1
|
Willette AA, Johnson SC, Birdsill AC, Sager MA, Christian B, Baker LD, Craft S, Oh J, Statz E, Hermann BP, Jonaitis EM, Koscik RL, La Rue A, Asthana S, Bendlin BB. Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimers Dement 2015; 11:504-510.e1. [PMID: 25043908 PMCID: PMC4297592 DOI: 10.1016/j.jalz.2014.03.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insulin resistance (IR) increases Alzheimer's disease (AD) risk. IR is related to greater amyloid burden post-mortem and increased deposition within areas affected by early AD. No studies have examined if IR is associated with an in vivo index of amyloid in the human brain in late middle-aged participants at risk for AD. METHODS Asymptomatic, late middle-aged adults (N = 186) from the Wisconsin Registry for Alzheimer's Prevention underwent [C-11]Pittsburgh compound B (PiB) positron emission tomography. The cross-sectional design tested the interaction between insulin resistance and glycemic status on PiB distribution volume ratio in three regions of interest (frontal, parietal, and temporal). RESULTS In participants with normoglycemia but not hyperglycemia, higher insulin resistance corresponded to higher PiB uptake in frontal and temporal areas, reflecting increased amyloid deposition. CONCLUSIONS This is the first human study to demonstrate that insulin resistance may contribute to amyloid deposition in brain regions affected by AD.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
197 |
2
|
Performance of the CogState computerized battery in the Mayo Clinic Study on Aging. Alzheimers Dement 2015; 11:1367-76. [PMID: 25858683 DOI: 10.1016/j.jalz.2015.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/13/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The feasibility and validity of brief computerized cognitive batteries at the population-level are unknown. METHODS Nondemented participants (n = 1660, age 50-97 years) in the Mayo Clinic Study on Aging completed the computerized CogState battery and standard neuropsychological battery. The correlation between tests was examined and comparisons between CogState performance on the personal computer (PC) and iPad (n = 331), and in the clinic vs. at home (n = 194), were assessed. RESULTS We obtained valid data on greater than 97% of participants on each test. Correlations between the CogState and neuropsychological tests ranged from -0.462 to 0.531. Although absolute differences between the PC and iPad were small and participants preferred the iPad, performance on the PC was faster. Participants performed faster on Detection, One Card Learning, and One Back at home compared with the clinic. DISCUSSION The computerized CogState battery, especially the iPad, was feasible, acceptable, and valid in the population.
Collapse
|
Validation Study |
10 |
83 |
3
|
Armstrong NM, An Y, Beason-Held L, Doshi J, Erus G, Ferrucci L, Davatzikos C, Resnick SM. Sex differences in brain aging and predictors of neurodegeneration in cognitively healthy older adults. Neurobiol Aging 2019; 81:146-156. [PMID: 31280118 DOI: 10.1016/j.neurobiolaging.2019.05.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/04/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023]
Abstract
We evaluated sex differences in MRI-based volume loss and differences in predictors of this neurodegeneration in cognitively healthy older adults. Mixed-effects regression was used to compare regional brain volume trajectories of 295 male and 328 female cognitively healthy Baltimore Longitudinal Study of Aging participants, aged 55-92 years, with up to 20 years of follow-up and to assess sex differences in the associations of age, hypertension, obesity, APOE e4 carrier status, and high-density lipoprotein cholesterol with regional brain volume trajectories. For both sexes, older age was associated with steeper volumetric declines in many brain regions, with sex differences in volume loss observed in frontal, temporal, and parietal regions. In males, hypertension and higher high-density lipoprotein cholesterol were protective against volume loss in the hippocampus, entorhinal cortex, and parahippocampal gyrus. In females, hypertension was associated with steeper volumetric decline in gray matter, and obesity was protective against volume loss in temporal gray matter. Predictors of volume change may affect annual rates of volume change differently between men and women.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
69 |
4
|
Heinsinger NM, Gachechiladze MA, Rebeck GW. Apolipoprotein E Genotype Affects Size of ApoE Complexes in Cerebrospinal Fluid. J Neuropathol Exp Neurol 2016; 75:918-924. [PMID: 27516118 DOI: 10.1093/jnen/nlw067] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apolipoprotein E (apoE) is associated with lipoproteins in the cerebrospinal fluid (CSF). APOE4 increases and APOE2 decreases the risk for Alzheimer disease (AD) compared to the risk associated with APOE3 Because apoE4 is less efficient at cholesterol efflux than apoE2 or apoE3 in vitro, we hypothesized that APOE genotype may affect apoE particle size in vivo and that these size differences may be related to AD risk. We used nondenaturing gel electrophoresis to test for differences in the size of apoE complexes in human CSF samples of various APOE genotypes and created profiles of each sample to compare the patterns of apoE distribution. For middle-aged adults with no dementia, APOE 2.3 individuals had significantly larger apoE complexes than APOE 3.3 subjects, who had significantly larger apoE complexes than APOE 3.4 and APOE 4.4 individuals. Similarly, in an independent cohort of older adults, CSF apoE complexes of APOE4-positive individuals were smaller than those of the APOE4-negative individuals. Compared to individuals with no dementia, those with the mildest stages of dementia had similar sized CSF apoE complexes. These results identify a novel phenotypic difference in the size of CSF apoE complexes in middle age that correlate with the risk of AD later in life.
