1
|
Structural Basis for the Activation and Target Site Specificity of CDC7 Kinase. Structure 2020; 28:954-962.e4. [PMID: 32521228 PMCID: PMC7416108 DOI: 10.1016/j.str.2020.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
CDC7 is an essential Ser/Thr kinase that acts upon the replicative helicase throughout the S phase of the cell cycle and is activated by DBF4. Here, we present crystal structures of a highly active human CDC7-DBF4 construct. The structures reveal a zinc-finger domain at the end of the kinase insert 2 that pins the CDC7 activation loop to motif M of DBF4 and the C lobe of CDC7. These interactions lead to ordering of the substrate-binding platform and full opening of the kinase active site. In a co-crystal structure with a mimic of MCM2 Ser40 phosphorylation target, the invariant CDC7 residues Arg373 and Arg380 engage phospho-Ser41 at substrate P+1 position, explaining the selectivity of the S-phase kinase for Ser/Thr residues followed by a pre-phosphorylated or an acidic residue. Our results clarify the role of DBF4 in activation of CDC7 and elucidate the structural basis for recognition of its preferred substrates.
DBF4 activates CDC7 kinase via a two-step mechanism Zinc-finger domain in CDC7 KI2 interacts with DBF4 motif M Invariant CDC7 residues Arg373 and Arg380 engage P+1 substrate site
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
16 |
2
|
Mansouri M, Mirzaei SA, Lage H, Mousavi SS, Elahian F. The cell cycle arrest and the anti-invasive effects of nitrogen-containing bisphosphonates are not mediated by DBF4 in breast cancer cells. Biochimie 2013; 99:71-6. [PMID: 24287290 DOI: 10.1016/j.biochi.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/11/2013] [Indexed: 01/13/2023]
Abstract
Recent work has shown that a DBF4 analog in yeast may be a target of nitrogen-containing bisphosphonates. DBF4 is an essential protein kinase required for DNA replication from primary eukaryotes to humans and appears to play a critical role in the S-phase checkpoint. It is also required for cell migration and cell surface adhesion. The effects of Pamidronate, risedronate, or zoledronate on cell viability and DBF4 expression were measured via MTT assays and western blotting. In addition, FACS cell cycle analyses and invasion assays were conducted in cells in the presence of nitrogen-containing bisphosphonates to identify any correlations between DBF4 expression and S-phase arrest or anti-invasive effects of the bisphosphonates. Zoledronate transiently down-regulated DBF4 expression in all three cell lines in the first 24 h of the experiment, but after 72 h, DBF4 expression returned to the control levels in all treated cells. Following treatment of the tumor cells with the bisphosphonates, the number of cells in S-phase was increased. Pamidronate and zoledronate showed anti-invasive effects in BT20 cells. The anti-invasive effects of pamidronate, risedronate and zoledronate appeared after 48 h of exposure. In MDA-MB231 cells a reduction of invasiveness was only observed after 72 h of the pamidronate exposure. We finally concluded that the anti-invasive and cell cycle arrest-inducing effects of nitrogen-containing bisphosphonates are not DBF4 mediated, and other mediators are therefore needed to explain the observed complex behaviors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
10 |
3
|
Chien T, Tseng TL, Wang JY, Shen YT, Lin TH, Shieh JC. Candida albicans DBF4 gene inducibly duplicated by the mini-Ura-blaster is involved in hypha-suppression. Mutat Res 2015; 779:78-85. [PMID: 26162773 DOI: 10.1016/j.mrfmmm.2015.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The opportunistic human fungal pathogen Candida albicans is a natural diploid that does not have a complete sexual cycle. The ability to switch between diverse cellular forms is important to its virulence. Here, we describe the characterization of the C. albicans DBF4 gene, a Saccharomyces cerevisiae homolog that encodes a regulatory subunit of Cdc7 kinase that is known to initiate DNA replication. We made a C. albicans strain, with one DBF4 allele deleted by the mini-Ura-blaster and the other controlled by a repressible promoter. We also found a third CaDBF4 copy that was later verified to be inducibly duplicated by targeted recombination with the min-Ura-blaster. Surprisingly, the strain deleted with the third CaDBF4 copy exhibited hyphal growth under repressed conditions. We conclude that the CaDBF4 gene is prone to being duplicated by the mini-Ura-blaster and that it suppresses hyphal growth in C. albicans.
