Su X, Wang H, Wang C, Zhou X, Zou X, Zhang W. Programmable dual-electric-field immunosensor using MXene-Au-based competitive signal probe for natural parathion-methyl detection.
Biosens Bioelectron 2022;
214:114546. [PMID:
35820253 DOI:
10.1016/j.bios.2022.114546]
[Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Immunosensor is a promising tool for natural parathion-methyl (PTM) detection, and its analytical advantages can be magnified by introducing flexibly-fabricating technique. Herein, we present a dual-electric-field PTM immunosensor on highly-compatible screen-printed electrode (SPE). MXene-Au, the product of in-situ gold nanoparticle growth on MXene, provides considerable binding sites for PTM antigen (ATG) and methylene blue (MB). During sensing, the MXene-Au-MB-ATG probe competitively binds antibody against PTM, composing a ratiometric immune-system. With DC-biased sine excitations from complementary waveforms, on-chip electric field couple improves immunoreactions among PTM, probe, and antibody. Electric field distribution is programmed by trimming bypass resistors to pursue optimal performance. Probe synthesis is solidly proven with morphological examinations, and competition mechanism between the probe and target PTM is clarified in electrochemical analyses. Remarkably, this method brings less consumption of immune time than electric-field-free or solo-electric-field setup (50 s vs. 900 or 70 s), and simultaneously provides more powerful ratiometric signal than the rivals. Log-linear relationship, between PTM level and sensor readout, is established in 0.02-38 ng/mL, and limit of detection is found as 0.01 ng/mL. This method is applied in laboratorial and natural PTM analyses, and the readouts are consistent with high performance liquid chromatography and recovery test.
Collapse