Collapse
|
Journal Article |
9 |
51 |
5
|
The Israel Diabetes and Cognitive Decline (IDCD) study: Design and baseline characteristics. Alzheimers Dement 2014; 10:769-78. [PMID: 25150735 DOI: 10.1016/j.jalz.2014.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with increased risk of dementia. The prospective longitudinal Israel Diabetes and Cognitive Decline study aims at identifying T2D-related characteristics associated with cognitive decline. METHODS Subjects are population-based T2D 65+, initially cognitively intact. Medical conditions, blood examinations, and medication use data are since 1998; cognitive, functional, demographic, psychiatric, DNA, and inflammatory marker study assessments were conducted every 18 months. Because the duration of T2D reflects its chronicity and implications, we compared short (0-4.99 years), moderate (5-9.99), and long (10+) duration for the first 897 subjects. RESULTS The long duration group used more T2D medications, had higher glucose, lower glomerular filtration rate, slower walking speed, and poorer cognitive functioning. Duration was not associated with most medical, blood, urine, and vital characteristics. CONCLUSIONS Tracking cognition, with face-to-face evaluations, exploiting 15 years of historical detailed computerized, easily accessible, and validated T2D-related characteristics may provide novel insights into T2D-related dementia.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
50 |
6
|
Ziontz J, Bilgel M, Shafer AT, Moghekar A, Elkins W, Helphrey J, Gomez G, June D, McDonald MA, Dannals RF, Azad BB, Ferrucci L, Wong DF, Resnick SM. Tau pathology in cognitively normal older adults. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:637-645. [PMID: 31517026 PMCID: PMC6732758 DOI: 10.1016/j.dadm.2019.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Tau pathology, a hallmark of Alzheimer's disease, is observed in the brains of virtually all individuals over 70 years. Methods Using 18F-AV-1451 (18F-flortaucipir) positron emission tomography, we evaluated tau pathology in 54 cognitively normal participants (mean age: 77.5 years, SD: 8.9) from the Baltimore Longitudinal Study of Aging. We assessed associations between positron emission tomography signal and age, sex, race, and amyloid positivity. We investigated relationships between regional signal and retrospective rates of change in regional volumes and cognitive function adjusting for age, sex, and amyloid status. Results Greater age, male sex, black race, and amyloid positivity were associated with higher 18F-AV-1451 retention in distinct brain regions. Retention in the entorhinal cortex was associated with lower entorhinal volume (β = −1.124, SE = 0.485, P = .025) and a steeper decline in memory performance (β = −0.086, SE = 0.039, P = .029). Discussion Assessment of medial temporal tau pathology will provide insights into early structural brain changes associated with later cognitive impairment and Alzheimer's disease.
Age and amyloid-associated tau positron emission tomography (PET) differences in frontal, temporal, and occipital areas. Entorhinal tau PET associated with lower volume in the same region. Medial temporal tau PET related to memory decline in older cognitively normals.
Collapse
|
Journal Article |
6 |
44 |
7
|
Verfaillie SC, Tijms B, Versteeg A, Benedictus MR, Bouwman FH, Scheltens P, Barkhof F, Vrenken H, van der Flier WM. Thinner temporal and parietal cortex is related to incident clinical progression to dementia in patients with subjective cognitive decline. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:43-52. [PMID: 28054027 PMCID: PMC5198882 DOI: 10.1016/j.dadm.2016.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION We aimed to investigate if thinner cortex of the Alzheimer's disease (AD)-signature region was related to clinical progression in patients with subjective cognitive decline (SCD). METHODS We included 302 SCD patients with clinical follow-up (≥1 year) and three-dimensional T1 magnetic resonance imaging. We estimated AD-signature cortical thickness, consisting of nine frontal, parietal, and temporal gyri and hippocampal volume. We used Cox proportional hazard models (hazard ratios and 95% confidence intervals) to evaluate cortical thickness in relation to clinical progression to mild cognitive impairment (MCI) or dementia. RESULTS After a follow-up of the mean (standard deviation) 3 (2) years, 49 patients (16%) showed clinical progression to MCI (n = 32), AD (n = 9), or non-AD dementia (n = 8). Hippocampal volumes, thinner cortex of the AD-signature (hazard ratio [95% confidence interval], 5 [2-17]) and various AD-signature subcomponents were associated with increased risk of clinical progression. Stratified analyses showed that thinner AD-signature cortex was specifically predictive for clinical progression to dementia but not to MCI. DISCUSSION In SCD patients, thinner regional cortex is associated with clinical progression to dementia.
