variation in temperature. This variation is achieved by varying the settling time of wastewater in the sedimentation tank during the working process. The required dosing, plant efficiency and economic factors were taken into account. The Plant efficiency was determined to be 83.5% at normal conditions of water entering at temperature of 30°C and pressure of 1 atm along with addition of coagulants and flocculants in the wastewater. While the efficiency of the ETP plant was calculated about 88% using a Compact photometer at elevated conditions of temperature such as > 45°C, while at other temperatures the efficiency decreases significantly due to several reasons. The operating time of water treatment was decreased due to the variations in temperature of wastewater while other conditions kept constant like pressure, flow rates of water and chemicals (Polyacrylamide and Polymeric Ferric Sulfate). The usage of coagulants and flocculants at optimum conditions has been discussed in this study.
Collapse
|
2
|
Shi W, Zhang T, Xie H, Xing B, Wen P, Ouyang K, Xiao F, Guo Q, Xiong H, Zhao Q. Characterization and in vitro digestibility of soybean tofu: Influence of the different kinds of coagulant. Food Chem 2024; 450:138984. [PMID: 38642532 DOI: 10.1016/j.foodchem.2024.138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 04/22/2024]
Abstract
This study explored the effect of diverse coagulants (glucono-δ-lactone (GDL), gypsum (GYP), microbial transglutaminase (MTGase), and white vinegar (WVG)) on microstructure, quality, and digestion properties of tofu. The four kinds of tofu were significantly different in their structure, composition, and digestibility. Tofu coagulated with MTGase had the highest springiness and cohesiveness while GDL tofu had the highest enthalpy (6.54 J/g). However, the WVG and GYP groups outperformed others in terms of thermodynamic, and digestion properties. The WVG group exhibited the highest nitrogen release (84.3%), water content, denaturation temperature, and the highest free-SH content but the lowest S-S content. Compared to WVG, the GYP group had the highest ash content, hardness, and chewiness. Results demonstrated that the tofu prepared by WVG and GYP show high digestibility. Meanwhile, the former has better thermal properties and the latter has better texture properties.
Collapse
|
3
|
Pasciucco F, Pasciucco E, Castagnoli A, Iannelli R, Pecorini I. Comparing the effects of Al-based coagulants in waste activated sludge anaerobic digestion: Methane yield, kinetics and sludge implications. Heliyon 2024; 10:e29282. [PMID: 38623244 PMCID: PMC11016704 DOI: 10.1016/j.heliyon.2024.e29282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Due to its effectiveness and ease of application, the process of flocculation and coagulation is often used for pollution removal in wastewater treatment. Most of these coagulants precipitate and accumulate in waste activated sludge (WAS), and could negatively affect sludge treatments, as observed for anaerobic digestion. Nowadays, wastewater treatment plants (WWTPs) are widely discussed because of the current paradigm shift from linear to circular economy, and the treatments performed at the facility should be planned to avoid or reduce adverse effects on other processes. The aim of this study was to compare the impact of poly aluminum chloride (PAC) and aluminum sulfate (AS) on WAS anaerobic digestion, by feeding replicate serum reactors with different levels of coagulant (5, 10 and 20 mg Al/g TS). Reactors without the addition of any coagulants represented the control group. Results revealed that Al-based coagulants inhibited methane production, which decreased as the coagulant addition increased. The inhibition was much more severe in AS-conditioned reactors, showing average reductions in methane yield from 14.4 to 31.7%, compared to the control (167.76 ± 1.88 mL CH4/g VS). Analytical analysis, FTIR and SEM investigations revealed that the addition of coagulants affected the initial conditions of the anaerobic reactors, penalizing the solubilization, hydrolysis and acidogenesis phases. Furthermore, the massive formation of H2S in AS-conditioned reactors played a key role in the suppression of methane phase. On the other hand, the use of coagulant can promote the accumulation and recovery of nutrient in WAS, especially in terms of phosphorus. Our findings will expand research knowledge in this field and guide stakeholders in the choice of coagulants at full scale plant. Future research should focus on reducing the effect of coagulants on methane production by modifying or testing new types of flocculants.
