1
|
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2020; 6:1973-1987. [PMID: 33426371 PMCID: PMC7773537 DOI: 10.1016/j.bioactmat.2020.12.010] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.
Collapse
Key Words
- AC-NPs, antigen-capturing nanoparticles
- ANG2, angiopoietin-2
- APCs, antigen-presenting cells
- Ab, antibodies
- Ag, antigen
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- BBB, blood-brain barrier
- BTK, Bruton's tyrosine kinase
- Bcl-2, B-cell lymphoma 2
- CAFs, cancer associated fibroblasts
- CAP, cleavable amphiphilic peptide
- CAR-T, Chimeric antigen receptor-modified T-cell therapy
- CCL, chemoattractant chemokines ligand
- CTL, cytotoxic T lymphocytes
- CTLA4, cytotoxic lymphocyte antigen 4
- CaCO3, calcium carbonate
- Cancer immunotherapy
- DCs, dendritic cells
- DMMA, 2,3-dimethylmaleic anhydrid
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSF/Cu, disulfiram/copper
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- EPG, egg phosphatidylglycerol
- EPR, enhanced permeability and retention
- FAP, fibroblast activation protein
- FDA, the Food and Drug Administration
- HA, hyaluronic acid
- HB-GFs, heparin-binding growth factors
- HIF, hypoxia-inducible factor
- HPMA, N-(2-hydroxypropyl) methacrylamide
- HSA, human serum albumin
- Hypoxia
- IBR, Ibrutinib
- IFN-γ, interferon-γ
- IFP, interstitial fluid pressure
- IL, interleukin
- LMWH, low molecular weight heparin
- LPS, lipopolysaccharide
- M2NP, M2-like TAM dual-targeting nanoparticle
- MCMC, mannosylated carboxymethyl chitosan
- MDSCs, myeloid-derived suppressor cells
- MPs, microparticles
- MnO2, manganese dioxide
- NF-κB, nuclear factor κB
- NK, nature killer
- NO, nitric oxide
- NPs, nanoparticles
- Nanoparticles
- ODN, oligodeoxynucleotides
- PD-1, programmed cell death protein 1
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PHDs, prolyl hydroxylases
- PLGA, poly(lactic-co-glycolic acid)
- PS, photosensitizer
- PSCs, pancreatic stellate cells
- PTX, paclitaxel
- RBC, red-blood-cell
- RLX, relaxin-2
- ROS, reactive oxygen species
- SA, sialic acid
- SPARC, secreted protein acidic and rich in cysteine
- TAAs, tumor-associated antigens
- TAMs, tumor-associated macrophages
- TDPA, tumor-derived protein antigens
- TGF-β, transforming growth factor β
- TIE2, tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2
- TIM-3, T cell immunoglobulin domain and mucin domain-3
- TLR, Toll-like receptor
- TME, tumor microenvironment
- TNF-α, tumor necrosis factor alpha
- TfR, transferrin receptor
- Tregs, regulatory T cells
- Tumor microenvironment
- UPS-NP, ultra-pH-sensitive nanoparticle
- VDA, vasculature disrupting agent
- VEGF, vascular endothelial growth factor
- cDCs, conventional dendritic cells
- melittin-NP, melittin-lipid nanoparticle
- nMOFs, nanoscale metal-organic frameworks
- scFv, single-chain variable fragment
- siRNA, small interfering RNA
- tdLNs, tumor-draining lymph nodes
- α-SMA, alpha-smooth muscle actin
Collapse
|
Review |
5 |
365 |
2
|
Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 2015; 10:3270-85. [PMID: 25625930 DOI: 10.4161/21645515.2014.979640] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALRs, AIM2-like receptors
- AMPK, AMP activated protein kinase
- ASC, apoptosis-associated speck-like protein containing a CARD
- Atg16L, autophagy related 16-like
- BMM, bone marrow-derived macrophage
- CARD, caspase recruitment domain
- CDNs, cyclic dinucleotides
- CLRs, C-type lectin receptors
- CMV, cytomegalovirus
- CYLD, the familial cylindromatosis tumor suppressor gene
