1
|
Vasquez MI, Lambrianides A, Schneider M, Kümmerer K, Fatta-Kassinos D. Environmental side effects of pharmaceutical cocktails: what we know and what we should know. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:169-89. [PMID: 25061892 DOI: 10.1016/j.jhazmat.2014.06.069] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 06/20/2014] [Indexed: 05/03/2023]
Abstract
Cocktails of pharmaceuticals are released in the environment after human consumption and due to the incomplete removal at the wastewater treatment plants. Pharmaceuticals are considered as contaminants of emerging concern and, a plethora of journal articles addressing their possible adverse effects have been published during the past 20 years. The emphasis during the early years of research within this field, was on the assessment of acute effects of pharmaceuticals applied singly, leading to results regarding their environmental risk, potentially not realistic or relevant to the actual environmental conditions. Only recently has the focus been shifted to chronic exposure and to the assessment of cocktail effects. To this end, this review provides an up-to-date compilation of 57 environmental and human toxicology studies published during 2000-2014 dealing with the adverse effects of pharmaceutical mixtures. The main challenges regarding the design of experiments and the analysis of the results regarding the effects of pharmaceutical mixtures to different biological systems are presented and discussed herein. The gaps of knowledge are critically reviewed highlighting specific future research needs and perspectives.
Collapse
|
Review |
11 |
183 |
2
|
Thrupp TJ, Runnalls TJ, Scholze M, Kugathas S, Kortenkamp A, Sumpter JP. The consequences of exposure to mixtures of chemicals: Something from 'nothing' and 'a lot from a little' when fish are exposed to steroid hormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1482-1492. [PMID: 29734624 DOI: 10.1016/j.scitotenv.2017.11.081] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 05/12/2023]
Abstract
Ill-defined, multi-component mixtures of steroidal pharmaceuticals are present in the aquatic environment. Fish are extremely sensitive to some of these steroids. It is important to know how fish respond to these mixtures, and from that knowledge develop methodology that enables accurate prediction of those responses. To provide some of the data required to reach this objective, pairs of fish were first exposed to five different synthetic steroidal pharmaceuticals (one estrogen, EE2; one androgen, trenbolone; one glucocorticoid, beclomethasone dipropionate; and two progestogens, desogestrel and levonorgestrel) and concentration-response data on egg production obtained. Based on those concentration-response relationships, a five component mixture was designed and tested twice. Very similar effects were observed in the two experiments. The mixture inhibited egg production in an additive manner predicted better by the model of Independent Action than that of Concentration Addition. Our data provide a reference case for independent action in an in vivo model. A significant combined effect was observed when each steroidal pharmaceutical in the mixture was present at a concentration which on its own would produce no statistically significant effect (something from 'nothing'). Further, when each component was present in the mixture at a concentration expected to inhibit egg production by between 18% (Beclomethasone diproprionate) and 40% (trenbolone), this mixture almost completely inhibited egg production: a phenomenon we term 'a lot from a little'. The results from this proof-of-principle study suggest that multiple steroids present in the aquatic environment can be analysed for their potential combined environmental risk.
Collapse
|
|
7 |
117 |
3
|
Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products. Toxicol Appl Pharmacol 2013; 278:201-8. [PMID: 24055644 DOI: 10.1016/j.taap.2013.09.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022]
Abstract
Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
87 |
4
|
Vašíčková J, Hvězdová M, Kosubová P, Hofman J. Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. CHEMOSPHERE 2019; 216:479-487. [PMID: 30384317 DOI: 10.1016/j.chemosphere.2018.10.158] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Currently used pesticides (CUPs) represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. Subsequently, pesticide residues (PRs) and their transformation products (TPs) persist in agricultural soils, occurring in diverse mixtures of compounds in various concentrations. In this study, measured environmental concentrations (MECs) of CUP residues and TPs, originated from previous growing seasons in agricultural soils of the Czech Republic, were used to characterize the environmental risk for agroecosystems. Toxicity exposure ratios (TERs) were calculated using predicted no-effect concentrations (PNECs) and MECs in order to identify single pesticide residues risk to in-soil invertebrates and microorganisms. Ecological risk assessment (ERA) for the mixtures of pesticide residues at each monitored site was assessed using a risk quotient (RQ) method and considering concentration addition among components in the mixtures. The compilation of ecotoxicity data to derived PNECs for in-soil organisms clearly showed data gaps mainly for triazine and chloroacetanilide TPs. In addition, chronic toxicity data for in-soil invertebrates at different trophic levels are not available for 30% of monitored CUPs. The ERA revealed that pesticide residues in soil pose a risk at 35% of the sites (RQ ≥ 1). Among measured pesticides, epoxiconazole, atrazine-2-hydroxy, carbendazim, dimoxystrobin, terbuthylazine and difenoconazole were the main contributors to the overall pesticide mixture toxicity. The measured levels of epoxiconazole together with the frequent presence in soils represent a risk for the agroecosystems. Further assessment of higher tiers of ERA should be considered and prioritized in the pesticides risk management.