Collapse
|
4
|
Chen H, Xu H, Zhong C, Liu M, Yang L, He J, Sun Y, Zhao C, Wang D. Treatment of landfill leachate by coagulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169294. [PMID: 38110093 DOI: 10.1016/j.scitotenv.2023.169294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Landfill leachate is a seriously polluted and hazardous liquid, which contains a high concentration of refractory organics, ammonia nitrogen, heavy metals, inorganic salts, and various suspended solids. The favorable disposal of landfill leachate has always been a hot and challenging issue in wastewater treatment. As one of the best available technologies for landfill leachate disposal, coagulation has been studied extensively. However, there is an absence of a systematic review regarding coagulation in landfill leachate treatment. In this paper, a review focusing on the characteristics, mechanisms, and application of coagulation in landfill leachate treatment was provided. Different coagulants and factors influencing the coagulation effect were synthetically summarized. The performance of coagulation coupled with other processes and their complementary advantages were elucidated. Additionally, the economic analysis conducted in this study suggests the cost-effectiveness of the coagulation process. Based on previous studies, challenges and perspectives met by landfill leachate coagulation treatment were also put forward. Overall, this review will provide a reference for the coagulation treatment of landfill leachate and promote the development of efficient and eco-friendly leachate treatment technology.
Collapse
|
5
|
Richardson LA, Basu A, Chien LC, Alman AC, Snell-Bergeon JK. Longitudinal associations of physical activity with inflammatory markers in US adults with and without type 1 diabetes. Diabetes Res Clin Pract 2023; 206:110978. [PMID: 37890704 PMCID: PMC10841646 DOI: 10.1016/j.diabres.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
AIMS To investigate the longitudinal associations of different levels of moderate-to-vigorous physical activity (MVPA) with C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1), and fibrinogen. METHODS We conducted longitudinal analyses with data from the Coronary Artery Calcification in T1D (CACTI) cohort, which included individuals with type 1 diabetes (T1D, n = 563) and without diabetes mellitus (non-DM, n = 692) with ∼ 3 years follow-up. Individuals were divided into groups to perform two analyses: 1) those who performed any MVPA and those who were sedentary (0 mins/week) and 2) those who performed 1-149 mins/week, ≥150 mins/week, or who were sedentary. Mixed effect models with an unstructured covariance structure were applied. RESULTS Compared to sedentary individuals, any MVPA was associated with a -2.96 % decrease in fibrinogen (p-value = 0.0043) and a -11.23 % decrease in PAI-1 (p-value = 0.0007) in combined analyses. Stratified analyses found 1-149 mins/week and ≥ 150 mins/week were associated with significant decreases in fibrinogen, -5.31 % and -3.44 %, respectively, in those with T1D. Both the non-DM and T1D groups had significant decreases in PAI-1 associated with ≥ 150 mins/week (-9.11 % and -16.96 %, respectively). CONCLUSIONS Our findings highlight that meeting ≥ 150 mins/week of MVPA is inversely associated with inflammatory markers linked with increased CVD risk.
Collapse
|
6
|
Sahu JN, Kapelyushin Y, Mishra DP, Ghosh P, Sahoo BK, Trofimov E, Meikap BC. Utilization of ferrous slags as coagulants, filters, adsorbents, neutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review. CHEMOSPHERE 2023; 325:138201. [PMID: 36863629 DOI: 10.1016/j.chemosphere.2023.138201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Solid waste is currently produced in substantial amounts by industrial activities. While some are recycled, the majority of them are dumped in landfills. Iron and steel production leaves behind ferrous slag, which must be created organically, managed wisely and scientifically if the sector is to remain more sustainably maintained. Ferrous slag is the term for the solid waste that is produced when raw iron is smelted in ironworks and during the production of steel. Both its specific surface area and porosity are relatively high. Since these industrial waste materials are so easily accessible and offer such serious disposal challenges, the idea of their reuse in water and wastewater treatment systems is an appealing alternative. There are many components such as Fe, Na, Ca, Mg, and silicon found in ferrous slags, which make it an ideal substance for wastewater treatment. This research investigates the potential of ferrous slag as coagulants, filters, adsorbents, neutralizers/stabilizers, supplementary filler material in soil aquifers, and engineered wetland bed media to remove contaminants from water and wastewater. Ferrous slag may provide a substantial environmental risk before or after reuse, so leaching and eco-toxicological investigations are necessary. Some study revealed that the amount of heavy metal ions leached from ferrous slag conforms to industrial norms and is exceedingly safe, hence it may be employed as a new type of inexpensive material to remove contaminants from wastewater. The practical relevance and significance of these aspects are attempted to be analyzed, taking into account all recent advancements in the fields, in order to help in the development of informed decisions about future directions for research and development related to the utilization of ferrous slags for wastewater treatment.
