1
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
308 |
2
|
Moulari B, Béduneau A, Pellequer Y, Lamprecht A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release 2014; 188:9-17. [DOI: 10.1016/j.jconrel.2014.05.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
|
|
11 |
71 |
3
|
Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019; 296:162-178. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
In chronic intestinal diseases like inflammatory bowel disease, parenteral administration of biopharmaceuticals is associated with numerous disadvantages including immune reactions, infections, low patient compliance, and toxicity caused by high systemic bioavailability. One alternative that can potentially overcome these limitations is oral administration of biopharmaceuticals, where the local delivery will reduce the systemic exposure and furthermore the manufacturing costs will be lower. However, the development of oral dosage forms that deliver the biologically active form to the intestines is one of the greatest challenges for pharmaceutical technologists due to the sensitive nature of biopharmaceuticals. The present article discusses the various drug delivery technologies used to produce orally administered solid dosage forms of biopharmaceuticals with an emphasis on colon-targeted delivery. Solid oral dosage compositions containing different types of colon-targeting biopharmaceuticals are compiled followed by a review of currently applied and emerging drying technologies for biopharmaceuticals. The different drying technologies are compared in terms of their advantages, limitations, costs and their effect on product stability.
Collapse
|
Review |
6 |
69 |
4
|
Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater 2015; 13:216-27. [PMID: 25463498 DOI: 10.1016/j.actbio.2014.11.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/29/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Abstract
Biocompatible quercetin nanovesicles were developed by coating polyethylene glycol-containing vesicles with chitosan and nutriose, aimed at targeting the colon. Uncoated and coated vesicles were prepared using hydrogenated soy phosphatidylcholine and quercetin, a potent natural anti-inflammatory and antioxidant drug. Physicochemical characterization was carried out by light scattering, cryogenic microscopy and X-ray scattering, the results showing that vesicles were predominantly multilamellar and around 130 nm in size. The in vitro release of quercetin was investigated under different pH conditions simulating the environment of the gastrointestinal tract, and confirmed that the chitosan/nutriose coating improved the gastric resistance of vesicles, making them a potential carrier system for colon delivery. The preferential localization of fluorescent vesicles in the intestine was demonstrated using the In Vivo FX PRO Imaging System. Above all, a marked amelioration of symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis was observed in animals treated with quercetin-loaded coated vesicles, favoring the restoration of physiological conditions. Therefore, quercetin-loaded chitosan/nutriose-coated vesicles can represent a valuable therapeutic tool for the treatment of chronic intestinal inflammatory diseases, and presumably a preventive system, due to the synergic action of antioxidant quercetin and beneficial prebiotic effects of the chitosan/nutriose complex.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
63 |
5
|
Asfour MH, Mohsen AM. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res 2017; 9:17-26. [PMID: 30034879 PMCID: PMC6052648 DOI: 10.1016/j.jare.2017.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to target rutin, in a more solubilized form, to the colon aiming at treatment of colon carcinoma. pH sensitive nanospheres were prepared by the nanoprecipitation technique employing Eudragit S100. Different drug: polymer ratios as well as different concentrations of the stabilizer Poloxamer-188 were used. The developed rutin nanospheres exhibited entrapment efficiency ranging from 94.19% to 98.1%, with a zeta potential values <−20 mV. They were spherical in shape and their sizes were in the nanometric dimensions. The in vitro release study of nanospheres formulations revealed enhancement of aqueous solubility of rutin and indicated drug targeting to the colon. The selected formulations were stable after storage for 6 months at ambient room and refrigeration temperatures. In vitro cytotoxic study was conducted on human colon cancer (HCT-116) as well as normal human fibroblasts (BHK) cell lines, employing Sulphorhodamine-B assay. Rutin nanospheres showed significantly (P = .001) higher area under inhibition percentage curve, when compared to free drug, revealing more than 2-fold increase in rutin cytotoxic activity. These results reveal that Eudragit S100 nanospheres could be a potential drug delivery system to the colon with enhanced solubility and hence improved the cytotoxic activity of rutin.