Collapse
|
Review |
9 |
41 |
8
|
Konijnenberg E, Carter SF, Ten Kate M, den Braber A, Tomassen J, Amadi C, Wesselman L, Nguyen HT, van de Kreeke JA, Yaqub M, Demuru M, Mulder SD, Hillebrand A, Bouwman FH, Teunissen CE, Serné EH, Moll AC, Verbraak FD, Hinz R, Pendleton N, Lammertsma AA, van Berckel BNM, Barkhof F, Boomsma DI, Scheltens P, Herholz K, Visser PJ. The EMIF-AD PreclinAD study: study design and baseline cohort overview. ALZHEIMERS RESEARCH & THERAPY 2018; 10:75. [PMID: 30075734 PMCID: PMC6091034 DOI: 10.1186/s13195-018-0406-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022]
Abstract
Background Amyloid pathology is the pathological hallmark in Alzheimer’s disease (AD) and can precede clinical dementia by decades. So far it remains unclear how amyloid pathology leads to cognitive impairment and dementia. To design AD prevention trials it is key to include cognitively normal subjects at high risk for amyloid pathology and to find predictors of cognitive decline in these subjects. These goals can be accomplished by targeting twins, with additional benefits to identify genetic and environmental pathways for amyloid pathology, other AD biomarkers, and cognitive decline. Methods From December 2014 to October 2017 we enrolled cognitively normal participants aged 60 years and older from the ongoing Manchester and Newcastle Age and Cognitive Performance Research Cohort and the Netherlands Twins Register. In Manchester we included single individuals, and in Amsterdam monozygotic twin pairs. At baseline, participants completed neuropsychological tests and questionnaires, and underwent physical examination, blood sampling, ultrasound of the carotid arteries, structural and resting state functional brain magnetic resonance imaging, and dynamic amyloid positron emission tomography (PET) scanning with [18F]flutemetamol. In addition, the twin cohort underwent lumbar puncture for cerebrospinal fluid collection, buccal cell collection, magnetoencephalography, optical coherence tomography, and retinal imaging. Results We included 285 participants, who were on average 74.8 ± 9.7 years old, 64% female. Fifty-eight participants (22%) had an abnormal amyloid PET scan. Conclusions A rich baseline dataset of cognitively normal elderly individuals has been established to estimate risk factors and biomarkers for amyloid pathology and future cognitive decline. Electronic supplementary material The online version of this article (10.1186/s13195-018-0406-7) contains supplementary material, which is available to authorized users.
Collapse
|
Twin Study |
7 |
41 |
9
|
Whitwell JL, Tosakulwong N, Weigand SD, Senjem ML, Lowe VJ, Gunter JL, Boeve BF, Knopman DS, Dickerson BC, Petersen RC, Jack CR. Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects? NEUROIMAGE-CLINICAL 2013; 2:249-57. [PMID: 24179779 PMCID: PMC3778266 DOI: 10.1016/j.nicl.2013.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
The objective of our study was to evaluate whether cognitively normal (CN) elderly participants showing elevated cortical beta-amyloid (Aβ) deposition have a consistent neuroanatomical signature of brain atrophy that may characterize preclinical Alzheimer's disease (AD). 115 CN participants who were Aβ-positive (CN +) by amyloid PET imaging; 115 CN participants who were Aβ-negative (CN -); and 88 Aβ-positive mild cognitive impairment or AD participants (MCI/AD +) were identified. Cortical thickness (FreeSurfer) and gray matter volume (SPM5) were measured for 28 regions-of-interest (ROIs) across the brain and compared across groups. ROIs that best discriminated CN - from CN + differed for FreeSurfer cortical thickness and SPM5 gray matter volume. Group-wise discrimination was poor with a high degree of uncertainty in terms of the rank ordering of ROIs. In contrast, both techniques showed strong and consistent findings comparing MCI/AD + to both CN - and CN + groups, with entorhinal cortex, middle and inferior temporal lobe, inferior parietal lobe, and hippocampus providing the best discrimination for both techniques. Concordance across techniques was higher for the CN - and CN + versus MCI/AD + comparisons, compared to the CN - versus CN + comparison. The weak and inconsistent nature of the findings across technique in this study cast doubt on the existence of a reliable neuroanatomical signature of preclinical AD in elderly PiB-positive CN participants.