Collapse
|
7
|
Wang X, Shi C, Hao X, van Loosdrecht MCM, Wu Y. Synergy of phosphate recovery from sludge-incinerated ash and coagulant production by desalinated brine. WATER RESEARCH 2023; 231:119658. [PMID: 36708629 DOI: 10.1016/j.watres.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Wet-chemical approach is widely applied for phosphate recovery from incinerated ash of waste activated sludge (WAS), along with metals removed/recovered. The high contents of both aluminum (Al) and iron (Fe) in WAS-incinerated ash should be suitable for producing coagulants with some waste anions like Cl- and SO42- With acid (HCl) leaching and metals' removing, approximately 88 wt% of phosphorus (P) in the ash could be recovered as hydroxylapatite (HAP: Ca5(PO4)3OH); Fe3+ in the acidic leachate could be selectively removed/recovered by extraction with an organic solvent of tributyl phosphate (TBP), and thus a FeCl3-based coagulant could be synthesized by stripping the raffinate with the original brine (containing abundant Cl- and SO42-). Furthermore, a liquid poly-aluminum chloride (PAC)-based coagulant could also be synthesized with Al3+ removed from the ash and the brine, which behaved almost the same in the coagulation performance as a commercial coagulant on both phosphate and turbidity removals. Both P-recovery from the ash and coagulant production associated with the brine would enlarge the markets of both 'blue' phosphate and 'green' coagulants.
Collapse
|
8
|
Hao X, Wang X, Shi C, van Loosdrecht MCM, Wu Y. Creating coagulants through the combined use of ash and brine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157344. [PMID: 35842163 DOI: 10.1016/j.scitotenv.2022.157344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Sludge incineration and seawater desalination are two approaches that can be used in the disposal of waste activated sludge (WAS) and for obtaining fresh water. As resource recovery from wastewater treatment and water purification is a topic of particular interest in these times, "water mining" has become a focus of research, with phosphate/P-recovery from WAS incineration ash, and extraction of useful elements from the brine of desalination being important steps in the pursuit of a circular/blue economy. However, P-recovery from ash involves removing metals, which need to be disposed of carefully, as does the brine collected. If cations in the ash and anions in the brine could be combined in order to produce coagulants/flocculants, a new circular model would be established. A preliminary experiment for this purpose has demonstrated that a liquid poly‑aluminum chloride (PAC) could be synthesized from the aluminum ion/Al3+ removed from the ash and the original brine. With this work, we synthesized the liquid PAC by a hydrothermal method, and the results from infrared spectrometer demonstrated that the synthesized PAC was similar to a commercial PAC. Moreover, the synthesized PAC was able to efficiently reduce the effluent turbidity of wastewater treatment plants (WWTPs), especially when compared with the commercial PAC. It is therefore important that research in this area be continued in order to improve the quality of synthesized coagulants and to produce different coagulants based on cations and anions in ash and brine.
Collapse
|
9
|
Shin J, Choi S, Park CM, Wang J, Kim YM. Reduction of antibiotic resistome in influent of a wastewater treatment plant (WWTP) via a chemically enhanced primary treatment (CEPT) process. CHEMOSPHERE 2022; 286:131569. [PMID: 34284223 DOI: 10.1016/j.chemosphere.2021.131569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Chemically enhanced primary treatment (CEPT) has been considered for maximizing wastewater energy recovery by enhancing the carbon captured through the primary treatment. However, evaluating the potential of CEPT as a primary treatment process for removing antibiotic resistance genes (ARGs) in the influent from a wastewater treatment plant (WWTP) has seldom been investigated. In this study, CEPT was conducted to assess simultaneous reduction of 13 major targeted ARGs and common pollutants in wastewater compared with primary sedimentation alone (non-CEPT). CEPT processes using three types of coagulants (PACl, FeCl3 and alum) effectively reduced absolute abundance of ARGs and intI1 in the influent from municipal WWTP. Average log-removal of absolute abundance of ARGs was achieved up to 1.77 ± 0.41 along with 90% turbidity reduction compared to non-CEPT. Through the simultaneous reduction of ARGs and intI1 genes during a CEPT process, ARGs proliferation may be limited directly through reduction of antibiotic resistant bacteria or indirectly through decreasing the possibility of horizontal gene transfer by intI1 removal. Reduction of ARGs and intI1 was improved by increasing coagulants' doses: abundances of residual ARGs under optimal dose conditions were similar, regardless of the different characteristics of coagulant types. The strongly positive correlation between reduction of turbidity/total phosphorus (T-P) and ARGs was explored, identifying that turbidity or T-P might be suitable indicators linked with variations in the abundance of ARGs during CEPT. As a result, CEPT may prove promising in efforts to control ARGs flowing into a WWTP.