Collapse
|
Journal Article |
8 |
57 |
6
|
Mohamed JM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr Polym 2020; 252:117180. [PMID: 33183627 DOI: 10.1016/j.carbpol.2020.117180] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/24/2023]
Abstract
The investigation is to increase the cytotoxicity of soluble curcumin (SC) by loading it onto pectin and skimmed milk powder (SMP) dual layered solid lipid nanoparticles (DL-SLN). The DL-SLN exhibited significantly higher encapsulation efficiency (83.94 ± 6.16), better stability (90 days), and sustained the drug release in different gastro intestional (GI) environments upto 72 h. Molecular docking revealed that the Vander Waals (57420.669 Kcal-mol-1) and electrostatic (-197.533) bonds were involved in the DL-SLN complex formation. The in vivo toxicity of DL-SLN was performed by the zebrafish model, the cell cycle arrest at G2/M phase (64.34 %) by flow cytometry, and western blot investigation was recognized molecular level cell death using SW480 cells. Pharmacokinetic (PK) evaluation (Cmax-5.78 ± 3.26 μg/mL; Tmax-24 h) and organ distribution studies confirmed that the co-functionalized pectin based SLN could efficiently improve the oral bioavailability (up to 72 h) of curcumin (CMN) on colon-targeted release.
Collapse
|
Journal Article |
5 |
51 |
7
|
Shah BM, Palakurthi SS, Khare T, Khare S, Palakurthi S. Natural proteins and polysaccharides in the development of micro/nano delivery systems for the treatment of inflammatory bowel disease. Int J Biol Macromol 2020; 165:722-737. [PMID: 33010274 DOI: 10.1016/j.ijbiomac.2020.09.214] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Treatments for inflammatory bowel disease (IBD) are typically immunosuppressive. Despite a range of treatment options, limited efficacy, systemic toxicities like bone marrow suppression, infections and malignancy are their serious setbacks. There exists an unmet medical need for novel therapeutic agents without safety concerns resulting from chronic, systemic immunosuppression. Of late, several natural agents with better therapeutic potential have been reported. It is very likely that restricting the release of the active molecules to the intestine would further improve their clinical efficacy and safety. To this end, novel polymer-based micro/nano formulations protect the drug from gastric environment and slowly release the drug in the colon. However, cost and side-effects associated to synthetic polymers have led to the development of biocompatible, economic and pharmaceutically well-accepted biomacromolecules in exploring their potential in IBD. Since last few years, biological proteins, polysaccharides and their combinations have shown great efficacy in colitis induced animal models. In this review, micro/nano formulations developed using biomacromolecules like chitosan, zein, pectin, casein, alginate, dextran, glucomannan and hyaluronic acid have been reviewed focusing on their potential in protecting active cargo, avoiding premature release, distal colon targeting along with their impact on reshaping the altered gut microbiota and how it can ameliorate the colitis conditions.
Collapse
|
Review |
5 |
45 |
8
|
Yan Y, Sun Y, Wang P, Zhang R, Huo C, Gao T, Song C, Xing J, Dong Y. Mucoadhesive nanoparticles-based oral drug delivery systems enhance ameliorative effects of low molecular weight heparin on experimental colitis. Carbohydr Polym 2020; 246:116660. [PMID: 32747292 DOI: 10.1016/j.carbpol.2020.116660] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Low molecular weight heparin (LMWH) is reported to have therapeutic action on ulcerative colitis (UC). To facilitate its oral administration and improve the colon-targeting property, LMWH-loaded nanoparticles (TMC-NPs and SA-TMC-NPs) are prepared and evaluated by a series of studies, including their stabilities, drug release profiles, mucosal permeation, mucoadhesion, cytotoxicities, cellular uptake profiles, anticoagulant and anti-inflammatory activities, mucosal healing properties, biosafety and ameliorative effects on experimental colitis. Consequently, oral administration of LMWH-loaded NPs for 5 days perform significant therapeutic effects on mice, which are manifested as improved body weight gains, colon length, DAI score, MPO activity and histological characteristics. Besides, SA-TMC-NPs show better colon-targeting property than TMC-NPs that is demonstrated by lower oral absorption (ATPP 38.95 s) and stronger mucoadhesion (kcps reduces 36.46 %) to inflamed colon tissues. Therefore, TMC-based NPs are proved to be as promising oral colon-targeting drug delivery systems of LMWH and has potential application in UC treatment.