Collapse
|
|
6 |
72 |
5
|
Gustavsson M, Kreuger J, Bundschuh M, Backhaus T. Pesticide mixtures in the Swedish streams: Environmental risks, contributions of individual compounds and consequences of single-substance oriented risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:973-983. [PMID: 28468125 DOI: 10.1016/j.scitotenv.2017.04.122] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/15/2017] [Accepted: 04/16/2017] [Indexed: 05/26/2023]
Abstract
This paper presents the ecotoxicological assessment and environmental risk evaluation of complex pesticide mixtures occurring in freshwater ecosystems in southern Sweden. The evaluation is based on exposure data collected between 2002 and 2013 by the Swedish pesticide monitoring program and includes 1308 individual samples, detecting mixtures of up to 53 pesticides (modal=8). Pesticide mixture risks were evaluated using three different scenarios for non-detects (best-case, worst-case and using the Kaplan-Meier method). The risk of each scenario was analyzed using Swedish Water Quality Objectives (WQO) and trophic-level specific environmental thresholds. Using the Kaplan-Meier method the environmental risk of 73% of the samples exceeded acceptable levels, based on an assessment using Concentration-Addition and WQOs for the individual pesticides. Algae were the most sensitive organism group. However, analytical detection limits, especially for insecticides, were insufficient to analyze concentrations at or near their WQO's. Thus, the risk of the analyzed pesticide mixtures to crustaceans and fish is systematically underestimated. Treating non-detects as being present at their individual limit of detection increased the estimated risk by a factor 100 or more, compared to the best-case or the Kaplan-Meier scenario. Pesticide mixture risks are often driven by only 1-3 compounds. However, the risk-drivers (i.e., individual pesticides explaining the largest share of potential effects) differ substantially between sites and samples, and 83 of the 141 monitored pesticides need to be included in the assessment to account for 95% of the risk at all sites and years. Single-substance oriented risk mitigation measures that would ensure that each individual pesticide is present at a maximum of 95% of its individual WQO, would also reduce the mixture risk, but only from a median risk quotient of 2.1 to a median risk quotient of 1.8. Also, acceptable total risk levels would still be exceeded in more than 70% of the samples.
Collapse
|
|
8 |
64 |
6
|
Watanabe H, Tamura I, Abe R, Takanobu H, Nakamura A, Suzuki T, Hirose A, Nishimura T, Tatarazako N. Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:996-1006. [PMID: 26472177 DOI: 10.1002/etc.3285] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/02/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
Principles of concentration addition and independent action have been used as effective tools to predict mixture toxicity based on individual component toxicity. The authors investigated the toxicity of a pharmaceutical mixture composed of the top 10 detected active pharmaceutical ingredients (APIs) in the Tama River (Tokyo, Japan) in a relevant concentration ratio. Both individual and mixture toxicities of the 10 APIs were evaluated by 3 short-term chronic toxicity tests using the alga Pseudokirchneriella subcapitata, the daphnid Ceriodaphnia dubia, and the zebrafish Danio rerio. With the exception of clarithromycin toxicity to alga, the no-observed-effect concentration of individual APIs for each test species was dramatically higher than the highest concentration of APIs found in the environment. The mixture of 10 APIs resulted in toxicity to alga, daphnid, and fish at 6.25 times, 100 times, and 15,000 times higher concentrations, respectively, than the environmental concentrations of individual APIs. Predictions by concentration addition and independent action were nearly identical for alga, as clarithromycin was the predominant toxicant in the mixture. Both predictions described the observed mixture toxicity to alga fairly well, whereas they slightly underestimated the observed mixture toxicity in the daphnid test. In the fish embryo test, the observed toxicity fell between the predicted toxicity by concentration addition and independent action. These results suggested that the toxicity of environmentally relevant pharmaceutical mixtures could be predicted by individual toxicity using either concentration addition or independent action.