Collapse
|
Journal Article |
12 |
34 |
10
|
Tubi MA, Feingold FW, Kothapalli D, Hare ET, King KS, Thompson PM, Braskie MN. White matter hyperintensities and their relationship to cognition: Effects of segmentation algorithm. Neuroimage 2020; 206:116327. [PMID: 31682983 PMCID: PMC6981030 DOI: 10.1016/j.neuroimage.2019.116327] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
White matter hyperintensities (WMHs) are brain white matter lesions that are hyperintense on fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH volumes have been associated with Alzheimer's disease (AD) and with cognitive decline. However, the relationship between WMH volumes and cross-sectional cognitive measures has been inconsistent. We hypothesize that this inconsistency may arise from 1) the presence of AD-specific neuropathology that may obscure any WMH effects on cognition, and 2) varying criteria for creating a WMH segmentation. Manual and automated programs are typically used to determine segmentation boundaries, but criteria for those boundaries can differ. It remains unclear whether WMH volumes are associated with cognitive deficits, and which segmentation criteria influence the relationships between WMH volumes and clinical outcomes. In a sample of 260 non-demented participants (ages 55-90, 141 males, 119 females) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we compared the performance of five WMH segmentation methods, by relating the WMH volumes derived using each method to both clinical diagnosis and composite measures of executive function and memory. To separate WMH effects on cognition from effects related to AD-specific processes, we performed analyses separately in people with and without abnormal cerebrospinal fluid amyloid levels. WMH volume estimates that excluded more diffuse, lower-intensity lesions were more strongly correlated with clinical diagnosis and cognitive performance, and only in those without abnormal amyloid levels. These findings may inform best practices for WMH segmentation, and suggest that AD neuropathology may mask WMH effects on clinical diagnosis and cognition.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
34 |
11
|
Insel PS, Hansson O, Mackin RS, Weiner M, Mattsson N. Amyloid pathology in the progression to mild cognitive impairment. Neurobiol Aging 2017; 64:76-84. [PMID: 29353101 DOI: 10.1016/j.neurobiolaging.2017.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 01/26/2023]
Abstract
The objective of this study was to determine the cognitive and functional decline and development of brain injury in individuals progressing from preclinical (β-amyloid positive cognitively normal) to prodromal Alzheimer's disease (AD) (β-amyloid positive mild cognitive impairment [MCI]), and compare this with individuals who progress to MCI in the absence of significant amyloid pathology. Seventy-five cognitively healthy participants who progressed to MCI were followed for 4 years on average and up to 10 years. We tested effects of β-amyloid (Aβ) on measures of cognition, functional status, depressive symptoms, and brain structure and metabolism. Preclinical AD subjects showed greater cognitive decline in multiple domains and increased cerebrospinal fluid phosphorylated tau levels at baseline while Aβ-negative progressors showed increased rates of white matter hyperintensity accumulation and had a greater frequency of depressive symptoms at baseline. Aβ status did not influence patterns of brain atrophy, but preclinical AD subjects showed greater decline of brain metabolism than Aβ-negative progressors. Several unique features separate the transition from preclinical to prodromal AD from other causes of cognitive decline. These features may facilitate early diagnosis and treatment of AD, especially in clinical trials aimed at halting the progression from preclinical to prodromal AD.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
12
|
Lee HK, Kent JD, Wendel C, Wolinsky FD, Foster ED, Merzenich MM, Voss MW. Home-Based, Adaptive Cognitive Training for Cognitively Normal Older adults: Initial Efficacy Trial. J Gerontol B Psychol Sci Soc Sci 2020; 75:1144-1154. [PMID: 31140569 PMCID: PMC7265807 DOI: 10.1093/geronb/gbz073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES We examined whether a home-based, adaptive cognitive training (CT) program would lead to cognitive performance changes on a neuropsychological test battery in cognitively normal older adults. METHOD Sixty-eight older adults (age = 70.0, SD = 3.74) were randomly assigned to either CT or an active control group (AC, casual computer games). Participants were instructed to train on their assigned programs for 42 min per day, 5 days per week, over 10 weeks (35 hr of total program usage). Participants completed tests of processing speed, working memory, and executive control before and after 10 weeks of training. RESULTS Training groups did not differ in performance before training. After training, CT participants out-performed AC participants in the overall cognitive composite score, driven by processing speed and working memory domains. DISCUSSION Our results show that a limited dose of home-based CT can drive cognitive improvements as measured with neuropsychological test battery, suggesting potential cognitive health maintenance implications for cognitively normal older adults.