Collapse
|
Journal Article |
5 |
43 |
9
|
Teruel AH, Pérez-Esteve É, González-Álvarez I, González-Álvarez M, Costero AM, Ferri D, Parra M, Gaviña P, Merino V, Martínez-Mañez R, Sancenón F. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. J Control Release 2018; 281:58-69. [PMID: 29753956 DOI: 10.1016/j.jconrel.2018.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
Magnetic mesoporous silica microparticles were loaded with safranin O (S1) and with hydrocortisone (S2) and the outer surface functionalized with a bulky azo derivative bearing urea moieties. Aqueous suspensions of both solids at pH 7.4 showed negligible payload release whereas a marked delivery was observed in the presence of sodium dithionite due to the rupture of the azo bonds. Besides, a moderate cargo release was observed at acidic pH due to the hydrolysis of the urea bonds that linked the azo derivative onto the external surface of the inorganic scaffolds. In vitro digestion models showed that S1 and S2 microparticles could be used for the controlled release of payload in the reducing colon environment (in which azoreductase enzymes are present). On the other hand, in vivo pharmacokinetic studies in rats showed that safranine O release from S1 microparticles was concentrated in colon. The performance of S2 microparticles for the treatment of colitis in rats (induced by oral administration of a 2,4,6-trinitrobenzenesulfonic acid solution) was tested. The controlled release of hydrocortisone from S2 in the colon of injured rats induced marked reduction in colon/body weight ratio and in clinical activity score. Also, histological studies showed a marked decrease in inflammation followed by intensive regeneration and almost normal mucosal structure of the individuals treated with S2. Besides, the use of a magnetic belt increased the therapeutic performances of S2 due to an enhanced retention time of the particles in the colon.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
36 |
10
|
Madhavi M, Madhavi K, Jithan AV. Preparation and in vitro/in vivo characterization of curcumin microspheres intended to treat colon cancer. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2012; 4:164-71. [PMID: 22557928 PMCID: PMC3341721 DOI: 10.4103/0975-7406.94825] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/25/2011] [Accepted: 05/15/2011] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The objective of the present investigation was to prepare colon targeted curcumin microspheres using Eudragit S100 and evaluate the same for in vitro/in vivo properties. MATERIALS AND METHODS A "O/O solvent evaporation" technique was used in the preparation of microspheres. The influence of various process variables including stirring speed, drug:polymer ratio and percentage of emulsifier on the fabrication were investigated and the formulation was optimized. Prepared microspheres were evaluated for in vitro and in vivo properties. Surface morphology, particle size, percentage drug entrapment, percentage yield, drug polymer interaction, in vitro drug release in simulated gastrointestinal transit conditions and stability were the in vitro parameters investigated. Using an optimized formulation, drug release into the systemic circulation and organ distribution were investigated as in vivo parameters. In vivo parameters were estimated in male albino rats. RESULTS Curcumin microspheres of Eudragit S100 were successfully prepared using o/o solvent evaporation method. Microspheres prepared using 1:2 drug:polymer ratio, with a stirring speed of 1000 rpm, and using 1.0% w/v concentration of emulsifying agent was selected as an optimized formulation. The release studies with optimized formulation demonstrated that aqueous solubility of curcumin was enhanced by 8 times with the formulation. FTIR studies demonstrated no change in drug characteristics upon microsphere fabrication. The enhancement in solubility is thus due to the increase in the surface area of the drug substance and not due to a change of drug to a different physical state. This was further confirmed by scanning electron microsphere pictures. Drug release followed Korsmeyer and Peppas release model. Accelerated stability studies indicated that the drug is stable in the formulation for a period of atleast 14 weeks at room temperature. In vivo studies demonstrated a sustained drug release into the systemic circulation after oral administration of the formulation. Further, colon target was affectively achieved using the optimized formulation. Eudragit microspheres delivered most of their drug load (79.0%) to the colon, whereas with plain drug suspension only 28.0% of the total dose reached the target site. CONCLUSION This study successfully developed curcumin microspheres that can be used effectively in the treatment of the colon cancer.