Collapse
|
|
9 |
63 |
7
|
Meyer JS, Farley KJ, Garman ER. Metal mixtures modeling evaluation project: 1. Background. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:726-740. [PMID: 25353683 DOI: 10.1002/etc.2792] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/10/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Despite more than 5 decades of aquatic toxicity tests conducted with metal mixtures, there is still a need to understand how metals interact in mixtures and to predict their toxicity more accurately than what is currently done. The present study provides a background for understanding the terminology, regulatory framework, qualitative and quantitative concepts, experimental approaches, and visualization and data-analysis methods for chemical mixtures, with an emphasis on bioavailability and metal-metal interactions in mixtures of waterborne metals. In addition, a Monte Carlo-type randomization statistical approach to test for nonadditive toxicity is presented, and an example with a binary-metal toxicity data set demonstrates the challenge involved in inferring statistically significant nonadditive toxicity. This background sets the stage for the toxicity results, data analyses, and bioavailability models related to metal mixtures that are described in the remaining articles in this special section from the Metal Mixture Modeling Evaluation project and workshop. It is concluded that although qualitative terminology such as additive and nonadditive toxicity can be useful to convey general concepts, failure to expand beyond that limited perspective could impede progress in understanding and predicting metal mixture toxicity. Instead of focusing on whether a given metal mixture causes additive or nonadditive toxicity, effort should be directed to develop models that can accurately predict the toxicity of metal mixtures.
Collapse
|
|
10 |
58 |
8
|
Park CB, Jang J, Kim S, Kim YJ. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:57-63. [PMID: 27915143 DOI: 10.1016/j.ecoenv.2016.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/19/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECxmix (e.g., EC10mix, EC25mix, or EC50mix) values obtained from mixture-exposure tests were higher than predicted ECxmix (e.g., EC10mix, EC25mix, or EC50mix) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required.
Collapse
|
|
8 |
54 |
9
|
Macário IPE, Jesus F, Pereira JL, Ventura SPM, Gonçalves AMM, Coutinho JAP, Gonçalves FJM. Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory. CHEMOSPHERE 2018; 212:890-897. [PMID: 30195169 DOI: 10.1016/j.chemosphere.2018.08.153] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
The interest on deep eutectic solvents (DES) has been increasing. However, the ecotoxicological profile of DES is scarcely known. Also, despite previous studies showed that DES components dissociate in water, none assessed DES toxicity using the classical and adequate models for mixture toxicity prediction - concentration addition (CA) and independent action (IA). This study evaluates the ecotoxicological profile of DES based on [N1111]Cl, [N2222]Cl and [N3333]Cl as hydrogen bond acceptors (HBA) combined with hydrogen-bond donors (HBD) vis. ethylene glycol and 1-propanol, through the Microtox® Acute Toxicity Test. CA and IA with deviations describing synergism/antagonism, dose-ratio and dose-level effects were fitted to the toxicity data. Neither the starting materials nor DES were found hazardous to Aliivibrio fischeri, in this specific case agreeing with the claimed "green character" of DES. Among the starting materials, ethylene glycol was the least toxic, whereas [N3333]Cl was the most toxic (30 min-EC50 = 96.49 g L-1 and 0.5456 g L-1, respectively). DES toxicity followed the same trend as observed for the salts: [N1111]Cl-based DES < [N2222]Cl-based DES < [N3333]Cl-based DES. The IA model, with specific deviations, adjusted better in 5 out of 6 DES. Antagonism was observed for [N1111]Cl-based DES, and synergism for [N3333]Cl-based DES and for 1-propanol:[N2222]Cl. The application of the mixture toxicity models represents a breakthrough in the problematic of assessing the toxicity of the countless number of DES that can be created with the same starting materials, since they provide the expected toxicity of any virtual combination between HBA and HBD.
Collapse
|
|
7 |
47 |
10
|
Escher B, Braun G, Zarfl C. Exploring the Concepts of Concentration Addition and Independent Action Using a Linear Low-Effect Mixture Model. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2552-2559. [PMID: 32897547 DOI: 10.1002/etc.4868] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 08/30/2020] [Indexed: 05/12/2023]
Abstract
