Tan Y, Li S, Li C, Liu S. Self-assembly of
coconut residue fiber with chitosan: Effect of three pre-treatments on the self-assembly process and bile salt adsorption.
Food Chem 2024;
437:137857. [PMID:
37924767 DOI:
10.1016/j.foodchem.2023.137857]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Self-assembly with chitosan is a promising method for improving bile salt (BS) adsorption by coconut residue fiber (CRF). To study the self-assembly process, three pre-treatments were performed and investigated using microrheological analysis. The effects of the pretreatments on the self-assembly of CRF and the BS adsorption were evaluated. During self-assembly, CRFs underwent Brownian-like motion, and the addition of chitosan facilitated the formation of inter-particle interactions between CRFs in the system. These interactions were small in extent, large in number, and slow to state change, in addition to relatively high strength and longer maintenance, all of which contributed to the binding to BS. The conventional pretreatments failed to effectively improve the BS adsorption of the self-assembled CRFs and weakened the inter-particle interactions in the system. These results suggest that chitosan assists in the adsorption of self-assembled CRF to BS through a combination of H-bonds and other weak intermolecular forces.
Collapse