Collapse
|
Randomized Controlled Trial |
5 |
20 |
13
|
Lowe VJ, Bruinsma TJ, Min HK, Lundt ES, Fang P, Senjem ML, Boeve BF, Josephs KA, Pandey MK, Murray ME, Kantarci K, Jones DT, Schwarz CG, Knopman DS, Petersen RC, Jack CR. Elevated medial temporal lobe and pervasive brain tau-PET signal in normal participants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2018; 10:210-216. [PMID: 29780865 PMCID: PMC5956801 DOI: 10.1016/j.dadm.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Medial temporal lobe (MTL) uptake on tau-positron emission tomography (PET) is seen not only in Alzheimer's disease (AD) dementia but also in the aging population. The relationship of these findings to the development of AD dementia needs to be better understood. METHODS Tau-PET with AV-1451 was performed on 576 cognitively unimpaired (CU) participants aged 50-94 years. The number of CUs with and without abnormal MTL regions and those with or without extra-MTL abnormalities was determined. Left and right regions were compared within each subject. RESULTS Of CUs, 58% (334/576) had abnormal tau-PET findings. MTL abnormalities were present in 41% (238/576) of subjects. DISCUSSION MTL tau-PET signal is often associated with abnormal extra-MTL tau-PET signal in CU participants and may represent neurofibrillary tangle development that could identify participants most likely to develop AD dementia. Tau-PET signal exclusively outside of the MTL is seen in 17% of CU participants and could be the initial findings in participants in different AD dementia pathways. Significant (P < .001) differences in tau-standardized uptake value ratio between sides were noted in 26 of 41 examined brain regions implicating further study of side-specific deficits.
Collapse
|
research-article |
7 |
15 |
14
|
Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:72. [PMID: 32517787 PMCID: PMC7285604 DOI: 10.1186/s13195-020-00634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Background Heme and iron homeostasis is perturbed in Alzheimer’s disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. Methods Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. Results Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. Conclusions In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
15
|
Van Hooren RWE, Riphagen JM, Jacobs HIL. Inter-network connectivity and amyloid-beta linked to cognitive decline in preclinical Alzheimer's disease: a longitudinal cohort study. Alzheimers Res Ther 2018; 10:88. [PMID: 30153858 PMCID: PMC6114059 DOI: 10.1186/s13195-018-0420-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Amyloid-beta (Aβ) has a dose-response relationship with cognition in healthy adults. Additionally, the levels of functional connectivity within and between brain networks have been associated with cognitive performance in healthy adults. Aiming to explore potential synergistic effects, we investigated the relationship of inter-network functional connectivity, Aβ burden, and memory decline among healthy individuals and individuals with preclinical, prodromal, or clinical Alzheimer's disease. METHODS In this longitudinal cohort study (ADNI2), participants (55-88 years) were followed for a maximum of 5 years. We included cognitively healthy participants and patients with mild cognitive impairment (with or without elevated Aβ) or Alzheimer's disease. Associations between memory decline, Aβ burden, and connectivity between networks across the groups were investigated using linear and curvilinear mixed-effects models. RESULTS We found a synergistic relationships between inter-network functional connectivity and Aβ burden on memory decline. Dose-response relationships between Aβ and memory decline varied as a function of directionality of inter-network connectivity across groups. When inter-network correlations were negative, the curvilinear mixed-effects models revealed that higher Aβ burden was associated with greater memory decline in cognitively normal participants, but when inter-network correlations were positive, there was no association between the magnitude of Aβ burden and memory decline. Opposite patterns were observed in patients with mild cognitive impairment. Combining negative inter-network correlations with Aβ burden can reduce the required sample size by 88% for clinical trials aiming to slow down memory decline. CONCLUSIONS The direction of inter-network connectivity provides additional information about Aβ burden on the rate of expected memory decline, especially in the preclinical phase. These results may be valuable for optimizing patient selection and decreasing study times to assess efficacy in clinical trials.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
11 |
16
|
Chen J, Zhao X, Zhang W, Zhang T, Wu S, Shao J, Shi FD. Reference intervals for plasma amyloid-β, total tau, and phosphorylated tau181 in healthy elderly Chinese individuals without cognitive impairment. Alzheimers Res Ther 2023; 15:100. [PMID: 37237388 DOI: 10.1186/s13195-023-01246-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Plasma amyloid-β (Aβ) peptides and tau proteins are promising biomarkers of Alzheimer's disease (AD), not only for predicting Aβ and tau pathology but also for differentiating AD from other neurodegenerative diseases. However, reference intervals for plasma biomarkers of AD in healthy elderly Chinese individuals have not yet been established. METHODS Biomarkers of AD were measured using single-molecule array (Simoa) assays in plasma samples from 193 healthy, cognitively unimpaired Chinese individuals aged 50-89 years. The 95% reference intervals for plasma Aβ42, Aβ40, t-tau, p-tau181, and derived ratios were calculated by using log-transformed parametric methods. RESULTS Plasma Aβ42, Aβ40, and p-tau181 levels were positively correlated with age, while the Aβ42/Aβ40 ratio was negatively correlated with age. The 95% reference intervals for plasma Aβ42 and Aβ40 were 2.72-11.09 pg/mL and 61.4-303.9 pg/mL, respectively, and the 95% reference intervals for plasma t-tau and p-tau181 were 0.20-3.12 pg/mL and 0.49-3.29 pg/mL, respectively. The 95% reference intervals for the Aβ42/Aβ40 ratio, p-tau181/t-tau ratio, and p-tau181/Aβ42 ratio were 0.022-0.064, 0.38-6.34, and 0.05-0.55, respectively. CONCLUSION Reference intervals for plasma biomarkers of AD may assist clinicians in making accurate clinical decisions.