Chemicals emitted into the environment are typically present at low concentrations but may act together in mixtures. Concentration-response curves of in vitro bioassays were often linear for effect levels <30%, and the predictions for concentration addition (CA) of similarly acting chemicals and for independent action (IA) of dissimilarly acting chemicals overlapped. We derived a joint CA/IA mixture model for the low-effect level portion of concentration-response curves. In a first case study, we evaluated the cytotoxicity of over 200 mixtures of up to 17 components that were mixed in concentration ratios as they occurred in river water. The predictions of the full IA model were indistinguishable from the predictions of the full CA model up to 10% effect, confirming the applicability of the joint CA/IA mixture model at low effect levels. In a second case study, we evaluated if environmental concentrations trigger effects at levels low enough for the joint CA/IA mixture model to apply. The detected concentrations were scaled by their toxic potencies to estimate the mixture effect of the detected chemicals in a complex mixture. In 86% of 156 samples the effects fell in the validity range of the joint CA/IA mixture model (<10% effect level), confirming the CA assumption for toxic unit summation. The joint CA/IA mixture model is not suitable for testing specific mixture hypotheses and interactions of chemicals in mixtures, where more refined models are required; but it is helpful for the interpretation of effects of complex (multicomponent) environmental mixtures, especially for water samples with relatively low effect level. Environ Toxicol Chem 2020;39:2552-2559. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
|
5 |
44 |
11
|
Petersen K, Heiaas HH, Tollefsen KE. Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:45-54. [PMID: 24632557 DOI: 10.1016/j.aquatox.2014.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Organisms in the environment are exposed to a number of pollutants from different compound groups. In addition to the classic pollutants like the polychlorinated biphenyls, polyaromatic hydrocarbons (PAHs), alkylphenols, biocides, etc. other compound groups of concern are constantly emerging. Pharmaceuticals and personal care products (PPCPs) can be expected to co-occur with other organic contaminants like biocides, PAHs and alkylphenols in areas affected by wastewater, industrial effluents and intensive recreational activity. In this study, representatives from these four different compound groups were tested individually and in mixtures in a growth inhibition assay with the marine algae Skeletonema pseudocostatum (formerly Skeletonema costatum) to determine whether the combined effects could be predicted by models for additive effects; the concentration addition (CA) and independent action (IA) prediction model. The eleven tested compounds reduced the growth of S. pseudocostatum in the microplate test in a concentration-dependent manner. The order of toxicity of these chemicals were irgarol>fluoxetine>diuron>benzo(a)pyrene>thioguanine>triclosan>propranolol>benzophenone 3>cetrimonium bromide>4-tert-octylphenol>endosulfan. Several binary mixtures and a mixture of eight compounds from the four different compound groups were tested. All tested mixtures were additive as model deviation ratios, the deviation between experimental and predicted effect concentrations, were within a factor of 2 from one or both prediction models (e.g. CA and IA). Interestingly, a concentration dependent shift from IA to CA, potentially due to activation of similar toxicity pathways at higher concentrations, was observed for the mixture of eight compounds. The combined effects of the multi-compound mixture were clearly additive and it should therefore be expected that PPCPs, biocides, PAHs and alkylphenols will collectively contribute to the risk in areas contaminated by such complex mixtures.
Collapse
|
|
11 |
43 |
12
|
Dong R, Liu R, Xu Y, Liu W, Wang L, Liang X, Huang Q, Sun Y. Single and joint toxicity of polymethyl methacrylate microplastics and As (V) on rapeseed (Brassia campestris L.). CHEMOSPHERE 2022; 291:133066. [PMID: 34861256 DOI: 10.1016/j.chemosphere.2021.133066] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Most microplastics and arsenic (As) have been released into farmland via industrial and agricultural activities, posing a potential threat to crop growth and food safety. Thus far, few studies have focused on the phytoxicity of microplastics and As to leafy vegetable. In this study, we evaluated the single and combined toxicological effects of polymethyl methacrylate (PMMA) and As(V) on rapeseed (Brassia campestris L.). Single treatments of two sizes of PMMA particles, namely PMMA nano-plastics (PMMANPs) and PMMA micro-plastics (PMMAMPs) and As(V) significantly (P < 0.05) inhibited the germination index (GI) of rapeseed. The IC50 indicates that PMMANPs were more toxic than PMMAMPs. Combine-pollution experiments demonstrated that the GI, biomass, root length, and sprout length of the rapeseed under the combined treatment were lower than those subjected to As(V) or PMMANPs single treatment. Analysis of variance showed that the interaction effects of PMMANPs and As(V) for GI and root length were significant, and there was synergistic interaction between PMMANPs and As(V) on rapeseed germination. PMMANPs promoted the accumulation of As in sprouts under high As(V) concentrations (40 and 60 mg/L). The activities of lipase in rapeseed generally increased under single and combined treatments of As(V) and PMMANPs, and while α-amylase activities first increased and then decreased with the increase of PMMANPs. It appears that the combined stress of microplastics and As(V) exhibited synergistic interaction on the growth of rapeseed.