Collapse
|
10
|
Cao B, Zhang T, Zhang W, Wang D. Enhanced technology based for sewage sludge deep dewatering: A critical review. WATER RESEARCH 2021; 189:116650. [PMID: 33246217 DOI: 10.1016/j.watres.2020.116650] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
Sludge is an inevitable by product of sewage treatment, and it includes pathogens, heavy metals, organic pollutants and other toxic substances. The components of sludge are complex and variable with extracellular polymeric substances (EPS) being one. EPS are highly hydrophilic and compressible, and make sludge dewatering difficult. Therefore, the development of efficient sludge-dewatering technology is an important means of mitigating rapid sludge growth. At present, the main methods used for sludge deep-dewatering technology are chemical preconditioning with high-pressure filtration and electrical mechanical dewatering. The selection of chemical preconditioning directly determines the final efficiency of the sludge-dewatering process. In this paper, we conduct a comprehensive review of the problems related to sludge dewatering and systematically summarise the impact of different chemical conditioning technologies on the efficiency of sludge dewatering. Furthermore, the characteristics of different enhanced dewatering technologies are evaluated and analysed for their adaptability and final disposal methods. We believe that this review can clarify the chemical conditioner mechanism to improve sludge dewatering, provide reference debugging information for the sludge-dewatering process and promote the development of efficient and environmentally friendly sludge-dewatering technology.
Collapse
|
11
|
Salehin S, Kulandaivelu J, Rebosura M, Khan W, Wong R, Jiang G, Smith P, McPhee P, Howard C, Sharma K, Keller J, Donose BC, Yuan Z, Pikaar I. Opportunities for reducing coagulants usage in urban water management: The Oxley Creek Sewage Collection and Treatment System as an example. WATER RESEARCH 2019; 165:114996. [PMID: 31465996 DOI: 10.1016/j.watres.2019.114996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/09/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Iron and aluminium based coagulants are used in enormous amounts and play an essential role in urban water management globally. They are dosed at drinking water production facilities for the removal of natural organic matter. Iron salts are also dosed to sewers for corrosion and odour control, and at wastewater treatment plants (WWTPs) for phosphate removal from wastewater and hydrogen sulfide removal from biogas. A recent laboratory study revealed that iron dosed to sewers is available for phosphate and hydrogen sulfide removal in the downstream WWTP. This study demonstrates for the first time under real-life conditions the practical feasibility and effectiveness of the strategy through a year-long full-scale investigation. Over a period of 5 months, alum dosing at ∼190 kg Al/day to the bioreactor in a full-scale WWTP was stopped, while FeCl2 dosing at ∼160 kg Fe/day in the upstream network was commenced. Extensive sampling campaigns were conducted over the baseline, trial and recovery periods to investigate sulfide control in sewers and its flow-on effects on phosphate in WWTP effluent, H2S in biogas, as well as on the WWTP effluent hypochlorite disinfection process. A plant-wide mass balance analysis showed that the Fe2+ dosed upstream was effectively used for P removal in the activated sludge tanks, with an effluent phosphate concentration comparable to that in the baseline period (i.e. with alum dosing to the bioreactor). Simultaneously, hydrogen sulfide concentration in biogas decreased ∼43%, from 495 ± 10 to 283 ± 4 ppm. No effects on biological nitrogen removal and disinfection processes were observed. Both effluent phosphate and H2S in biogas increased in the recovery period, when in-sewer dosing of FeCl2 was stopped. X-ray diffraction failed to reveal the presence of vivianite in the digested sludge, providing strong evidence that thermal hydrolysis prevented the formation of vivianite during anaerobic digestion. The latter limits the potential for selective recovery of Fe and P through magnetic separation. Overall, our study clearly demonstrates the multiple beneficial reuse of iron in a real urban wastewater system and urges water utilities to adopt an integrated approach to coagulant use in urban water management.
Collapse
|
12
|
Borowski S, Boniecki P, Kubacki P, Czyżowska A. Food waste co-digestion with slaughterhouse waste and sewage sludge: Digestate conditioning and supernatant quality. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 74:158-167. [PMID: 29248372 DOI: 10.1016/j.wasman.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm3 laboratory reactors as well as in 50-dm3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m3 CH4/kgVSfed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m3 of methane from 1 kgVSfed. No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered.