Collapse
|
|
10 |
8 |
4
|
Martyniuk CJ, Houlahan J. Assessing gene network stability and individual variability in the fathead minnow (Pimephales promelas) transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:283-91. [PMID: 24036207 DOI: 10.1016/j.cbd.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
Transcriptomics is increasingly used to assess biological responses to environmental stimuli and stressors such as aquatic pollutants. However, fundamental studies characterizing individual variability in mRNA levels are lacking, which currently limits the use of transcriptomics in environmental monitoring assessments. To address individual variability in transcript abundance, we performed a meta-analysis on 231 microarrays that were conducted in the fathead minnow (FHM), a widely used toxicological model. The mean variability for gene probes was ranked from most to least variable based upon the coefficient of variation. Transcripts that were the most variable in individual tissues included NADH dehydrogenase flavoprotein 1, GTPase IMAP family member 7-like and v-set domain-containing T-cell activation inhibitor 1-like while genes encoding ribosomal proteins (rpl24 and rpl36), basic transcription factor 3, and nascent polypeptide-associated complex alpha subunit were the least variable in individuals across a range of microarray experiments. Gene networks that showed high variability (based upon the variation in expression of individual members within the network) included cell proliferation, metabolism (steroid, lipids, and glucose), cell adhesion, vascularization, and regeneration while those that showed low variability (more stability) included mRNA and rRNA processing, regulation of translational fidelity, RNA splicing, and ribosome biogenesis. Real-time PCR was conducted on a subset of genes for comparison of variability collected from the microarrays. There was a significant positive relationship between the two methods when measuring individual variability, suggesting that variability detected in microarray data can be used to guide decisions on sample sizes for measuring transcripts in real-time PCR experiments. A power analysis revealed that measuring estrogen receptor ba (esrba) requires fewer biological replicates than that of estrogen receptor bb (esrbb) in the gonad and samples sizes required to detect a 50% change for reproductive-related transcripts is between 12 and 20. Characterizing individual variability at the molecular level will prove necessary as efforts are made toward integrating molecular tools into environmental risk assessments.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
8 |
5
|
Qi Y, Hou Y, Qi L. miR-30d-5p represses the proliferation, migration, and invasion of lung squamous cell carcinoma via targeting DBF4. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:251-268. [PMID: 34165043 DOI: 10.1080/26896583.2021.1926855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aims to explore the mechanism of miR-30d-5p in regulating the development of lung squamous cell carcinoma (LUSC) via targeting DBF4. METHODS Bioinformatics methods were employed to analyze the differentially expressed genes in LUSC tissue microarray. qRT-PCR was employed to detect the expression of miR-30d-5p and DBF4 mRNA in normal human bronchial epithelial cells and LUSC cells. CCK-8 was used to detect LUSC cell activity. Wound healing assay was employed to detect the migratory ability of LUSC cells. Transwell was employed to detect invasive ability. Dual-luciferase reporter assay was used to detect the targeting relationship between miR-30d-5p and DBF4. Western blot was used to detect the protein expression of marker molecules associated with epithelial-mesenchymal transition (EMT). RESULTS In this study, the expression of miR-30d-5p in LUSC cell lines was found to be obviously low compared with that in normal human bronchial epithelial cell line, which was opposite to the expression of DBF4. Dual-luciferase reporter assay verified that miR-30d-5p could target DBF4 and the overexpression of miR-30d-5p downregulated the expression of DBF4. Overexpression of DBF4 promoted the proliferation, migration, invasion, and EMT of LUSC, whereas over-expression of miR-30d-5p could weaken the promotion of DBF4 on cancer cells. CONCLUSION miR-30d-5p downregulates the expression of DBF4 to regulate the development of LUSC.