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDX41, DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
- ER, endoplasmic reticulum
- GBP5, guanylate-binding protein 5
- GSK3β, Glycogen synthase kinase 3β
- HCC, hepatocellular carcinoma
- IFI16, interferon, gamma-inducible protein 16
- IFN, interferon
- IKK, IkB kinase
- IKKi, inducible IkB kinase
- IRAK, interleukin-1 receptor-associated kinase
- IRF, interferon regulatory factor
- KSHV, Kaposi's sarcoma-associated herpesvirus
- LBP, LPS-binding protein
- LGP 2, laboratory of genetics and physiology 2
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- LT, lethal toxin
- LUBAC, linear ubiquitin assembly complex
- MAVS, mitochondrial antiviral signaling protein
- MDA5, melanoma differentiation-associated protein 5
- MDP, muramyl dipeptide
- MIB, mind bomb
- MyD88, myeloid differentiation factor 88
- NAIPs, neuronal apoptosis inhibitory proteins
- NEMO, NF-kB essential modulator
- NLRs, Nod- like receptors
- NOD, nucleotide-binding oligomerization domain
- Nrdp1, neuregulin receptor degradation protein 1
- PAMPs, pathogen-associated molecular patterns
- PKC-d, protein kinase C delta
- PKR, dsRNA-dependent protein kinase
- PRRs
- PRRs, pathogen recognition receptors
- RACK1, receptor for activated C kinase 1
- RAUL, RTA-associated E3 ligase
- RIG-I, retinoic acid-inducible gene 1
- RIP, receptor-interacting protein
- RLRs, RIG-I-like receptors
- ROS, reactive oxygen species
- SARM, sterile a- and armadillo motif-containing protein
- SIGIRR, single Ig IL-1-related receptor
- SOCS, suppressor of cytokine signaling
- STING, stimulator of interferon gene
- TAK1, TGF-b-activating kinase 1
- TANK, TRAF family-member-associated NF-kB activator
- TBK1, TANK binding kinase 1
- TIR, Toll IL-1 receptor
- TIRAP, TIR domain-containing adapter protein
- TLRs, Toll-like receptors
- TRAF, TNFR-associated factor
- TRAILR, tumor-necrosis factor-related apoptosis-inducing ligand receptor
- TRAM, TRIF-related adaptor molecule
- TRIF, TIR domain-containing adaptor inducing IFN-b
- TRIMs, tripartite motif containing proteins
- TRIP, TRAF-interacting protein
- ULK1, autophagy related serine threonine UNC-51- like kinase
- cDC, conventional dendritic cell
- cGAS, cyclic GMP-AMP synthase
- cIAP, cellular inhibitor of apoptosis protein
- cancer
- iE-DAP, g-D-glutamyl-meso-diaminopimelic acid
- inflammation
- innate immunity
- pDC, plasmacytoid dendritic cell
- type I interferon
Collapse
|
Review |
10 |
226 |
3
|
Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 2015; 4:e954829. [PMID: 25949858 PMCID: PMC4368153 DOI: 10.4161/21624011.2014.954829] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- 5-Fluorouracil
- ADAM17, metalloproteinase domain-containing protein 17
- APCs, antigen presenting cells
- ARG1, arginase-1
- ATRA, all-trans retinoic acid
- CCL2, chemokine (C-C motif) ligand 2
- CD62L, L-selectin
- CDDO-Me, bardoxolone methyl
- COX2, cyclooxygenase 2
- CTLs, cytotoxic T lymphocytes
- CXCL12, chemokine (C-X-C motif) ligand 12
- CXCL15, chemokine (C-X-C motif) ligand 15
- DCs, dendritic cells
- ERK1/2, extracellular signal-regulated kinases
- Flt3, Fms-like tyrosine kinase 3
- FoxP3, forkhead box P3
- GITR, anti-glucocorticoid tumor necrosis factor receptor
- GM-CSF/CSF2, granulocyte monocyte colony stimulating factor
- GSH, glutathione
- HIF-1α, hypoxia inducible factor 1α
- HLA, human leukocyte antigen
- HNSCC, head and neck squamous cell carcinoma
- HPV-16, human papillomavirus 16
- HSCs, hematopoietic stem cells
- ICT, 3, 5, 7-trihydroxy-4′-emthoxy-8-(3-hydroxy-3-methylbutyl)-flavone
- IFNγ, interferon γ
- IL-10, interleukin 10
- IL-13, interleukin 13