Collapse
|
|
3 |
42 |
13
|
Carbajo JB, Perdigón-Melón JA, Petre AL, Rosal R, Letón P, García-Calvo E. Personal care product preservatives: risk assessment and mixture toxicities with an industrial wastewater. WATER RESEARCH 2015; 72:174-185. [PMID: 25585550 DOI: 10.1016/j.watres.2014.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 12/15/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The aquatic toxicity of eight preservatives frequently used in personal care products (PCPs) (iodopropynyl butylcarbamate, bronopol, diazolidinyl urea, benzalkonium chloride, zinc pyrithione, propylparaben, triclosan and a mixture of methylchloroisothiazolinone and methylisothiazolinone) was assessed by means of two different approaches: a battery of bioassays composed of single species tests of bacteria (Vibrio fischeri and Pseudomonas putida) and protozoa (Tetrahymena thermophila), and a whole biological community resazurin-based assay using activated sludge. The tested preservatives showed considerable toxicity in the studied bioassays, but with a marked difference in potency. In fact, all biocides except propylparaben and diazolidinyl urea had EC50 values lower than 1 mg L(-1) in at least one assay. Risk quotients for zinc pyrithione, benzalkonium chloride, iodopropynyl butylcarbamate and triclosan as well as the mixture of the studied preservatives exceeded 1, indicating a potential risk for the process performance and efficiency of municipal sewage treatment plants (STPs). These four single biocides explained more than 95% of the preservative mixture risk in all bioassays. Each individual preservative was also tested in combination with an industrial wastewater (IWW) from a cosmetics manufacturing facility. The toxicity assessment was performed on binary mixtures (preservative + IWW) and carried out using the median-effect principle, which is a special case of the concept of Concentration Addition (CA). Almost 70% of all experiments resulted in EC50 values within a factor of 2 of the values predicted by the median-effect principle (CI values between 0.5 and 2). The rest of the mixtures whose toxicity was mispredicted by CA were assessed with the alternative concept of Independent Action (IA), which showed higher predictive power for the biological community assay. Therefore, the concept used to accurately predict the toxicity of mixtures of a preservative with a complex industrial wastewater depends on degree of biological complexity.
Collapse
|
|
10 |
41 |
14
|
Tang JYM, Escher BI. Realistic environmental mixtures of micropollutants in surface, drinking, and recycled water: herbicides dominate the mixture toxicity toward algae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1427-1436. [PMID: 24648273 DOI: 10.1002/etc.2580] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/06/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Mixture toxicity studies with herbicides have focused on a few priority components that are most likely to cause environmental impacts, and experimental mixtures were often designed as equipotent mixtures; however, real-world mixtures are made up of chemicals with different modes of toxic action at arbitrary concentration ratios. The toxicological significance of environmentally realistic mixtures has only been scarcely studied. Few studies have simultaneously compared the mixture effect of water samples with designed reference mixtures comprised of the ratios of analytically detected concentrations in toxicity tests. In the present study, the authors address the effect of herbicides and other chemicals on inhibition of photosynthesis and algal growth rate. The authors tested water samples including secondary treated wastewater effluent, recycled water, drinking water, and storm water in the combined algae assay. The detected chemicals were mixed in the concentration ratios detected, and the biological effects of the water samples were compared with the designed mixtures of individual detected chemicals to quantify the fraction of effect caused by unknown chemicals. The results showed that herbicides dominated the algal toxicity in these environmentally realistic mixtures, and the contribution by the non-herbicides was negligible. A 2-stage model, which used concentration addition within the groups of herbicides and non-herbicides followed by the model of independent action to predict the mixture effect of the two groups, could predict the experimental mixture toxicity effectively, but the concentration addition model for herbicides was robust and sufficient for complex mixtures. Therefore, the authors used the bioanalytical equivalency concept to derive effect-based trigger values for algal toxicity for monitoring water quality in recycled and surface water. All water samples tested would be compliant with the proposed trigger values associated with the appropriate guidelines.
Collapse
|
|
11 |
40 |
15
|
Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Sarmento H, Rocha O, Seleghim MHR. Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:312-321. [PMID: 28433596 DOI: 10.1016/j.ecoenv.2017.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
In aquatic environments, organisms are often exposed to mixtures of several pesticides. In this study, the effects of carbofuran and diuron and their mixtures on the microalgae Raphidocelis subcapitata were investigated. For this purpose, toxicity tests were performed with the single compounds (active ingredients and commercial formulations) and their combinations (only active ingredients). According to the results, the toxicity of active ingredients and their commercial formulations to R. subcapitata was similar. In the single exposures, both carbofuran and diuron inhibited significantly the R. subcapitata growth and caused physiological (chlorophyll a content) and morphological (complexity and cell size) changes in cells, as captured by flow cytometry single-cell properties. Regarding the mixture toxicity tests, data fitted to both reference models, concentration addition (CA) and independent action (IA), and evidenced significant deviations. After the CA fitting, dose-ratio dependent deviation had the best fit to the data, demonstrating synergism caused mainly by diuron and antagonism caused mainly by carbofuran. After fitting the IA model, a synergistic deviation represented the best fit for the diuron and carbofuran mixtures. In general, the two reference models indicated the occurrence of synergism in the mixtures of these compounds, especially when diuron was the dominant chemical in the combinations. The increased toxicity caused by the mixture of these pesticides could pose a greater environmental risk for phytoplankton. Thus, exposure to diuron and carbofuran mixtures must also be considered in risk assessments, since the combination of these compounds may result in more severe effects on algae population growth than single exposures.