Collapse
|
research-article |
13 |
35 |
11
|
Tawfeek HM, Abdellatif AAH, Dennison TJ, Mohammed AR, Sadiq Y, Saleem IY. Colonic delivery of indometacin loaded PGA-co-PDL microparticles coated with Eudragit L100-55 from fast disintegrating tablets. Int J Pharm 2017; 531:80-89. [PMID: 28818458 DOI: 10.1016/j.ijpharm.2017.08.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 01/23/2023]
Abstract
The aim of this work was to investigate the efficient targeting and delivery of indometacin (IND), as a model anti-inflammatory drug to the colon for treatment of inflammatory bowel disease. We prepared fast disintegrating tablets (FDT) containing IND encapsulated within poly(glycerol-adipate-co-ɷ-pentadecalactone), PGA-co-PDL, microparticles and coated with Eudragit L100-55 at different ratios (1:1.5, 1:1, 1:0.5). Microparticles encapsulated with IND were prepared using an o/w single emulsion solvent evaporation technique and coated with Eudragit L-100-55 via spray drying. The produced coated microparticles (PGA-co-PDL-IND/Eudragit) were formulated into optimised FTD using a single station press. The loading, in vitro release, permeability and transport of IND from PGA-co-PDL-IND/Eudragit microparticles was studied in Caco-2 cell lines. IND was efficiently encapsulated (570.15±4.2μg/mg) within the PGA-co-PDL microparticles. In vitro release of PGA-co-PDL-IND/Eudragit microparticles (1:1.5) showed significantly (p<0.05, ANOVA/Tukey) lower release of IND 13.70±1.6 and 56.46±3.8% compared with 1:1 (89.61±2.5, 80.13±2.6%) and 1:0.5 (39.46±0.9 & 43.38±3.12) after 3 and 43h at pH 5.5 and 6.8, respectively. The permeability and transport studies indicated IND released from PGA-co-PDL-IND/Eudragit microparticles had a lower permeability coefficient of 13.95±0.68×10-6cm/s compared to free IND 23.06±3.56×10-6cm/s. These results indicate the possibility of targeting anti-inflammatory drugs to the colon using FDTs containing microparticles coated with Eudragit.
Collapse
|
Journal Article |
8 |
33 |
12
|
Sinha P, Udhumansha U, Rathnam G, Ganesh M, Jang HT. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int J Biol Macromol 2018; 117:840-850. [PMID: 29807085 DOI: 10.1016/j.ijbiomac.2018.05.181] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
The present study aims to investigate the efficacy of the novel biopolymeric complex multiparticulate system consisting of chitosan succinate and alginate for the capecitabine-targeted delivery to colon cancer. A Box-Behnken design was used to optimize the CS-SA beads by considering the effect of three factors: CS (A;X1), CaCl2 (B;X2), and SA (C;X3), on the response variables Y1 (EE), Y2 (Size), and Y3 (Release). The results of response surface plots allowed an optimized bead to be identified with high drug EE and maximum drug release at colon. The swelling index showed that the beads reached a maximum good swelling at pH 7.4, and nil or little swelling at acidic pH, which proves that the beads completely protect the release of drug. The in vitro release portrayed a maximum release at pH 7.4, due to the large swelling force that was created by electrostatic repulsion between the ionized carboxylic acid groups of the CS-SA network. In vitro cytotoxicity assay (MTT) of CS-SA beads shows inhibition of the proliferation of HT-29 tumour cell to induce apoptosis over a longer period of time. The above results show that CS-SA beads prolong the release of CP in the colonic region, and also enhance antitumor efficacy.
Collapse
|
Journal Article |
7 |
31 |
13
|
Lee SH, Back SY, Song JG, Han HK. Enhanced oral delivery of insulin via the colon-targeted nanocomposite system of organoclay/glycol chitosan/Eudragit ®S100. J Nanobiotechnology 2020; 18:104. [PMID: 32711522 PMCID: PMC7382030 DOI: 10.1186/s12951-020-00662-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
This study aimed to develop a ternary nanocomposite system of organoclay, glycol-chitosan, and Eudragit®S100 as an effective colon targeted drug delivery carrier to enhance the oral absorption of insulin. A nanocomplex of insulin and aminoclay was prepared via spontaneous co-assembly, which was then coated with glycol-chitosan and Eudragit S®100 (EGAC-Ins). The double coated nanocomplex, EGAC-Ins demonstrated a high entrapment efficiency of greater than 90% and a pH-dependent drug release. The conformational stability of insulin entrapped in EGAC-Ins was effectively maintained in the presence of proteolytic enzymes. When compared to a free insulin solution, EGAC-Ins enhanced drug permeability by approximately sevenfold in Caco-2 cells and enhanced colonic drug absorption in rats. Accordingly, oral EGAC-Ins significantly reduced blood glucose levels in diabetic rats while the hypoglycemic effect of an oral insulin solution was negligible. In conclusion, EGAC-Ins should be a promising colonic delivery system for improving the oral absorption of insulin.
