1
|
Chao W, Deng JS, Li PY, Liang YC, Huang GJ. 3,4-Dihydroxybenzalactone Suppresses Human Non-Small Cell Lung Carcinoma Cells Metastasis via Suppression of Epithelial to Mesenchymal Transition, ROS-Mediated PI3K/AKT/MAPK/MMP and NFκB Signaling Pathways. Molecules 2017; 22:molecules22040537. [PMID: 28350337 PMCID: PMC6154291 DOI: 10.3390/molecules22040537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.
Collapse
|
Journal Article |
8 |
39 |
2
|
Doritchamou J, Bigey P, Nielsen MA, Gnidehou S, Ezinmegnon S, Burgain A, Massougbodji A, Deloron P, Salanti A, Ndam NT. Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS- DBL2X region of VAR2CSA. Vaccine 2013; 31:4516-22. [PMID: 23933341 DOI: 10.1016/j.vaccine.2013.07.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND VAR2CSA is a large polymorphic Plasmodium falciparum protein expressed on infected erythrocytes (IE) that allows their binding in the placenta, thus precipitating placental malaria (PM). The N-terminal part of VAR2CSA that contains the binding site to placental chondroitin sulfate A (CSA) is currently recognized as the most attractive region for vaccine development. An ultimate challenge is to define epitopes in this region that induce a broad cross-reactive adhesion inhibitory antibody response. METHODS Based on phylogenetic data that identified a dimorphic sequence motif in the VAR2CSA DBL2X, we raised antibodies against the NTS-DBL2X constructs containing one sequence or the other (3D7 and FCR3) and tested their functional properties on P. falciparum isolates from pregnant women and on laboratory-adapted strains. RESULTS The CSA binding inhibitory capacity of the antibodies induced varied from one parasite isolate to another (range, 10%–100%), but the combined analysis of individual activity highlighted a broader functionality that increased the total number of isolates inhibited. Interestingly, the differential inhibitory effect of the antibodies observed on field isolates resulted in significant inhibition of all field isolates tested, suggesting that optimal inhibitory spectrum on field isolates from pregnant women might be achieved with antibodies targeting limited variants of the N-terminal VAR2CSA. CONCLUSIONS Our findings indicate that the NTS-DBL2X region of VAR2CSA can elicit strain-transcending anti-adhesion antibodies and suggest that the combination of the two major variants used here could represent the basis for an effective bivalent VAR2CSA-based vaccine.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
27 |
3
|
Chao W, Deng JS, Huang SS, Li PY, Liang YC, Huang GJ. 3, 4-dihydroxybenzalacetone attenuates lipopolysaccharide-induced inflammation in acute lung injury via down-regulation of MMP-2 and MMP-9 activities through suppressing ROS-mediated MAPK and PI3K/AKT signaling pathways. Int Immunopharmacol 2017. [PMID: 28644965 DOI: 10.1016/j.intimp.2017.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
3, 4-Dihydroxybenzalacetone (DBL) is a constituent of Phellinus linteus. This study demonstrated the protective effect of DBL on lipopolysaccharide (LPS)-induced acute lung injuries in mice. Pretreatment with DBL significantly improved LPS-induced histological alterations in lung tissues. In addition, DBL markedly reduced the total cell number, the leukocytes, the protein concentrations, and decreased the release of nitrite, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and the activities of matrix metalloproteinase (MMP)-2 and -9 in the bronchoalveolar lavage fluid. DBL also inhibited the W/D ratio and myeloperoxidase activity in the lung tissues. Western blot analysis indicated DBL efficiently blocked the protein expressions of inducible nitric oxide synthase, cyclooxygenase-2, MMP-2, MMP-9, and the phosphorylation of mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K), AKT, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Moreover, DBL enhanced the expression of anti-oxidant proteins, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Based on our results, DBL might be a potential target for attenuating tissue oxidative injuries and nonspecific pulmonary inflammation.