Collapse
|
|
8 |
39 |
16
|
Demaegdt H, Daminet B, Evrard A, Scippo ML, Muller M, Pussemier L, Callebaut A, Vandermeiren K. Endocrine activity of mycotoxins and mycotoxin mixtures. Food Chem Toxicol 2016; 96:107-16. [PMID: 27481073 DOI: 10.1016/j.fct.2016.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Reporter gene assays incorporating nuclear receptors (estrogen, androgen, thyroid β and PPARγ2) have been implemented to assess the endocrine activity of 13 mycotoxins and their mixtures. As expected, zearalenone and its metabolites α-zearalenol and β- zearalenol turned out to have the strongest estrogenic potency (EC50 8,7 10-10 ± 0,8; 3,1 10-11 ± 0,5 and 1,3 10-8 ± 0,3 M respectively). The metabolite of deoxynivalenol, 3-acetyl-deoxynivalenol also had estrogenic activity (EC50 3,8 10-7 ± 1,1 M). Furthermore, most of the mycotoxins (and their mixtures) showed anti-androgenic effects (15-acetyldeoxynivalenol, 3-acetyl-deoxynivalenol and α-zearalenol with potencies within one order of magnitude of that of the reference compound flutamide). In particular, deoxynivalenol and 15-acetyl-deoxynivalenol acted as antagonists for the PPARy2 receptor. When testing mixtures of mycotoxins on the same cell systems, we showed that most of the mixtures reacted as predicted by the concentration addition (CA) theory. Generally, the CA was within the 95% confidence interval of the observed ones, only minor deviations were detected. Although these reporter gene tests cannot be directly extrapolated in vivo, they can be the basis for further research. Especially the additive effects of ZEN and its metabolites are of importance and could have repercussions in vivo.
Collapse
|
Journal Article |
9 |
36 |
17
|
Christen V, Crettaz P, Fent K. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin. Toxicol Appl Pharmacol 2014; 279:455-466. [PMID: 25019461 DOI: 10.1016/j.taap.2014.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. METHODS The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose-response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. RESULTS The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC25 and EC50. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. CONCLUSION Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. PRACTICE Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. IMPLICATIONS Our evaluation provides an appropriate "proof of concept", but whether it equally translates to in vivo effects should further be investigated.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
36 |
18
|
Chen YH, Qin LT, Mo LY, Zhao DN, Zeng HH, Liang YP. Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:375-385. [PMID: 31022643 DOI: 10.1016/j.envpol.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/19/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Aromatic halogenated chemicals are an unregulated class of byproducts (DBPs) generated from disinfection processes in the water environment. Information on the toxicological interactions, such as antagonism and synergism, present in DBP mixtures remains limited. This study aimed to determine the toxicological effects of aromatic halogenated DBP mixtures on the freshwater bacterium Vibrio qinghaiensis sp.-Q67. The acute toxicities of seven DBPs and their binary mixtures toward V. qinghaiensis sp.-Q67 were determined through microplate toxicity analysis. The toxicities of single DBPs were ranked as follows: 2,5-dibromohydroquinone > 2,4-dibromophenol > 4-bromo-2-chlorophenol ≈ 2,6-dibromo-4-nitrophenol > 2,6-dichloro-4-nitrophenol > 2-bromo-4-chlorophenol > 4-bromophenol. The percentages of synergism (experimental values higher than the predicted concentration addition) on the levels of 50%, 20%, and 10% effective concentrations reached 61%, 41%, and 31%, respectively. These results indicated that the probability of synergism decreased as concentration levels decreased. The synergetic effects of the compounds were dependent on concentration levels and concentration ratios. The proposed quantitative structure-activity relationship model can be used to predict the interactive toxicities exerted by 105 binary DBP mixture rays of 21 DBP mixture systems.
Collapse
|
|
6 |
35 |
19
|
Liu SS, Wang CL, Zhang J, Zhu XW, Li WY. Combined toxicity of pesticide mixtures on green algae and photobacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 95:98-103. [PMID: 23816361 DOI: 10.1016/j.ecoenv.2013.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 05/03/2023]
Abstract
Different organisms have diverse responses to the same chemicals or mixtures. In this paper, we selected the green algae Chlorella pyrenoidosa (C. pyrenoidosa) and photobacteria Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) as target organisms and determined the toxicities of six pesticides, including three herbicides (simetryn, bromacil and hexazinone), two fungicides (dodine and metalaxyl) and one insecticide (propoxur), and their mixtures by using the microplate toxicity analysis. The toxicities of three herbicides to C. pyrenoidosa are much higher than those to V. qinghaiensis, and the toxicities of metalaxyl and propoxur to V. qinghaiensis are higher than those to C. pyrenoidosa, while the toxicity of dodine to C. pyrenoidosa is similar to those to V. qinghaiensis. Using the concentration addition as an additive reference model, the binary pesticide mixtures exhibited different toxicity interactions, i.e., displayed antagonism to C. pyrenoidosa but synergism to V. qinghaiensis. However, the toxicities of the multi-component mixtures of more than two components are additive and can be predicted by the concentration addition model.