Collapse
|
|
2 |
10 |
17
|
Li TR, Dong QY, Jiang XY, Kang GX, Li X, Xie YY, Jiang JH, Han Y. Exploring brain glucose metabolic patterns in cognitively normal adults at risk of Alzheimer's disease: A cross-validation study with Chinese and ADNI cohorts. Neuroimage Clin 2021; 33:102900. [PMID: 34864286 PMCID: PMC8648808 DOI: 10.1016/j.nicl.2021.102900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Disease-related metabolic brain patterns have been verified for a variety of neurodegenerative diseases including Alzheimer's disease (AD). This study aimed to explore and validate the pattern derived from cognitively normal controls (NCs) in the Alzheimer's continuum. METHODS This study was based on two cohorts; one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the other from the Sino Longitudinal Study on Cognitive Decline (SILCODE). Each subject underwent [18F]fluoro-2-deoxyglucose positron emission tomography (PET) and [18F]florbetapir-PET imaging. Participants were binary-grouped based on β-amyloid (Aβ) status, and the positivity was defined as Aβ+. Voxel-based scaled subprofile model/principal component analysis (SSM/PCA) was used to generate the "at-risk AD-related metabolic pattern (ARADRP)" for NCs. The pattern expression score was obtained and compared between the groups, and receiver operating characteristic curves were drawn. Notably, we conducted cross-validation to verify the robustness and correlation analyses to explore the relationships between the score and AD-related pathological biomarkers. RESULTS Forty-eight Aβ+ NCs and 48 Aβ- NCs were included in the ADNI cohort, and 25 Aβ+ NCs and 30 Aβ- NCs were included in the SILCODE cohort. The ARADRPs were identified from the combined cohorts and the two separate cohorts, characterized by relatively lower regional loadings in the posterior parts of the precuneus, posterior cingulate, and regions of the temporal gyrus, as well as relatively higher values in the superior/middle frontal gyrus and other areas. Patterns identified from the two separate cohorts showed some regional differences, including the temporal gyrus, basal ganglia regions, anterior parts of the precuneus, and middle cingulate. Cross-validation suggested that the pattern expression score was significantly higher in the Aβ+ group of both cohorts (p < 0.01), and contributed to the diagnosis of Aβ+ NCs (with area under the curve values of 0.696-0.815). The correlation analysis revealed that the score was related to tau pathology measured in cerebrospinal fluid (p-tau: p < 0.02; t-tau: p < 0.03), but not Aβ pathology assessed with [18F]florbetapir-PET (p > 0.23). CONCLUSIONS ARADRP exists for NCs, and the acquired pattern expression score shows a certain ability to discriminate Aβ+ NCs from Aβ- NCs. The SSM/PCA method is expected to be helpful in the ultra-early diagnosis of AD in clinical practice.
Collapse
|
research-article |
4 |
7 |
18
|
Lindberg O, Kern S, Skoog J, Machado A, Pereira JB, Sacuiu SF, Wahlund LO, Blennow K, Zetterberg H, Zettergren A, Westman E, Skoog I. Effects of amyloid pathology and the APOE ε4 allele on the association between cerebrospinal fluid Aβ38 and Aβ40 and brain morphology in cognitively normal 70-years-olds. Neurobiol Aging 2021; 101:1-12. [PMID: 33548794 DOI: 10.1016/j.neurobiolaging.2020.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022]
Abstract
The association between cerebrospinal fluid (CSF) amyloid beta (Aβ) Aβ38 or Aβ40 and brain grey- and white matter integrity is poorly understood. We studied this in 213 cognitively normal 70-year-olds, and in subgroups defined by presence/absence of the APOE ε4 allele and Aβ pathology: Aβ-/APOE-, Aβ+/APOE-, Aβ-/APOE+ and Aβ+/APOE+. CSF Aβ was quantified using ELISA and genotyping for APOE was performed. Low CSF Aβ42 defined Aβ plaque pathology. Brain volumes were assessed using Freesurfer-5.3, and white matter integrity using tract-based statistics in FSL. Aβ38 and Aβ40 were positively correlated with cortical thickness, some subcortical volumes and white matter integrity in the total sample, and in 3 of the subgroups: Aβ-/APOE-, Aβ+/APOE- and Aβ-/APOE+. In Aβ+/APOE+ subjects, higher Aβ38 and Aβ40 were linked to reduced cortical thickness and subcortical volumes. We hypothesize that production of all Aβ species decrease in brain regions with atrophy. In Aβ+/APOE+, Aβ-dysregulation may be linked to cortical atrophy in which high Aβ levels is causing pathological changes in the gray matter of the brain.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
5 |
19
|
Chino B, Cuesta P, Pacios J, de Frutos-Lucas J, Torres-Simón L, Doval S, Marcos A, Bruña R, Maestú F. Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: a study of 379 individuals. GeroScience 2022; 45:477-489. [PMID: 36109436 PMCID: PMC9886758 DOI: 10.1007/s11357-022-00656-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer's disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance.