Collapse
|
|
4 |
5 |
6
|
Willemsen M, Barber JS, Nieuwenhove EV, Staels F, Gerbaux M, Neumann J, Prezzemolo T, Pasciuto E, Lagou V, Boeckx N, Filtjens J, De Visscher A, Matthys P, Schrijvers R, Tousseyn T, O'Driscoll M, Bucciol G, Schlenner S, Meyts I, Humblet-Baron S, Liston A. Homozygous DBF4 mutation as a cause of severe congenital neutropenia. J Allergy Clin Immunol 2023; 152:266-277. [PMID: 36841265 DOI: 10.1016/j.jaci.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Severe congenital neutropenia presents with recurrent infections early in life as a result of arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation; however, a genetic cause remains unknown in approximately 40% of cases. OBJECTIVE We aimed to characterize a patient with severe congenital neutropenia and syndromic features without a genetic diagnosis. METHODS Whole exome sequencing results were validated using flow cytometry, Western blotting, coimmunoprecipitation, quantitative PCR, cell cycle and proliferation analysis of lymphocytes and fibroblasts and granulocytic differentiation of primary CD34+ and HL-60 cells. RESULTS We identified a homozygous missense mutation in DBF4 in a patient with mild extra-uterine growth retardation, facial dysmorphism and severe congenital neutropenia. DBF4 is the regulatory subunit of the CDC7 kinase, together known as DBF4-dependent kinase (DDK), the complex essential for DNA replication initiation. The DBF4 variant demonstrated impaired ability to bind CDC7, resulting in decreased DDK-mediated phosphorylation, defective S-phase entry and progression and impaired differentiation of granulocytes associated with activation of the p53-p21 pathway. The introduction of wild-type DBF4 into patient CD34+ cells rescued the promyelocyte differentiation arrest. CONCLUSION Hypomorphic DBF4 mutation causes autosomal-recessive severe congenital neutropenia with syndromic features.
Collapse
|
|
2 |
4 |
7
|
Wang T, Ji R, Liu G, Ma B, Wang Z, Wang Q. Lactate induces aberration in the miR-30a- DBF4 axis to promote the development of gastric cancer and weakens the sensitivity to 5-Fu. Cancer Cell Int 2021; 21:602. [PMID: 34758839 PMCID: PMC8582204 DOI: 10.1186/s12935-021-02291-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignancies, molecular mechanism of which is still not clear. Aberrant expression of tumor-associated genes is the major cause of tumorigenesis. DBF4 is an important factor in cancers, although there is yet no report on its function and molecular mechanism in GC. Methods The expression of DBF4 in tumor tissues or cells of GC was detected by qRT-PCR and western blotting. Gastric cancer cell line MGC-803 and AGS were transfected with DBF4 siRNA or overexpression vector to detect the function of DBF4 in proliferation, migration and the sensitivity to 5-Fu with CCK-8 assay, colony formation assay, transwell assay, and wound healing assay. miR-30a was found to be the regulator of DBF4 by online bioinformatics software and confirmed with qRT-PCR, western blot and dual-luciferase reporter assays. Results In our study, increased expression of DBF4 in GC tissues was first identified through The Cancer Genome Atlas (TCGA) and later confirmed using specimens from GC patients. Furthermore, functional experiments were applied to demonstrate that DBF4 promotes cell proliferation and migration in GC cell lines, moreover weakens the sensitivity of MGC803 and AGS cells to 5-Fu. We further demonstrated that miR-30a showed significantly lower expression in GC cells and inhibited the expression of DBF4 through 3ʹ-UTR suppression. Furthermore, rescue experiments revealed that the miR-30a-DBF4 axis regulated the GC cell proliferation, migration and the sensitivity to 5-Fu. The important composition in tumor microenvironment, lactate, may be the primary factor that suppressed miR-30a to strengthen the expression of DBF4. Conclusions Taken together, our study was the first to identify DBF4 as a regulator of cell proliferation and migration in GC. Furthermore, our study identified the lactate-miR-30a-DBF4 axis as a crucial regulator of tumor progression and the tumor sensitivity to 5-Fu, which maybe serve useful for the development of novel therapeutic targets.