- IL-1β, interleukin 1 β
- IL-4, interleukin 4
- IL-6, interleukin 6
- IMCs, immature myeloid cells
- JAK2, Janus kinase 2
- MDSCs, myeloid-derived suppressor cells
- MMPs, metalloproteinases (e.g., MMP9)
- Myd88, myeloid differentiation primary response protein 88
- NAC, N-acetyl cysteine
- NADPH, nicotinamide adenine dinucleotide phosphate-oxidase NK cells, natural killer cells
- NO, nitric oxide
- NOHA, N-hydroxy-L-Arginine
- NSAID, nonsteroidal anti-inflammatory drugs
- ODN, oligodeoxynucleotides
- PDE-5, phosphodiesterase type 5
- PGE2, prostaglandin E2
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SCF, stem cell factor
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TCR, T cell receptor
- TGFβ, transforming growth factor β
- TNFα, tumor necrosis factor α
- Tregs, regulatory T cells
- VEGFR, vascular endothelial growth factor receptor
- WA, withaferin A
- WRE, Withaferin somnifera
- all-trans retinoic acid
- bisphosphonates
- c-kit, Mast/stem cell growth factor receptor
- gemcitabine
- iNOS2, inducible nitric oxid synthase 2
- immune suppressive mechanisms
- mRCC, metastatic renal cell carcinoma
- myeloid-derived suppressor cells
- sunitinib therapeutic vaccination
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
213 |
4
|
Small molecules targeting the innate immune cGAS‒STING‒TBK1 signaling pathway. Acta Pharm Sin B 2020; 10:2272-2298. [PMID: 33354501 PMCID: PMC7745059 DOI: 10.1016/j.apsb.2020.03.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.
Collapse
Key Words
- ABZI, amidobenzimidazole
- ACMA, 9-amino-6-chloro-2-methoxyacridine
- AMP, adenosine monophosphate
- ATP, adenosine triphosphate
- Anti-tumor
- BNBC, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide
- CBD, cyclic dinucleotide-binding domain
- CDA, cyclic diadenosine monophosphate (c-di-AMP)
- CDG, cyclic diguanosine monophosphate (c-di-GMP)
- CDN, cyclic dinucleotide
- CMA, 10-carboxymethyl-9-acridanone
- CTD, C-terminal domain
- CTLA-4, cytotoxic T lymphocyte associated protein 4
- CTT, C-terminal tail
- CXCL, chemokine (C-X-C motif) ligand
- DC50, concentration for 50% degradation
- DCs, dendritic cells
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSDP, dispiro diketopiperzine
- EM, cryo-electron microscopy
- ENPP1, ecto-nucleotide pyrophosphatase/phosphodiesterase
- ER, endoplasmic reticulum
- FAA, flavone-8-acetic acid
- FDA, U.S. Food and Drug Administration
- FP, fluorescence polarization
- GMP, guanosine monophosphate
- GTP, guanosine triphosphate
- HCQ, hydrochloroquine
- HTS, high throughput screening
- ICI, immune checkpoint inhibitor
- IKK, IκB kinase
- IO, immune-oncology
- IRF3, interferon regulatory factor 3
- ISG, interferon stimulated gene
- ITC, isothermal titration calorimetry
- Immunotherapy
- KD, kinase domain
- LBD, ligand-binding domain
- MDCK, Madin–Darby canine kidney
- MG, Mangostin
- MI, maximum induction
- MLK, mixed lineage kinase
- MinEC5×, minimum effective concentration for inducing 5-fold luciferase activity
- NF-κB, nuclear factor-κB
- Ntase, nucleotidyl transferase
- PBMCs, peripheral-blood mononuclear cells
- PD-1, programmed death receptor 1
- PD-L1, programmed death ligand 1
- PDE, phosphodiesterases
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PPi, pyrophosphoric acid
- PROTACs, proteolysis targeting chimeras
- PRRs, pattern recognition receptors
- QC, quinacrine
- SAR, structure–activity relationship
- SDD, scaffold and dimerization domain
- STAT, signal transducer and activator of transcription
- STING
- STING, stimulator of interferon genes
- Small molecule modulators
- TBK1