Collapse
|
|
12 |
32 |
20
|
Erickson RJ, Mount DR, Highland TL, Hockett JR, Hoff DJ, Jenson CT, Norberg-King TJ, Peterson KN. The acute toxicity of major ion salts to Ceriodaphnia dubia. II. Empirical relationships in binary salt mixtures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1525-1537. [PMID: 27800634 PMCID: PMC6157913 DOI: 10.1002/etc.3669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/17/2016] [Accepted: 10/27/2016] [Indexed: 05/21/2023]
Abstract
Many human activities increase concentrations of major geochemical ions (Na+1 , K+1 , Ca+2 , Mg+2 , Cl-1 , SO4-2 , and HCO3-1 /CO3-2 ) in freshwater systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple toxicity mechanisms, various ion interactions, and widely varying ion compositions across different water bodies. Previous studies of individual salt toxicities have defined some useful relationships; however, adding single salts to waters results in atypical compositions and does not fully address mixture toxicity. To better understand mechanisms and interactions for major ion toxicity, 29 binary mixture experiments, each consisting of 7 to 8 toxicity tests, were conducted on the acute toxicity of major ion salts and mannitol to Ceriodaphnia dubia. These tests showed multiple mechanisms of toxicity, including: 1) nonspecific ion toxicity, correlated with osmolarity and to which all ions contribute; and 2) cation-dependent toxicities for potassium (K), magnesium (Mg), and calcium (Ca) best related to their chemical activities. These mechanisms primarily operate independently, except for additive toxicity of Mg-dependent and Ca-dependent toxicities. These mixture studies confirmed ameliorative effects of Ca on sodium (Na) and Mg salt toxicities and of Na on K salt toxicity, and further indicated lesser ameliorative effects of Ca on K salt toxicity and Mg on Na salt toxicity. These results provide a stronger basis for assessing risks from the complex mixtures of ions found in surface waters. Environ Toxicol Chem 2017;36:1525-1537. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
|
research-article |
8 |
31 |
21
|
Nagai T, De Schamphelaere KAC. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2765-2773. [PMID: 27043471 DOI: 10.1002/etc.3445] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The authors investigated the effect of binary mixtures of zinc (Zn), copper (Cu), cadmium (Cd), and nickel (Ni) on the growth of a freshwater diatom, Navicula pelliculosa. A 7 × 7 full factorial experimental design (49 combinations in total) was used to test each binary metal mixture. A 3-d fluorescence microplate toxicity assay was used to test each combination. Mixture effects were predicted by concentration addition and independent action models based on a single-metal concentration-response relationship between the relative growth rate and the calculated free metal ion activity. Although the concentration addition model predicted the observed mixture toxicity significantly better than the independent action model for the Zn-Cu mixture, the independent action model predicted the observed mixture toxicity significantly better than the concentration addition model for the Cd-Zn, Cd-Ni, and Cd-Cu mixtures. For the Zn-Ni and Cu-Ni mixtures, it was unclear which of the 2 models was better. Statistical analysis concerning antagonistic/synergistic interactions showed that the concentration addition model is generally conservative (with the Zn-Ni mixture being the sole exception), indicating that the concentration addition model would be useful as a method for a conservative first-tier screening-level risk analysis of metal mixtures. Environ Toxicol Chem 2016;35:2765-2773. © 2016 SETAC.
Collapse
|
|
9 |
29 |
22
|
Reis EO, Santos LVS, Lange LC. Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117803. [PMID: 34329042 DOI: 10.1016/j.envpol.2021.117803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The present study provides an environmental risk assessment of the pharmaceutical mixtures detected in Brazilian surface waters, based on Toxic Units and Risk Quotients. Furthermore, the applicability of a previously proposed prioritization methodology was evaluated. The pharmaceuticals were classified according to their properties (occurrence, persistence, bioaccumulation, and toxicity) and the contribution of the prioritized compounds to the mixture risk was determined. The mixture risk quotients, based on acute and chronic toxicity data, often exceed 1, demonstrating a potential risk for the environment. While algae were most affected by acute effects, fish were the most sensitive organism to sublethal effects. The lipid regulator atorvastatin was the main driver for the mixture risk. Despite their lower occurrence, the antibiotics norfloxacin and enrofloxacin were critical compounds for the algae group. The prioritized pharmaceuticals contributed to more than 75% of the mixture risk in most of cases, indicating the applicability of prioritization approaches for risk management.