Collapse
|
Journal Article |
5 |
29 |
14
|
Zhang Y, Ma R, You C, Leng X, Wang D, Deng S, He B, Guo Z, Guan Z, Lei H, Yu J, Zhou Q, Xing J, Dong Y. Hyaluronic acid modified oral drug delivery system with mucoadhesiveness and macrophage-targeting for colitis treatment. Carbohydr Polym 2023; 313:120884. [PMID: 37182972 DOI: 10.1016/j.carbpol.2023.120884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023]
Abstract
Based on the biocompatibility and macrophage targeting of natural polysaccharides, combined with the physiological and pathological characteristics of the gastrointestinal tract and colonic mucosa of ulcerative colitis (UC), we prepare dexamethasone (Dex)-loaded oral colon-targeted nano-in-micro drug delivery systems coated with multilayers of chitosan (CS), hyaluronic acid (HA), and finally Eudragit S100 (ECHCD MPs) using a layer-by-layer coating technique for UC treatment through regulating the M1/M2 polarization of intestinal macrophages. HA/CS/Dex nanoparticles (HCD NPs) are ingested by macrophages via CD44 receptor-mediated endocytosis to regulate M1-to-M2 macrophage polarization and exert anti-inflammatory effects. Moreover, ECHCD MPs show better colon-targeting properties than Dex-loaded chitosan nanoparticles (CD NPs) and HCD NPs which is demonstrated by stronger mucoadhesion to inflamed colon tissues. After oral administration, ECHCD MPs exert significant anti-UC effects. Therefore, ECHCD MPs are proven to be as promising oral colon-targeting drug delivery systems for Dex and have potential application in UC treatment.
Collapse
|
|
2 |
28 |
15
|
Tekeli İO, Ateşşahin A, Sakin F, Aslan A, Çeribaşı S, Yipel M. Protective effects of conventional and colon-targeted lycopene and linalool on ulcerative colitis induced by acetic acid in rats. Inflammopharmacology 2018; 27:10.1007/s10787-018-0485-x. [PMID: 29736689 DOI: 10.1007/s10787-018-0485-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To compare the potential protective effects of conventional and colon-targeted lycopene (TLC) and linalool (TLN) on acetic acid (AA)-induced ulcerative colitis (UC) in rats. METHODS Conventional and colon-targeted LC (10 mg/kg) and LN (200 mg/kg) were administered in vivo orally for 7 days and sulfasalazine (100 mg/kg) was also used as reference drug. Then, 4% AA was administered intrarectally to induce UC. Subsequently, the colon tissues were taken as samples for biochemical and histopathological analysis. RESULTS Malondialdehyde (MDA), interleukin 1β (IL-1β), IL-6, cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels were decreased (p < 0.05) in the targeted groups compared to the AA group, whereas nuclear factor-erythroid 2-related factor 2 (Nrf-2) level was increased (p < 0.05). Tumor necrosis factor α (TNF-α) level was also decreased (p < 0.05) and catalase activity (CAT) was increased (p < 0.05) in the TLC group compared to the AA group. IL-1β and IL-6 levels were lower in the TLC group compared to the conventional LC and sulfasalazine groups (p < 0.05). COX-2 and NF-κB levels were lower, while the Nrf-2 level was higher in the targeted groups compared to the conventional groups (p < 0.05). Furthermore, COX-2 level was lower and Nrf-2 level was higher in the targeted groups compared to the sulfasalazine group (p < 0.05). CONCLUSION As expected, sulfasalazine was effective on all parameters analyzed, but the colon-targeted pretreatments were more effective from sulfasalazine on some parameters. Therefore, colon-targeted plant-derived therapies might be alternative approaches to provide protection against UC, which deserves to be investigated further.
Collapse
|
|
7 |
27 |
16
|
Ravi V, Pramod Kumar TM, Siddaramaiah. Novel colon targeted drug delivery system using natural polymers. Indian J Pharm Sci 2011; 70:111-3. [PMID: 20390095 PMCID: PMC2852048 DOI: 10.4103/0250-474x.40346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 08/11/2007] [Accepted: 02/04/2008] [Indexed: 01/03/2023] Open
Abstract
A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs.