Collapse
|
|
4 |
1 |
8
|
Kylie K, Romero J, Lindamulage IK, Knockleby J, Lee H. Dynamic regulation of histone H3K9 is linked to the switch between replication and transcription at the Dbf4 origin-promoter locus. Cell Cycle 2016; 15:2321-35. [PMID: 27341472 PMCID: PMC5004705 DOI: 10.1080/15384101.2016.1201254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The co-regulation of DNA replication and gene transcription is still poorly understood. To gain a better understanding of this important control mechanism, we examined the DNA replication and transcription using the Dbf4 origin-promoter and Dbf4 pseudogene models. We found that origin firing and Dbf4 transcription activity were inversely regulated in a cell cycle-dependent manner. We also found that proteins critical for the regulation of replication (ORC, MCM), transcription (SP1, TFIIB), and cohesin (Smc1, Smc3) and Mediator functions (Med1, Med12) interact with specific sites within and the surrounding regions of the Dbf4 locus in a cell cycle-dependent manner. As expected, replication initiation occurred within a nucleosome-depleted region, and nucleosomes flanked the 2 replication initiation zones. Further, the histone H3 in this region was distinctly acetylated or trimethylated on lysine 9 in a cell cycle-dependent fluctuation pattern: H3K9ac was most prevalent when the Dbf4 transcription level was highest whereas the H3K9me3 level was greatest during and just after replication. The KDM4A histone demethylase, which is responsible for the H3K9me3 modification, was enriched at the Dbf4 origin in a manner coinciding with H3K9me3. Finally, HP1γ, a protein known to interact with H3K9me3 in the heterochromatin was also found enriched at the origin during DNA replication, indicating that H3K9me3 may be required for the regulation of replication at both heterochromatin and euchromatin regions. Taken together, our data show that mammalian cells employ an extremely sophisticated and multilayered co-regulation mechanism for replication and transcription in a highly coordinated manner.
Collapse
|
report |
9 |
1 |
9
|
Gershon L, Kupiec M. Histones on fire: the effect of Dun1 and Mrc1 on origin firing and replication of hyper-acetylated genomes. Curr Genet 2021; 67:501-510. [PMID: 33715066 DOI: 10.1007/s00294-021-01175-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
As cells replicate their DNA, there is a need to synthesize new histones with which to wrap it. Newly synthesized H3 histones that are incorporated into the assembling chromatin behind the replication fork are acetylated at lysine 56. The acetylation is removed by two deacetylases, Hst3 and Hst4. This process is tightly regulated and any perturbation leads to genomic instability and replicative stress. We recently showed that Dun1, a kinase implicated mainly in the regulation of dNTPs, is vital in cells with hyper-acetylation, to counteract Rad53's inhibition on late-firing origins of replication. Our work showed that ∆hst3 ∆hst4 cells depend on late origin firing for survival, and are unable to prevent Rad53's inhibition when Dun1 is inactive. Thus, our work describes a role for Dun1 that is independent on its known function as a regulator of dNTP levels. Here we show that Mrc1 (Claspin in mammals), a protein that moves with the replicating fork and participates in both replication and checkpoint functions, plays also an essential role in the absence of H3K56Ac deacetylation. The sum of the results shown here and in our recent publication suggests that dormant origins are also utilized in these cells, making Mrc1, which regulates firing from these origins, also essential when histone H3 is hyper-acetylated. Thus, cells suffering from hyper-acetylation of H3K56 experience replication stress caused by a combination of prone-to-collapse forks and limited replication tracts. This combination makes both Dun1 and Mrc1, each acting on different targets, essential for viability.
Collapse
|
Review |
4 |
1 |
10
|
Rojas-Prats E, Martinez-Gonzalez L, Gil C, Ramírez D, Martinez A. Druggable cavities and allosteric modulators of the cell division cycle 7 (CDC7) kinase. J Enzyme Inhib Med Chem 2024; 39:2301767. [PMID: 38205514 PMCID: PMC10786434 DOI: 10.1080/14756366.2024.2301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cell division cycle 7 kinase (CDC7) has been found overexpressed in many cancer cell lines being also one of the kinases involved in the nuclear protein TDP-43 phosphorylation in vivo. Thus, inhibitors of CDC7 are emerging drug candidates for the treatment of oncological and neurodegenerative unmet diseases. All the known CDC7 inhibitors are ATP-competitives, lacking of selectivity enough for success in clinical trials. As allosteric sites are less conserved among kinase proteins, discovery of allosteric modulators of CDC7 is a great challenge and opportunity in this field.Using different computational approaches, we have here identified new druggable cavities on the human CDC7 structure and subsequently selective CDC7 inhibitors with allosteric modulation mainly targeting the pockets where the interaction between this kinase and its activator DBF4 takes place.