Collapse
|
13
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
|
14
|
[Blood management in complex reconstructive spine surgery in ASD patients : Do effective measures to reduce bleeding exist?]. DER ORTHOPADE 2018; 47:296-300. [PMID: 29435595 DOI: 10.1007/s00132-018-3535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Blood management in reconstructive spine surgery is a challenge and must be managed interdisciplinarily. An experienced team of anesthesiologists and spine surgeons needs to work closely together. THERAPY After optimal preoperative preparation, the patient is given an initial dose of 1000 mg tranexamic acid. The most adequate medium blood pressure is about 80 mm Hg during surgery. The surgeon must watch for subperiosteal preparation and subtle stypsis. A cell saver is used. If the expected blood loss exceeds 1000 ml, additional tranexamic acid of 1000 mg/6 h will be infused. Epidural bleeding as well as bony hemorrhage are challenges for the spine surgeon. Epidural veins should be coagulated under the microscope before they bleed. Bone wax should be used in bony bleeding. If bleeding is uncontrollable, industrially produced hemostyptics can be used. POST-TREATMENT Postoperatively the risk of bleeding should be minimized under critical observation of coagulation and blood pressure. Also, a critical assessment of the anticoagulation is to be made. The drainage rate should be well documented. The surgeon must decide whether the drain is to be put on suction or on overflow. He must also decide when to remove the drainage.
Collapse
|
15
|
Tomita E, Takase H, Tajima K, Suematsu Y. Change of coagulation after NovoSeven® use for bleeding during cardiac surgery. Asian Cardiovasc Thorac Ann 2017; 25:99-104. [PMID: 28114794 DOI: 10.1177/0218492317689901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives Recombinant activated factor VII has been used for the treatment of hemophilia, factor VII deficiency, and Glanzmann's thrombasthenia. Off-label uses have recently been increasing, and there are reports that recombinant activated factor VII is effective for the treatment of excessive bleeding during or after cardiovascular surgery. We retrospectively reviewed the effectiveness of recombinant activated factor VII and its influence on the coagulation system as a treatment for uncontrollable bleeding during cardiovascular surgery. Methods Between April 2009 and May 2015, recombinant activated factor VII was used to treat uncontrollable bleeding during cardiovascular surgery in 17 patients at our hospital. The indications for recombinant activated factor VII administration were critical uncontrollable bleeding during surgery and normal platelet and fibrinogen levels. Results Blood loss significantly decreased in every case after recombinant activated factor VII administration ( p < 0.05). No adverse thromboembolic events were encountered. The prothrombin time-international normalized ratio, activated partial thromboplastin time, fibrin degradation product and D-dimer levels decreased significantly after recombinant activated factor VII administration. One day later, all blood coagulation test values were almost within the normal ranges. Conclusions Recombinant activated factor VII has a strong hemostatic action, but it is necessary to exclude surgical bleeding to exhibit the hemostatic effect. Administration that does not comply with the indications for recombinant activated factor VII may lead to serious complications such as thromboembolism. In properly selected patients, recombinant activated factor VII is an effective agent for the treatment of uncontrollable bleeding during cardiovascular surgery.
Collapse
|
16
|
Jones AN, Bridgeman J. Investigating the characteristic strength of flocs formed from crude and purified Hibiscus extracts in water treatment. WATER RESEARCH 2016; 103:21-29. [PMID: 27429351 DOI: 10.1016/j.watres.2016.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
The growth, breakage and re-growth of flocs formed using crude and purified seed extracts of Okra (OK), Sabdariffa (SB) and Kenaf (KE) as coagulants and coagulant aids was assessed. The results showed floc size increased from 300 μm when aluminium sulphate (AS) was used as a coagulant to between 696 μm and 722 μm with the addition of 50 mg/l of OK, KE and SB crude samples as coagulant aids. Similarly, an increase in floc size was observed when each of the purified proteins was used as coagulant aid at doses of between 0.123 and 0.74 mg/l. The largest floc sizes of 741 μm, 460 μm and 571 μm were obtained with a 0.123 mg/l dose of purified Okra protein (POP), purified Sabdariffa (PSP) and purified Kenaf (PKP) respectively. Further coagulant aid addition from 0.123 to 0.74 mg/l resulted in a decrease in floc size and strength in POP and PSP. However, an increase in floc strength and reduced d50 size was observed in PKP at a dose of 0.74 mg/l. Flocs produced when using purified and crude extract samples as coagulant aids exhibited high recovery factors and strength. However, flocs exhibited greater recovery post-breakage when the extracts were used as a primary coagulant. It was observed that the combination of purified proteins and AS improved floc size, strength and recovery factors. Therefore, the applications of Hibiscus seeds in either crude or purified form increases floc growth, strength, recoverability and can also reduce the cost associated with the import of AS in developing countries.