Collapse
|
Journal Article |
14 |
24 |
17
|
Kumar J, Newton AMJ. Rifaximin - Chitosan Nanoparticles for Inflammatory Bowel Disease (IBD). ACTA ACUST UNITED AC 2017; 11:41-52. [PMID: 28034350 DOI: 10.2174/1872213x10666161230111226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) cannot be controlled easily and the recurrence is the most challenging issue for the physicians. There are various controlled and colon targeted drug delivery systems available for the treatment with limited success rate. Nanoparticles prepared by using the colon targeted polymers such as chitosan may improve the IBD due to their smaller size, unique physico chemical properties and targeting potential. OBJECTIVE The aim of this investigation was designed to formulate and develop a colon targeted polysaccharide nanoparticles of rifaximin (RFX) by using linear polysaccharide chitosan, for the improvement of rifaximin solubility, overall therapeutic efficacy and colon targeting. METHODS The research was focused on developing RFX nanoparticles for the treatment of Inflammatory Bowel Disease (IBD) by ionic gelation method. Nanoparticles were subjected to various characterization techniques such as XRD, FTIR and mean particle size (MPS) by Master Sizer and Zeta Sizer. Transmission Electron Microscopy (TEM), drug entrapment efficiency and zeta potential are also determined for the developed formulations. The efficiency of drug release from prepared formulation was studied in vitro by using a dialysis bag diffusion technique in the buffer condition mimicking stomach, intestine and colonic pH conditions. RESULTS The prepared nanoparticles demonstrated the size in the nano range. The drug release profile was controlled in the upper GI tract and the maximum amount of drug was released in the colonic conditions. The prepared nanoparticles significantly improved the solubility of rifaximin. The zeta potential of the best chitosan preparation was found to be 37.79, which confirms the stability of prepared nanosuspension. CONCLUSION Nanoparticles with small particle size found to have high encapsulation efficiency and relatively high loading capacity and predetermined in vitro release profile.
Collapse
|
Journal Article |
8 |
22 |
18
|
Kassem AM, Almukainzi M, Faris TM, Ibrahim AH, Anwar W, Elbahwy IA, El-Gamal FR, Zidan MF, Akl MA, Abd-ElGawad AM, Elshamy AI, Elmowafy M. A pH-sensitive silica nanoparticles for colon-specific delivery and controlled release of catechin: Optimization of loading efficiency and in vitro release kinetics. Eur J Pharm Sci 2024; 192:106652. [PMID: 38008226 DOI: 10.1016/j.ejps.2023.106652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Catechin is a naturally occurring flavonoid of the flavan-3-ol subclass with numerous biological functions; however, these benefits are diminished due to several factors, including low water solubility and degradation in the stomach's harsh environment. So, this study aimed to develop an intelligent catechin colon-targeting delivery system with a high loading capacity. This was done by coating surface-decorated mesoporous silica nanoparticles with a pH-responsive enteric polymer called Eudragit®-S100. The pristine wormlike mesoporous silica nanoparticles (< 100 nm) with high surface area and large total pore volume were effectively synthesized and modified with the NH2 group using the post-grafting strategy. Various parameters, including solvent polarity, catechin-carrier mass ratio, and adsorption time, were studied to improve the loading of catechin into the aminated silica nanoparticles. Next, the negatively charged Eudragit®-S100 was electrostatically coated onto the positively charged aminated nanocarriers to shield the loaded catechin from the acidic environment of the stomach (pH 1.9) and to facilitate site-specific delivery in the acidic environment of the colon (pH 7.4). The prepared nanomaterials were evaluated using several methods, including The Brauner-Emmett-Teller, surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope, Powder X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Energy-Dispersive X-ray Spectroscopy, and Differential Scanning Calorimetry. In vitro dissolution studies revealed that Eudragit®-S100-coated aminated nanomaterials prevented the burst release of the loaded catechin in the acidic environment, with approximately 90% of the catechin only being released at colonic pH (pH > 7) with a supercase II transport mechanism. As a result, silica nanoparticles coated with Eudragit®-S100 would provide an innovative and promising approach in targeted nanomedicine for the oral delivery of catechin and related medicines for treating diseases related to the colon, such as colorectal cancer and irritable bowel syndrome.