Collapse
|
Journal Article |
8 |
22 |
4
|
Jin P, Wang H, Huang W, Liu W, Fan Y, Miao W. The allelopathic effect and safety evaluation of 3,4-Dihydroxybenzalacetone on Microcystis aeruginosa. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:145-152. [PMID: 29933985 DOI: 10.1016/j.pestbp.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/12/2017] [Accepted: 08/12/2017] [Indexed: 06/08/2023]
Abstract
Harmful algal blooms (HABs) has been a serious problem in recent years, because of large quantities of cyanobacterial in eutrophic water. We studied the effects of 3,4-Dihydroxybenzalacetone (DBL) and other four compounds (vanillic acid, ferulic acid, 3,5-Dichlorophenol and cupric sulfate) on Microcystis aeruginosa. The results showed that the growth of M. aeruginosa was significantly inhibited by all tested compounds with a half maximal effect concentration (EC50) of 5.2, 22.8, 54.7, 1.5, 0.3μg/mL, respectively. Our data also demonstrated that DBL triggered the generation of superoxide anion radicals (O2-). The O2- might induce a lipid peroxidation which may change cell membrane penetrability, thereby leading to the eventual death of M. aeruginosa. In addition, DBL may has few toxic to aquatic species as indicated by its 96h half maximum lethal concentration value to zebrafish (Danio rerio) was far higher than 128μg/mL. Our current study further provides evidence that some phenolic acids such as DBL may be a potential effective solution for aquatic management.
Collapse
|
|
7 |
9 |
5
|
Guo W, Van Langenhove K, Vandermarken T, Denison MS, Elskens M, Baeyens W, Gao Y. In situ measurement of estrogenic activity in various aquatic systems using organic diffusive gradients in thin-film coupled with ERE-CALUX bioassay. ENVIRONMENT INTERNATIONAL 2019; 127:13-20. [PMID: 30897513 DOI: 10.1016/j.envint.2019.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Organic-diffusive gradients in thin-film samplers (o-DGT), were developed and applied for accumulation of estrogen and estrogen-like compounds on a XAD18 resin and deployed in situ in the effluents of Beijing Gaobeidian Wastewater Treatment Plant (GWWTP) and Brussels North Wastewater Treatment Plant as well as in several aquatic systems in Belgium, including the Zenne River, the Belgian Oostende Harbor and the North Sea. Estrogenic compounds accumulate on the XAD18 resin and the estrogenic activity of the resin extract was measured with the Estrogen Responsive Elements-Chemically Activated LUciferase gene eXpression (ERE-CALUX) bioassay. With this result and by applying Fick's diffusion law, it is possible to calculate the estrogenic activity in the aquatic system, if the diffusion boundary layer (DBL) is known or negligible compared to the hydrogel diffusive layer thickness. The DBL thickness in our study varied from 0.010 to 0.023 cm and ignoring the DBL thickness would for instance, underestimate the estrogenic activity by 10-20%. Estrogenic activities in the secondary effluent of GWWTP were the highest (29 ± 4 ng E2-equivalents L-1), while the lowest level was found at the Belgian Oostende Harbor (0.05 ± 0.01 ng E2-equivalents L-1). Comparable estrogenic activities in water samples measured by o-DGT and grab sampling were obtained, confirming that o-DGT can be efficiently used in various aquatic systems. The advantage of our sampling and measuring method is that very low, time averaged estrogenic activities can be determined, with a minimum of sample treatment. The risk of sample contamination is very low as well as the cost of the whole analytical procedure.
Collapse
|
|
6 |
8 |
6
|
Jiménez-Sánchez A. Coevolution of RAC Small GTPases and their Regulators GEF Proteins. Evol Bioinform Online 2016; 12:121-31. [PMID: 27226705 PMCID: PMC4872645 DOI: 10.4137/ebo.s38031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/16/2023] Open
Abstract
RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions.