- TBK1, TANK-binding kinase 1
- THIQCs, tetrahydroisoquinolone acetic acids
- TNFRSF, tumor necrosis factor receptor superfamily
- ULD, ubiquitin-like domain
- VHL, von Hippel–Lindau
- cAIMP, cyclic adenosine-inosine monophosphate
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- dsDNA, double-stranded DNA
- i.t., intratumoral
Collapse
|
Review |
5 |
195 |
5
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
|
Review |
4 |
158 |
6
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
|
Review |
4 |
153 |
7
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
|
Review |
3 |
125 |
8
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
|
Review |
4 |
124 |
9
|
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2015; 10:3332-46. [PMID: 25483639 DOI: 10.4161/21645515.2014.973317] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccines targeting pathogens are generally effective and protective because based on foreign non-self antigens which are extremely potent in eliciting an immune response. On the contrary, efficacy of therapeutic cancer vaccines is still disappointing. One of the major reasons for such poor outcome, among others, is the difficulty of identifying tumor-specific target antigens which should be unique to the tumors or, at least, overexpressed on the tumors as compared to normal cells. Indeed, this is the only option to overcome the peripheral immune tolerance and elicit a non toxic immune response. New and more potent strategies are now available to identify specific tumor-associated antigens for development of cancer vaccine approaches aiming at eliciting targeted anti-tumor cellular responses. In the last years this aspect has been addressed and many therapeutic vaccination strategies based on either whole tumor cells or specific antigens have been and are being currently evaluated in clinical trials. This review summarizes the current state of cancer vaccines, mainly focusing on antigen-specific approaches.
Collapse
Key Words
- APCs, antigen-presenting cell
- BCG, Bacille Calmette-Guerin
- BCR, B-cell receptor
- CDCA1, cell division cycle associated 1
- CRC, colorectal cancer
- CT, Cancer-testis
- CTL, cytotoxic T-lympocites
- DCs, dendritic cells
- EGT, electro-gene-transfer
- FDA, Food & drug administration
- GB, glioblastoma
- GM-CSF, granulocyte macrophage-colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HLA, human leukocyte antigen
- HPV, human papillomavirus
- HSPs, stress/heat shock proteins
- IFNg, interferon gamma
- Ig Id, immunoglobulin idiotype
- LPs, long peptides
- MAGE-A1, Melanoma-associated antigen 1
- MHC, major histocompatibility complex
- MS, mass spectrometry
- MVA, modified vaccinia strain Ankara
- NSCLC, non-small-cell lung carcinoma
- PAP, prostatic acid phosphatase
- PRRs, Pattern Recognition Receptors
- PSA, Prostate-specific antigen
- RCR, renal cell cancer
- SSX-2, Synovial sarcoma X breakpoint 2
- TAAs, tumor-associated antigens
- TACAs, Tumor-associated carbohydrate antigens
- TARP, T-cell receptor gamma alternate reading frame protein
- TLRs, Toll-Like Receptors
- TPA, transporter associated with antigen processing
- WES, whole exome sequencing
- WGS, whole genome sequencing
- cancer vaccine
- clinical trials
- epitopes
- hTERT, human Telomerase reverse transcriptase
- immunotherapeutics
- mCRPC, metastatic castrate-resistant prostate cancer
- tumor-associated antigens
Collapse
|
Review |
10 |
114 |
10
|
Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B 2022; 12:92-106. [PMID: 35127374 PMCID: PMC8799886 DOI: 10.1016/j.apsb.2021.08.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.