Collapse
|
research-article |
3 |
5 |
20
|
Structural volume and cortical thickness differences between males and females in cognitively normal, cognitively impaired and Alzheimer's dementia population. Neurobiol Aging 2021; 106:1-11. [PMID: 34216846 DOI: 10.1016/j.neurobiolaging.2021.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022]
Abstract
We investigated differences due to sex in brain structural volume and cortical thickness in older cognitively normal (N=742), cognitively impaired (MCI; N=540) and Alzheimer's Dementia (AD; N=402) individuals from the ADNI and AIBL datasets (861 Males and 823 Females). General linear models were used to control the effect of relevant covariates including age, intracranial volume, magnetic resonance imaging (MRI) scanner field strength and scanner types. Significant volumetric differences due to sex were observed within different cortical and subcortical regions of the cognitively normal group. The number of significantly different regions was reduced in the MCI group, and no region remained different in the AD group. Cortical thickness was overall thinner in males than females in the cognitively normal group, and likewise, the differences due to sex were reduced in the MCI and AD groups. These findings were sustained after including cerebrospinal fluid (CSF) Tau and phosphorylated tau (pTau) as additional covariates.
Collapse
|
Journal Article |
4 |
4 |
21
|
Ekblad LL, Visser PJ, Tijms BM. Proteomic correlates of cortical thickness in cognitively normal individuals with normal and abnormal cerebrospinal fluid beta-amyloid 1-42. Neurobiol Aging 2021; 107:42-52. [PMID: 34375908 DOI: 10.1016/j.neurobiolaging.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Cortical atrophy is an early feature of Alzheimer´s disease (AD). The biological processes associated with variability in cortical thickness remain largely unknown. We studied 220 cerebrospinal fluid (CSF) proteins to evaluate biological pathways associated with cortical thickness in 34 brain regions in 79 cognitively normal older individuals with normal (>192 ng/L, n = 47), and abnormal (≤192 ng/L, n = 32) CSF beta-amyloid1-42 (Aβ42). Interactions for Aβ42 status were tested. Panther GeneOntology and Cytoscape ClueGO analyses were used to evaluate biological processes associated with regional cortical thickness. 170 (77.3 %) proteins related with cortical thickness in at least 1 brain region across the total group, and 171 (77.7 %) proteins showed Aβ42 specific associations. Higher levels of proteins related to axonal and synaptic integrity, amyloid accumulation, and inflammation were associated with thinner cortex in lateral temporal regions, the rostral anterior cingulum, the lateral occipital cortex and the pars opercularis only in the abnormal Aβ42 group. Alterations in CSF proteomics are associated with a regional cortical atrophy in the earliest stages of AD.