Collapse
|
|
9 |
4 |
7
|
PrP Sc Inhibition and Cellular Protection of DBL on a Prion-Infected Cultured Cell via Multiple Pathways. Mol Neurobiol 2022; 59:3310-3321. [PMID: 35303279 DOI: 10.1007/s12035-022-02729-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/01/2022] [Indexed: 10/18/2022]
Abstract
Prion diseases are kinds of fatal neurodegenerative diseases without effective therapeutic and prophylactic tools currently. In this study, the inhibition of PrPSc propagation and cellular protectivity of 3,4-dihydroxybenzalacetone (DBL), a small catechol-containing compound isolated and purified from the ethanol extract of Inonotus obliquus, upon a prion-infected cell line SMB-S15 were evaluated. Western blots showed that after incubation with 10 μM of DBL for 14 days, the level of PrPSc in SMB-S15 cells was significantly decreased. Meanwhile, the levels of ROS and hydrogen peroxide were decreased with a dose-dependent manner, whereas the levels of some antioxidant factors, such as HO-1, GCLC and GCLM, were significantly increased. The activities of total glutathione and SOD were up-regulated. DBL-treated SMB-S15 cells also showed the up-regulation of UPR-related proteins, including PERK, IRE1α, ATF6 and GRP78, and activation of autophagy system. Furthermore, the SIRT3 abnormalities caused by prion infection were relieved by DBL treatment. On the contrary, these comprehensive changes were not significantly noticed in the normal partner cell line SMB-PS under the same experimental condition. Those data indicate that treatment of DBL on prion-infected cells can reduce PrPSc level, activate UPR and autophagy system and meanwhile relieve intracellular oxidative stress, endoplasmic reticulum stress and mitochondrial dysfunction by raising the levels of multiple antioxidant factors. The PrPSc inhibition and protective effectiveness of DBL upon the prion-infected cells in vitro make it worthy of further study.
Collapse
|
|
3 |
1 |
8
|
Olsen RW, Suurbaar J, Jensen AR. Receptor Affinity-Based Purification of PfEMP1 Proteins. Methods Mol Biol 2022; 2470:299-308. [PMID: 35881354 DOI: 10.1007/978-1-0716-2189-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IEs) to bind a range of human receptors. This binding is mediated by a family of highly polymorphic proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 proteins are expressed on the surface of IEs and are composed of extracellular domains (NTS, CIDR, DBL), a transmembrane region and an acidic C-terminal segment. Subdomains of the extracellular N-terminal part of PfEMP1 molecules have been shown to bind specific receptors.In this chapter, we describe how to purify PfEMP1 proteins by a receptor affinity-based method. This includes how to prepare affinity columns and how to subsequently test the functionality of the purified PfEMP1 protein in an ELISA-based assay.
Collapse
|
|
3 |
|
9
|
Santos CA, Gemeiner H, Menegário AA, Galceran J, Zanatta MBT, Chang HK. A new approach to improve the accuracy of DGT (Diffusive Gradients in Thin-films) measurements in monitoring wells. Talanta 2022; 238:123044. [PMID: 34801901 DOI: 10.1016/j.talanta.2021.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The Diffusive Gradients in Thin-films (DGT) technique represents an ideal tool for monitoring water quality of inorganic species in systems with a high flow such as rivers, streams, lakes and seas. However, in low-flow systems (non-turbulent waters), the influence of a diffusive boundary layer (DBL) formed on the surface of the DGT device has been observed, which can lead to erroneous measurements by DGT. Therefore, the use of DGT in wells for groundwater monitoring is still very limited until now. In this sense, the present study evaluates the applicability of the DGT technique in non-turbulent and low-flow water systems. We propose a new way to calculate the DBL with the objective to carry out a robust DGT analysis in environmental monitoring wells. For this purpose, DGT devices with different diffusive gel thicknesses were deployed in an experimental set-up simulating a groundwater monitoring well. A DBL thickness (for each element) was calculated from the slopes of the linear regressions between the DGT accumulated mass of metal and the deployment time (4, 8, 12, 24 and 48 h) for each of the two diffusive gel thicknesses. The mean DBL thickness (averaging the individual DBL thicknesses calculated from the slopes) was 0.06 cm. The concentrations of the analysed elements were corrected with this DBL with the result that the metal concentrations measured by DGT improved and were highly approximated to their actual total values in this non-complexing medium.
Collapse
|
|
3 |
|