Collapse
Key Words
- ABC, accelerated blood clearance
- ACT, adoptive cell transfer
- ATO, atovaquone
- ATP, adenosine triphosphate
- BV, Biliverdin
- Ber, berberine
- CI, combination index
- CPT, camptothecin
- CTLs, cytotoxic T lymphocytes
- Cancer treatment
- Carrier-free
- Ce6, chlorine e6
- Combination therapy
- DBNP, DOX-Ber nano-assemblies
- DBNP@CM, DBNP were cloaked with 4T1 cell membranes
- DCs, dendritic cells
- DOX, doxorubicin
- DPDNAs, dual pure drug nano-assemblies
- EGFR, epithelial growth factor receptor
- EPI, epirubicin
- EPR, enhanced permeability and retention
- FRET, Forster Resonance Energy Transfer
- GEF, gefitinib
- HCPT, hydroxycamptothecin
- HMGB1, high-mobility group box 1
- IC50, half maximal inhibitory concentration
- ICB, immunologic checkpoint blockade
- ICD, immunogenic cell death
- ICG, indocyanine green
- ITM, immunosuppressive tumor microenvironment
- MDS, molecular dynamics simulations
- MPDNAs, multiple pure drug nano-assemblies
- MRI, magnetic resonance imaging
- MTX, methotrexate
- NIR, near-infrared
- NPs, nanoparticles
- NSCLC, non-small cell lung cancer
- Nano-DDSs, nanoparticulate drug delivery systems
- Nanomedicine
- Nanotechnology
- PAI, photoacoustic imaging
- PD-1, PD receptor 1
- PD-L1, PD receptor 1 ligand
- PDNAs, pure drug nano-assemblies
- PDT, photodynamic therapy
- PPa, pheophorbide A
- PTT, photothermal therapy
- PTX, paclitaxel
- Poly I:C, polyriboinosinic:polyribocytidylic acid
- Pure drug
- QSNAP, quantitative structure-nanoparticle assembly prediction
- RBC, red blood cell
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- SPDNAs, single pure drug nano-assemblies
- Self-assembly
- TA, tannic acid
- TEM, transmission electron microscopy
- TLR4, Toll-like receptor 4
- TME, tumor microenvironment
- TNBC, triple negative breast
- TTZ, trastuzumab
- Top I & II, topoisomerase I & II
- UA, ursolic acid
- YSV, tripeptide tyroservatide
- ZHO, Z-Histidine-Obzl
- dsRNA, double-stranded RNA
- α-PD-L1, anti-PD-L1 monoclonal antibody
Collapse
|
Review |
3 |
108 |
11
|
Sun D, Zou Y, Song L, Han S, Yang H, Chu D, Dai Y, Ma J, O'Driscoll CM, Yu Z, Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B 2022; 12:378-393. [PMID: 35127393 PMCID: PMC8799998 DOI: 10.1016/j.apsb.2021.06.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
Collapse
Key Words
- ATF6, activating transcription factor 6
- ATP, adenosine triphosphate
- CI, combination index
- CRC, colorectal cancer
- CRT, calreticulin
- CTLA-4, cytotoxic T lymphocyte antigen 4
- CXCL10, C-X-C motif chemokine 10
- CXCL9, C-X-C motif chemokine 9
- Chemotherapy
- Colorectal cancer
- Combination therapy
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ECL, enhanced chemiluminescence
- EE, encapsulation efficiency
- ER, endoplasmic reticulum
- FA, folate
- HMGB1, high-mobility group box 1
- ICD, immunogenic cell death
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-4, interleukin-4
- IL-6, interleukin-6
- IRE1, inositol-requiring enzyme 1
- Immunogenic cell death
- Immunotherapy
- LC, loading capacity
- MDSCs, myeloid derived suppressor cells
- MMR, mismatch repair
- MR, molar ratio
- NAC, N-acetyl-l-cysteine
- NP, nanoparticle
- Nano drug delivery system
- PD-L1, programmed death-ligand 1
- PEG, polyethylene glycol
- PERK, PKR-like ER kinase
- PFA, paraformaldehyde
- PVDF, polyvinylidene fluoride
- QTN, quercetin
- ROS, reactive oxygen species
- Reactive oxygen species
- TAAs, tumor-associated antigens
- TME, tumor microenvironment
- Tumor microenvironment
- UPR, unfolded protein response
- p-IRE1, phosphorylation of IRE1
- p-PERK, phosphorylation of PERK
Collapse
|
research-article |
3 |
100 |
12
|
Salem M, Ammitzboell M, Nys K, Seidelin JB, Nielsen OH. ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy 2016; 11:585-94. [PMID: 25906181 DOI: 10.1080/15548627.2015.1017187] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.