Collapse
|
research-article |
1 |
|
11
|
Wu Z, Zhang L, Li X, Liu L, Kuang T, Qiu Z, Deng W, Wang W. The prognostic significance and potential mechanism of DBF4 zinc finger in hepatocellular carcinoma. Sci Rep 2024; 14:10662. [PMID: 38724606 PMCID: PMC11082141 DOI: 10.1038/s41598-024-60342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
DBF4 zinc finger (DBF4) is a critical component involved in DNA replication and cell proliferation. It acts as a positive regulator of the cell division cycle 7 kinase. In this study, our investigation encompassed the impact of DBF4 on hepatocellular carcinoma (HCC) progression and delved into the potential mechanisms. We utilized open-access databases like TCGA and GEO to analyze the association between DBF4 and 33 different tumor types. We also conducted immunohistochemistry experiments to validate the expression of DBF4 in HCC, STAD, COAD, READ, PAAD, and LGG. Furthermore, we employed lentiviral transduction to knockdown DBF4 in HLF and SMMC cells, as well as to overexpress DBF4 in Huh7 cells. Subsequently, we evaluated the impact of DBF4 on proliferation, migration, and invasion of hepatocellular carcinoma cells. RNA sequencing and KEGG pathway enrichment analysis were also conducted to identify potential pathways, which were further validated through WB experiments. Finally, pathway inhibitor was utilized in rescue experiments to confirm whether DBF4 exerts its effects on tumor cells via the implicated pathway. Our findings revealed that DBF4 exhibited significant expression levels in nearly all examined tumors, which were further substantiated by the results of immunohistochemistry analysis. High DBF4 expression was correlated with poor overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), disease-free interval (DFI), relapse-free interval (RFI) in majority of tumor types, particularly in patients with HCC. In vitro experiments demonstrated that inhibition of DBF4 impaired the proliferative, migratory, and invasive abilities of HCC cells, whereas overexpression of DBF4 promoted these phenotypes. Sequencing results indicated that DBF4 may induce these changes through the ERBB signaling pathway. Further experimental validation revealed that DBF4 activates the ERBB signaling pathway, leading to alterations in the JNK/STAT, MAPK, and PI3K/AKT signaling pathways, thereby impacting the proliferative, migratory, and invasive abilities of tumor cells. Lastly, treatment of Huh7 cells overexpressing DBF4 with the ERBB2 inhibitor dacomitinib demonstrated the ability of ERBB2 inhibition to reverse the promoting effect of DBF4 overexpression on the proliferative, migratory, and invasive abilities of HCC cells. DBF4 plays a pivotal oncogenic role in HCC by promoting the ERBB signaling pathway and activating its downstream PI3K/AKT, JNK/STAT3, and MAPK signaling pathways. DBF4 may serve as a prognostic biomarker for patients with HCC.