Collapse
|
Journal Article |
4 |
2 |
22
|
Vipin A, Kumar D, Soo SA, Zailan FZ, Leow YJ, Koh CL, Ng ASL, Ng KP, Kandiah N. APOE4 carrier status determines association between white matter disease and grey matter atrophy in early-stage dementia. Alzheimers Res Ther 2023; 15:103. [PMID: 37270543 DOI: 10.1186/s13195-023-01251-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND White matter hyperintensities, a neuroimaging marker of small-vessel cerebrovascular disease and apolipoprotein ε4 (APOE4) allele, are important dementia risk factors. However, APOE4 as a key effect modifier in the relationship between white matter hyperintensities and grey matter volume needs further exploration. METHODS One hundred ninety-two early-stage dementia (including mild cognitive impairment and mild dementia) and 259 cognitively unimpaired participants from a neurocognitive research cohort with neuroimaging data, APOE genotyping, and neuropsychological assessments were studied. We investigated independent and interactive effects of white matter hyperintensities and APOE4 on whole-brain voxel-wise grey matter volume using voxel-based morphometry (uncorrected p < 0.001; minimum cluster size = 100 voxels). We further assessed interactive effects between APOE4 and white matter hyperintensities on global cognition, memory, and executive function in early-stage dementia and cognitively unimpaired participants. RESULTS Independent of APOE4 status, higher white matter hyperintensity load was associated with greater grey matter atrophy across frontal, parietal, temporal, and occipital lobes in cognitively unimpaired and early-stage dementia subjects. However, interaction analyses and independent sample analyses revealed that APOE4 non-carriers demonstrated greater white matter hyperintensity-associated grey matter atrophy compared to APOE4 carriers in both cognitively unimpaired and early-stage dementia groups. Additional confirmatory analyses among APOE4 non-carriers demonstrated that white matter hyperintensities resulted in widespread grey matter loss. Analyses of cognitive function demonstrated that higher white matter hyperintensity load was associated with worse global (Mini-Mental State Examination, Montreal Cognitive Assessment) and executive function (Color Trails 2) in APOE4 non-carriers compared to APOE4 carriers in early-stage dementia but not cognitively unimpaired participants. CONCLUSIONS The association between white matter hyperintensities and grey matter loss is more pronounced in APOE4 non-carriers than APOE4 carriers in the cognitively unimpaired and early-stage dementia stages. Furthermore, white matter hyperintensity presence results in poorer executive function in APOE4 non-carriers compared to APOE4 carriers. This finding may have significant impact on the design of clinical trials with disease modifying therapies.
Collapse
Grants
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- MOE AcRF Tier 3 Award MOE2017-T3-1-002 Ministry of Education - Singapore
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- NMRC/CIRG/1415/2015, NMRC/CSA/063/2014, MOH-CSAINV18nov-0007, NMRC/CIRG/14MAY025 National Medical Research Council
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
- Reference Number: 991016 National Neuroscience Institute-Health Research Endowment Fund (NNI-HREF), Singapore
Collapse
|
|
2 |
1 |
23
|
Oishi K, Soldan A, Pettigrew C, Hsu J, Mori S, Albert M, Oishi K. Changes in pairwise functional connectivity associated with changes in cognitive performance in cognitively normal older individuals: A two-year observational study. Neurosci Lett 2022; 781:136618. [PMID: 35398188 PMCID: PMC9990522 DOI: 10.1016/j.neulet.2022.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Neurobiological substrates of cognitive decline in cognitively normal older individuals have been investigated by resting-state functional magnetic resonance imaging, but little is known about the relationship between longitudinal changes in the whole brain. In this study, we examined two-year changes in functional connectivity among 80 gray matter areas and investigated the relationship to two-year changes in cognitive performance. A cross-validated permutation variable importance measure was applied to select features related to a change in cognitive performance. Age-corrected changes in eleven pairs of functional connections were selected as important features, all related to brain areas that belong to the default mode network. A linear regression model with cross-validation demonstrated a mean correlation coefficient of 0.55 between measured and predicted changes in the cognitive composite score. These results suggest that intra- and inter-network connections in the default mode network are associated with cognitive changes over two years among cognitively normal individuals.
Collapse
|
Observational Study |
3 |
|
24
|
Ul Rehman S, Tarek N, Magdy C, Kamel M, Abdelhalim M, Melek A, N. Mahmoud L, Sadek I. AI-based tool for early detection of Alzheimer's disease. Heliyon 2024; 10:e29375. [PMID: 38644855 PMCID: PMC11033128 DOI: 10.1016/j.heliyon.2024.e29375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
In the context of Alzheimer's disease (AD), timely identification is paramount for effective management, acknowledging its chronic and irreversible nature, where medications can only impede its progression. Our study introduces a holistic solution, leveraging the hippocampus and the VGG16 model with transfer learning for early AD detection. The hippocampus, a pivotal early affected region linked to memory, plays a central role in classifying patients into three categories: cognitively normal (CN), representing individuals without cognitive impairment; mild cognitive impairment (MCI), indicative of a subtle decline in cognitive abilities; and AD, denoting Alzheimer's disease. Employing the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, our model undergoes training enriched by advanced image preprocessing techniques, achieving outstanding accuracy (testing 98.17 %, validation 97.52 %, training 99.62 %). The strategic use of transfer learning fortifies our competitive edge, incorporating the hippocampus approach and, notably, a progressive data augmentation technique. This innovative augmentation strategy gradually introduces augmentation factors during training, significantly elevating accuracy and enhancing the model's generalization ability. The study emphasizes practical application with a user-friendly website, empowering radiologists to predict class probabilities, track disease progression, and visualize patient images in both 2D and 3D formats, contributing significantly to the advancement of early AD detection.
Collapse
|
research-article |
1 |
|