Collapse
|
|
1 |
14 |
19
|
Gadalla HH, Mohammed FA, El-Sayed AM, Soliman GM. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm 2020; 577:119070. [PMID: 31981708 DOI: 10.1016/j.ijpharm.2020.119070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/20/2023]
Abstract
This study aims to enhance progesterone (PG) oral bioavailability via its incorporation into hybrid colon-targeted pectin/NaCMC microspheres (MS) cross-linked with Zn2+ and Al3+. The MS were characterized for particle morphology, encapsulation efficiency, swelling behavior, drug release, mucoadhesivity and colon-specific degradability. Response-surface methodology was adopted to optimize the fabrication conditions. Enhancement of in vivo drug performance was evaluated through pharmacokinetic and pharmacodynamic studies. The optimized formulation was typically spherical with a mean diameter of 1031 µm and drug entrapment efficiency of 88.8%. This formulation exhibited pH-dependent swelling, negligible drug release in simulated gastric fluid and sustained-release pattern in simulated small intestinal fluid with a mean t50% of 26.5 h. It also showed prolonged and preferential adhesion to rat colonic mucosa, as well as expedited degradation in presence of rat caecal contents. The MS significantly increased the area under the curve and mean residence time by 1.8 and 2.3-fold, respectively compared to the free drug. Orally administered MS showed ~10 times increase in myometrial thickness compared with the drug suspension and elicited uterine responses very similar to that obtained parenterally. These results confirm the ability of this new carrier system to improve the oral bioavailability of PG and attain adequate clinical efficacy.
Collapse
|
Journal Article |
5 |
12 |
20
|
Lavanya N, Muzib YI, Aukunuru J, Balekari U. Preparation and evaluation of a novel oral delivery system for low molecular weight heparin. Int J Pharm Investig 2016; 6:148-57. [PMID: 27606258 PMCID: PMC4991123 DOI: 10.4103/2230-973x.187351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The objective of the present work was to prepare and evaluate a novel oral formulation for systemic delivery of low molecular weight heparin (LMWH). The formulation consisted of Eudragit S 100-coated positively charged liposomes encapsulating LMWH and a penetration enhancer. MATERIALS AND METHODS Positively charged liposomes were first prepared by the thin film hydration method using lipid (soy phosphotidylcholine and cholesterol) and stearyl amine (SA) in the optimum ratio of 16:1, along with cetylpyridinium chloride (CPC) as a penetration enhancer. Prepared liposomes were coated with negatively charged Eudragit S 100 (0.3% w/v). The formulations were studied for various in vitro and in vivo properties. Differential scanning calorimetry (DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) studies, and in vitro drug release were used for in vitro characterization of the formulations. Ex vivo permeation studies were performed by using distal small intestine of rat. Oral absorption studies were conducted with the rat model. RESULTS Coating of the liposomes was confirmed by SEM and particle size determination studies. In vitro release studies of coated liposomes have demonstrated that the release of LMWH was in the following order: Stomach < small intestine < distal small intestine < colon. Ex vivo permeation studies have shown a fivefold increase in permeation of LMWH with Eudragit S 100-coated liposomes compared to uncoated, uncharged liposomes. Oral absorption studies have showed that with Eudragit-coated liposomes, the oral bioavailability of LMWH was improved, compared to plain LMWH solution. This is revealed by a threefold increase in the area under the curve (AUC) of the plasma concentration time curve. CONCLUSION A novel formulation for oral delivery of LMWH was thus successfully prepared and evaluated.
Collapse
|
Journal Article |
9 |
10 |
21
|
Ikuta S, Nakagawa H, Kai T, Sugano K. Development of bicarbonate buffer flow-through cell dissolution test and its application in prediction of in vivo performance of colon targeting tablets. Eur J Pharm Sci 2023; 180:106326. [PMID: 36347443 DOI: 10.1016/j.ejps.2022.106326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to develop a bicarbonate buffer flow-through cell (FTC) dissolution test. Mesalazine colon targeting tablets of a generic development product (test formulation, TF; Mesalazine 400 mg tablet) and the original product (reference formulation, RF; Asacol® 400 mg tablet) were used as model formulations. A clinical bioequivalence (BE) study was conducted on 48 healthy male subjects under fasting conditions. The oral absorption time profiles were calculated by point-area deconvolution. The compendial paddle and FTC apparatus were used for dissolution tests. Bicarbonate or phosphate-citrate buffer solutions (McIlvaine buffer) were used as the dissolution media. A floating lid was used to maintain the pH value of the bicarbonate buffer solution in the vessel (paddle) or the reservoir (FTC). In the development of bicarbonate FTC method, the pH changes of bicarbonate buffer solution (pH 5.5-7.5; 5-50 mM bicarbonate) were evaluated. For the evaluation of colon targeting tablets, the dissolution profiles of TF and RF were measured at a pH of 7.5. The TF and RF formulations were exposed to 0.01 HCl (pH 2.0) for 2 h before pH 7.5. In the clinical BE study, drug dissolution started 4-8 h after oral administration and continued slowly more than 10 h. Both the area under the curve (AUC) and maximum plasma concentration (Cmax) of TF were approximately twice as high as those of RF. In the development of the bicarbonate FTC method, the pH change of the bicarbonate buffer solution was suppressed by the floating lid within ∆pH < 0.1 over 10 h. In the dissolution test of McIlvaine buffer solutions, TF and RF showed faster disintegration and higher dissolution than those observed in the clinical BE study. When using the paddle apparatus the dissolution profiles of TF and RF in both buffer solutions were not consistent with those of the clinical result. In bicarbonate FTC, the disintegration time, dissolution rate, and dissolution inequivalence between TF and RF were consistent with the results of the clinical BE study. In conclusion, the bicarbonate FTC method was constructed for the first time in this study. This method is simple and practically useful for predicting in vivo performance of colon targeting tablets during drug development.