Collapse
|
research-article |
1 |
|
12
|
Wang M, Qiu ZH, Wang YZ, Lian B, Bai JK, Zhou YJ, Ji HJ. Analysis of the expression and prognostic significance of DDK complex in Hepatocarcinoma. BMC Cancer 2023; 23:19. [PMID: 36609254 PMCID: PMC9817372 DOI: 10.1186/s12885-022-10475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains one of the most common and lethal malignancies worldwide. Although DBF4-dependent kinase (DDK) complex composed of CDC7 kinase and its regulatory subunit DBF4 has been shown to be overexpressed in primary tumors and promotes tumor development, while its role and prognostic value in HCC remain largely unknown. In the present study, the expression of DBF4 and CDC7 and their relationship with clinical characteristics were comprehensively analyzed. METHODS The mRNA expression profiles of HCC and the corresponding clinical data of HCC patients were downloaded from TCGA and GEO databases, respectively. The differences in DBF4 and CDC7 expression in tumor tissues and adjacent normal tissues were analyzed. HCC-derived tissue microarray (TMA) was used to evaluate and score the expression of CDC7 by immunohistochemistry (IHC) staining. The Kaplan-Meier method and the Cox regression method were used to analyze the relationship between overall survival and clinical characteristics of the patients. Gene set enrichment analysis (GSEA) was used to analyze the pathway enrichment of DBF4 and CDC7. RESULTS DBF4 and CDC7 had similar expression patterns in HCC patients. Detailly, compared with adjacent tissues, both mRNA and protein of DBF4 and CDC7 were significantly higher in HCC, and their expression was positively correlated with AJCC_T stage, clinical stage and G stage (grade) of liver cancer patients, and higher DBF4 or CDC7 expression predicted a worse prognosis in HCC patients with shorter overall survival (OS), recurrence-free survival (RFS), disease-specific survival (DSS) and progress-free survival (PFS). Cox regression analysis suggested that both DBF4 and CDC7 were independent risk factors for the prognosis of HCC patients in TCGA dataset. GSEA suggested that both DBF4 and CDC7 were positively correlated with cell cycle and DNA replication. Finally, the prognostic value of CDC7 was furtherly confirmed by TMA-based IHC staining results. CONCLUSIONS Our study showed that DDK complex was significantly increased in HCC. Both DBF4 and CDC7 may be potential diagnostic and prognostic markers for HCC, and high expression of DDK members predicts a worse prognosis in patients with HCC, which may be associated with high tumor cell proliferation rate.
Collapse
|
research-article |
2 |
|
13
|
Chen L, Wu L, Tang M, Cheng Y, Wang K, Zhang J, Deng W, Zhu L, Chen J. Clinical significance and pro-oncogenic function of DBF4 in clear cell renal cell carcinoma. BMC Urol 2025; 25:8. [PMID: 39815239 PMCID: PMC11737091 DOI: 10.1186/s12894-025-01694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored. METHODS We utilized external datasets and bioinformatics analyses to investigate the significance of DBF4 in ccRCC. We analysed its expression patterns, prognostic and diagnostic value, and potential mechanisms. We subsequently validated our findings through an immunohistochemistry (IHC) assay of ccRCC clinical samples. We further investigated the impact of DBF4 on the progression of ccRCC cells. Various assays, including assessments of cell proliferation, apoptosis, the cell cycle, cell migration and invasion, and colony formation, and xenograft tumor models were subsequently performed following to the knockdown of DBF4 expression via shRNA. RESULTS Bioinformatics analyses revealed that DBF4 is significantly overexpressed in ccRCC tissues compared with adjacent normal tissues. This overexpression was confirmed by IHC analysis of 75 pairs of clinical ccRCC tumor and adjacent tissues. Kaplan-Meier analysis revealed that high DBF4 expression was associated with a significantly lower five-year overall survival rate. Moreover, DBF4 expression was identified as an independent risk factor in multivariate Cox regression analysis. GO and KEGG pathway enrichment analyses revealed a substantial enrichment of terms associated with cell division, whereas gene set enrichment analysis (GSEA) revealed correlations between increased DBF4 expression and the activation of cell cycle-related pathways. Subsequent in vitro and in vivo experiments demonstrated that DBF4 knockdown in ccRCC cells not only suppressed proliferation and migration in vitro but also significantly inhibited tumor growth in xenograft mice by arresting the cell cycle at the G1/G0 phase, which was mediated by the inhibition of MCM2 phosphorylation and cyclin D1 and CDK4 expression. CONCLUSION The current study revealed that DBF4 overexpression is a significant factor associated with malignant features and poor prognosis in patients with ccRCC. Therefore, it was proposed that DBF4 could serve as a novel potential prognostic biomarker and molecular target for ccRCC. CLINICAL TRIAL NUMBER Not applicable.
Collapse
|
research-article |
1 |
|