Collapse
Key Words
- ATG16L1
- ATG16L1, autophagy-related 16-like 1 (S. cerevisiae)
- BCL2, B-cell CLL/lymphoma 2
- Crohn disease
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GWAS, genome-wide association studies
- IBD, inflammatory bowel disease
- MDP, muramyl dipeptide
- MTOR, mechanistic target of rapamycin
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- NOD2
- NOD2, nucleotide-binding oligomerization domain containing 2
- RIPK2, receptor-interacting serine-threonine kinase 2
- SNP, single-nucleotide polymorphism
- T300A, threonine-to-alanine substitution at amino acid position 300
- TNF/TNF-α, tumor necrosis factor
- UC, ulcerative colitis
- ULK1, unc-51 like autophagy-activating kinase 1
- XBP1, X-box binding protein 1
- autophagy
- bacterial clearance
- endoplasmic reticulum stress
Collapse
|
Review |
9 |
98 |
13
|
Guan B, Tong J, Hao H, Yang Z, Chen K, Xu H, Wang A. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharm Sin B 2022; 12:2129-2149. [PMID: 35646540 PMCID: PMC9136572 DOI: 10.1016/j.apsb.2021.12.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.
Collapse
Key Words
- AS, atherosclerosis
- ASBT, apical sodium-dependent bile salt transporter
- BAs, bile acids
- BSEP, bile salt export pump
- BSH, bile salt hydrolases
- Bile acid
- CA, cholic acid
- CAR, constitutive androstane receptor
- CCs, cholesterol crystals
- CDCA, chenodeoxycholic acid
- CMD, cardiometabolic disease
- CVDs, cardiovascular diseases
- CYP7A1, cholesterol 7 alpha-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- Cardiometabolic diseases
- DAMPs, danger-associated molecular patterns
- DCA, deoxycholic acid
- DCs, dendritic cells
- ERK, extracellular signal-regulated kinase
- FA, fatty acids
- FFAs, free fatty acids
- FGF, fibroblast growth factor
- FMO3, flavin-containing monooxygenase 3
- FXR, farnesoid X receptor
- GLP-1, glucagon-like peptide 1
- HCA, hyocholic acid
- HDL, high-density lipoprotein
- HFD, high fat diet
- HNF, hepatocyte nuclear receptor
- IL, interleukin
- IR, insulin resistance
- JNK, c-Jun N-terminal protein kinase
- LCA, lithocholic acid
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- LPS, lipopolysaccharide
- NAFLD, non-alcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- NLRP3, NLR family pyrin domain containing 3
- Nuclear receptors
- OCA, obeticholic acid
- PKA, protein kinase A
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane X receptor
- RCT, reverses cholesterol transportation
- ROR, retinoid-related orphan receptor
- S1PR2, sphingosine-1-phosphate receptor 2
- SCFAs, short-chain fatty acids
- SHP, small heterodimer partner
- Systemic immunometabolism
- TG, triglyceride
- TGR5, takeda G-protein receptor 5
- TLR, toll-like receptor
- TMAO, trimethylamine N-oxide
- Therapeutic opportunities
- UDCA, ursodeoxycholic acid
- VDR, vitamin D receptor
- cAMP, cyclic adenosine monophosphate
- mTOR, mammalian target of rapamycin
- ox-LDL, oxidated low-density lipoprotein
Collapse
|
Review |
3 |
91 |
14
|
Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, Wang S, Wang Y. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B 2021; 11:2798-2818. [PMID: 34589398 PMCID: PMC8463263 DOI: 10.1016/j.apsb.2020.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ADR, adverse drug reaction
- AIE, aggregation-induced emission
- Active target
- BSA, bovine serum albumin
- CAM, cell adhesion molecule
- CD, Crohn's disease
- CRD, cysteine-rich domain
- CS, chondroitin sulfate
- CT, computed tomography