Collapse
|
17
|
Manamperuma LD, Ratnaweera HC, Martsul A. Mechanisms during suspended solids and phosphate concentration variations in wastewater coagulation process. ENVIRONMENTAL TECHNOLOGY 2016; 37:2405-2413. [PMID: 26857441 DOI: 10.1080/09593330.2016.1150354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Coagulation-flocculation process is one of the most commonly used treatment process in water and wastewater treatment. Particles (PA) and phosphates (P) removal are the main objectives in wastewater coagulation. There is a general agreement on the dominant mechanism of PA and P removal during coagulation. While it is agreed that the PA and P removal reactions are competitive and takes place simultaneously, there is no clear understanding on the ratio of distribution of coagulants among the PA and P removal. The ratio can be significantly influenced by the content of PA and P, in addition to other water and coagulant quality factors. This paper attempts to provide a qualitative ratio of coagulant distribution based on PA:P proportion in raw water and OH:Al ratio in coagulants.
Collapse
|
18
|
Papadopoulos N, Martens S, Keller H, El-Sayed Ahmad A, Moritz A, Zierer A. Challenging rescue of a 4 years old boy with H1N1 infection by extracorporeal membrane oxygenator: A case report. World J Clin Cases 2014; 2:578-580. [PMID: 25325070 PMCID: PMC4198412 DOI: 10.12998/wjcc.v2.i10.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/23/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Introduction: World Health Organization announced on April 2009 a public health emergency of international concern caused by swine-origin influenza A (H1N1) virus. Acute respiratory distress syndrome (ARDS) has been reported to be the most devastating complications of this pathogen. Extracorporeal membrane oxygenator (ECMO) therapy for patients with H1N1 related ARDS has been described once all other therapeutic options have been exhausted. Here, we report the case of a child (German, male) with H1N1-associated fulminate respiratory and secondary hemodynamic deterioration who was rescued by initial emergent ECMO established through a dialysis catheter and subsequent switch to central cannulation following median sternotomy. This report highlights several important issues. First, it describes a successful use of a dialysis catheter for the establishment of a veno-venous ECMO in an emergency case by child. Second, it highlights the importance of a closely monitoring of clotting parameters during ECMO therapy and third, if severe respiratory failure is complicated by cardiogenic shock, veno-atrial ECMO support via median sternotomy should be considered as a viable treatment option without further delay.
Collapse
|
19
|
Paneer production: A review. Journal of Food Science and Technology 2011; 48:645-60. [PMID: 23572801 DOI: 10.1007/s13197-011-0247-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/13/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Paneer represents a South Asian variety of soft cheese prepared by acid and heat coagulation of milk. It is popular throughout South Asia and used in the preparation of a number of several culinary preparations and snacks. It is a rich source of high quality animal protein, fat, minerals and vitamins. Due to availability of different types of milk and variation in milk composition, various techniques have been developed for the production of paneer as per the requirements of the consumers with appreciable improvement in the yield and other quality characteristics. Some of the modifications recommended in the preparation of paneer are discussed in this review. Examples of some 'value-added' paneer have been dealt.
Collapse
|
20
|
Rekha CR, Vijayalakshmi G. Influence of natural coagulants on isoflavones and antioxidant activity of tofu. Journal of Food Science and Technology 2010; 47:387-93. [PMID: 23572658 DOI: 10.1007/s13197-010-0064-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2009] [Accepted: 10/29/2009] [Indexed: 10/19/2022]
Abstract
Tofu (instead of preparing using synthetic coagulant) was prepared using coagulants of plant origin (Citrus limonum, Garcinia indica, Tamarindus indica, Phyllanthus acidus and Passiflora edulis). Total crude protein and fat contents were highest in tofu prepared using G. indica and T. indica (72.5% dbw) compared to synthetic coagulant. Tofu prepared with natural coagulants had signifi cantly higher antioxidant activity compared to synthetic coagulant. Bioconversion of isoflavone glucosides (daidzin and genistin) into their corresponding bioactive aglycones (daidzein and genistein) was observed in tofu. The difference between glucosides and aglycones contents in soy milk was significant but there was not much difference in tofu coagulated with synthetic and natural coagulants.
Collapse
|