Collapse
|
|
4 |
25 |
23
|
Farley KJ, Meyer JS. Metal mixture modeling evaluation project: 3. Lessons learned and steps forward. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:821-832. [PMID: 25475765 DOI: 10.1002/etc.2837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/19/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
A comparison of 4 metal mixture toxicity models (that were based on the biotic ligand model [BLM] and the Windermere humic aqueous model using the toxicity function [WHAM-FTOX ]) was presented in a previous paper. In the present study, a streamlined version of the 4 models was developed and applied to multiple data sets and test conditions to examine key assumptions and calibration strategies that are crucial in modeling metal mixture toxicity. Results show that 1) a single binding site on or in the organism was a useful and oftentimes sufficient framework for predicting metal toxicity; 2) a linear free energy relationship (LFER) for bidentate binding of metals and cations to the biotic ligand provided a good first estimate of binding coefficients; 3) although adjustments in metal binding coefficients or adjustments in chemical potency factors can both be used in model calibration for single-metal exposures, changing metal binding coefficients or chemical potency factors had different effects on model predictions for metal mixtures; and 4) selection of a mixture toxicity model (based on concentration addition or independent action) was important in predicting metal mixture toxicity. Moving forward, efforts should focus on reducing uncertainties in model calibration, including development of better methods to characterize metal binding to toxicologically active binding sites, conducting targeted exposure studies to advance the understanding of metal mixture toxicity, and further developing LFERs and other tools to help constrain the model calibration.
Collapse
|
|
10 |
24 |
24
|
Larsson M, Giesy JP, Engwall M. AhR-mediated activities of polycyclic aromatic compound (PAC) mixtures are predictable by the concept of concentration addition. ENVIRONMENT INTERNATIONAL 2014; 73:94-103. [PMID: 25108069 DOI: 10.1016/j.envint.2014.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 05/23/2023]
Abstract
Risk assessments of polycyclic aromatic hydrocarbons (PAHs) are complicated because these compounds exist in the environment as complex mixtures of hundreds of individual PAHs and other related polycyclic aromatic compounds (PACs). In this study, the hypothesis that concentration addition (CA) can be used to predict the aryl hydrocarbon receptor (AhR)-mediated activity of PACs in mixtures containing various combinations of PACs was tested. AhR-mediated activities of 18 mixtures composed of two to 23 PACs, which included PAHs, azaarenes and oxygenated PAHs, were examined by the use of the AhR-based H4IIE-luc bioassay. Since greater AhR-mediated activities have been observed in soils contaminated by PAHs, investigations were done to test whether soil extract matrix or the presence of non-effect PACs might affect responses of the H4IIE-luc bioassay. Our results showed that AhR-mediated activities of mixtures of PACs could be predicted by the use of concentration addition. Additive activities of PACs in multi component mixtures along with the insignificant effect of the soil matrix support the use of concentration addition in mass balance calculations and AhR-based bioassays in risk assessment of environmental samples. However, independent action (IA) could not be used to predict the activity of mixtures of PACs.
Collapse
|
|
11 |
24 |
25
|
Ding K, Lu L, Wang J, Wang J, Zhou M, Zheng C, Liu J, Zhang C, Zhuang S. In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (II) to Vibrio qinghaiensis sp.-Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1078-1084. [PMID: 27993475 DOI: 10.1016/j.scitotenv.2016.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and have become one of the emerging contaminants with an increasing public concern. The residues of PAEs frequently co-exist with heavy metals such as cadmium (Cd) in waters; however, their joint ecotoxicity remains largely unknown. We herein investigated the single and joint toxicity of commonly used PAEs and Cd using freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67. The median effective concentration (EC50) of benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), diisooctyl phthalate (DIOP) and di-n-octyl phthalate (DOP) were determined to be in the range from 134.4mg/L to as high as 1000mg/L, indicating very weak toxicity to Vibrio qinghaiensis sp.-Q67. The toxicity of single PAEs showed a significant linear relationship with Log Kow, indicating the dependence of the elevated toxicity on the increasing hydrophilicity. The toxicity of binary mixture of PAEs was further evaluated in silico using the independent action (IA) model and concentration addition (CA) model. DMP-DEP, DEP-DBP or DMP-DBP exhibited antagonistic effects with the toxic unit value higher than 1.2. The CA and IA models poorly predicted the joint toxicity of DMP-DEP, DEP-DBP or DMP-DBP. The joint toxicity of the binary mixtures of DMP, DEP or DBP with Cd was simple additive as predicted by the CA and IA models. Our results indicated the potentially higher risk of PAEs in the presence of Cd, emphasizing the importance of determining the impact of their joint effects on aquatic organisms. The integrated in vitro and in silico methods employed in this study will be beneficial to study the joint toxicity and better assess the aquatic ecological risk of PAEs.
Collapse
|
|
8 |
23 |