Collapse
|
|
2 |
10 |
22
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
|
Review |
1 |
9 |
23
|
Touzout Z, Abdellaoui N, Hadj-Hamou AS. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties. Int J Biol Macromol 2024; 263:130389. [PMID: 38403207 DOI: 10.1016/j.ijbiomac.2024.130389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC μg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.
Collapse
|
|
1 |
8 |
24
|
Mishra N, Pal S, Sharma M, Nisha R, Raj Pal R, Singh P, Singh S, Maurya P, Singh N, Ranjan Mishra P, Saraf SA. Crosslinked and PEGylated Pectin Chitosan Nanoparticles for Delivery of Phytic Acid to Colon. Int J Pharm 2023; 639:122937. [PMID: 37068717 DOI: 10.1016/j.ijpharm.2023.122937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
Polysaccharide-based nanoparticles (NPs) such as pectin/ chitosan (PN/CN) had always been of greatest interest because of their excellent solubility, biocompatibility, and higher suitability for oral drug delivery. This study employed blending-crosslinking of polymers (PN&CN) followed by emulsification-solvent evaporation to prepare and compare two sets of PEGylated NPs to deliver phytic acid (IP6) to colon orally as it has potential to manage colon cancer but fails to reach colon when ingested in pure form. The first set was crosslinked with Glutaraldehyde (GE) (GE*PN-CN-NPs) while the second set was crosslinked with sodium tripolyphosphate (TPP) (TPP*PN-CN-NPs). IP6-loaded-GE/TPP*PN-CN-NPs were optimized using a central composite design. Developed TPP*PN-CN-NPs had a smaller size (210.6±7.93nm) than GE*PN-CN-NPs (557.2±5.027nm). Prepared NPs showed <12% IP6 release at pH 1.2 whereas >80% release was observed at pH 7.4. Further, NPs were explored for cytocompatibility in J774.2 cell lines, cytotoxicity, and cellular uptake in HT-29 and DLD-1 cell lines. While exhibiting substantial cytotoxicity and cellular uptake in HT-29 and DLD-1, the NPs were deemedsafe in J774.2. The PEGylated-TPP*PN-CN-NPs showed time-dependent uptake in J774.2 cell lines. Conclusively, the employed NP development method successfully delivered IP6 to colon and may also open avenues for the oral delivery of other drugs to colon.
Collapse
|
|
2 |
7 |
25
|
Pachuau L, Mazumder B. Evaluation of Albizia procera gum as compression coating material for colonic delivery of budesonide. Int J Biol Macromol 2013; 61:333-9. [PMID: 23916644 DOI: 10.1016/j.ijbiomac.2013.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/06/2013] [Accepted: 07/27/2013] [Indexed: 11/27/2022]
Abstract
The purpose of this research was to develop and evaluate Albizia procera gum as compression-coating polymer for colonic delivery of budesonide. Tablets were prepared by direct compression method using spray-dried lactose and microcrystalline cellulose as filler binders. The compatibility between the drug and the polymer was studied through TGA and FTIR spectroscopy. In vitro drug release were studied in dissolution media with or without 2% rat cecal contents while in vivo X-ray study was conducted on rabbits. The results indicate that procera gum and the drug were compatible with each other and tablet coated with procera gum was suitable for colonic delivery of drugs.
Collapse
|
Journal Article |
12 |
7 |