- CTLD, c-type lectin-like domain
- Cell adhesion molecule
- Crohn's disease
- DCs, dendritic cells
- DSS, dextran sulfate sodium salt
- Drug delivery
- EGF, epidermal growth factor
- EPR, enhanced permeability and retention
- FNII, fibronectin type II domain
- FR, folate receptor
- FRET, fluorescence resonance energy transfer
- GIT, gastrointestinal tract
- HA, hyaluronic acid
- HUVEC, human umbilical vein endothelial cells
- IBD, inflammatory bowel disease
- ICAM, intercellular adhesion molecule
- Inflammatory bowel disease
- LMWC, low molecular weight chitosan
- LPS, lipopolysaccharide
- MAP4K4, mitogen-activated protein kinase kinase kinase kinase 4
- MGL, macrophage galactose lectin
- MPO, myeloperoxidase
- MPS, mononuclear phagocyte system
- MR, mannose receptor
- MRI, magnetic resonance imaging
- PAMAM, poly(amidoamine)
- PEI, polyethylenimine
- PSGL-1, P-selectin glycoprotein ligand-1
- PepT1, peptide transporter 1
- QDs, quantum dots
- RES, reticuloendothelial system
- Receptor-mediated target
- Targeted therapy
- TfR, transferrin receptor
- UC, ulcerative colitis
- Ulcerative colitis
- VCAM, vascular cell adhesion molecule
Collapse
|
Review |
4 |
74 |
15
|
Ma X, Yang S, Zhang T, Wang S, Yang Q, Xiao Y, Shi X, Xue P, Kang Y, Liu G, Sun ZJ, Xu Z. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm Sin B 2022; 12:451-466. [PMID: 35127398 PMCID: PMC8800001 DOI: 10.1016/j.apsb.2021.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/28/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- ALKP, alkaline phosphatase
- ALT, alanine aminotransferase
- APCs, antigen-presenting cells
- AST, aminotransferase
- ATP, adenosine triphosphate
- AUC, area under curves
- Bioresponsive
- CLSM, confocal laser scanning microscope
- CPT-11, irinotecan
- CRE, creatinine
- CRT, calreticulin
- Ce6, chlorin e6
- Chemotherapy
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- DDSs, drug delivery systems
- DLN, draining lymph nodes
- DM NGs, doxorubicin-based mannose nanogel
- DOC, docetaxel
- DOX, doxorubicin
- DTT, d,l-dithiothreitol
- Doxorubicin
- FCM, flow cytometry
- FDA, Fluorescein diacetate
- GEM, gemcitabine
- GSH, glutathione
- H&E, hematoxylin-eosin
- HCPT, 10-hydroxy camptothecin
- HCT, hematocrit
- HGB, hemoglobin concentration
- HMGB1, high migrating group box 1
- ICB, immune checkpoint blockade
- ICD, immunogenic cell death
- ICG, indocyanine Green
- IHC, immunohistochemistry
- ITM, immunosuppressive tumor microenvironment
- Immunogenic cell death
- Immunotherapy
- LDH, lactate dehydrogenase
- LYM, lymphocyte ratio
- MAN, mannose
- MCHC, mean corpuscular hemoglobin concentration
- MCSs, multicellular spheroids
- MFI, mean fluorescence intensity
- MPV, mean platelet volume
- Mannose
- NGs, nanogels
- Nanogel
- OXA, oxaliplatin
- P18, purpurin 18
- PDI, polydispersity index
- PLT, platelets
- PTX, paclitaxel
- Prodrug
- RBC, red blood cell count
- RDW, variation coefficient of red blood cell distribution width
- TAAs, tumor-associated antigens
- TAM, tumor-associated macrophages
- TGF-β, transforming growth factor-β
- TMA, tissue microarrays
- TME, tumor microenvironment
- Urea, urea nitrogen
- WBC, white blood cell count
- irAEs, immune-related adverse events
Collapse
|
|
3 |
68 |
16
|
Legitimo A, Consolini R, Failli A, Orsini G, Spisni R. Dendritic cell defects in the colorectal cancer. Hum Vaccin Immunother 2015; 10:3224-35. [PMID: 25483675 PMCID: PMC4514061 DOI: 10.4161/hv.29857] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression.
Collapse
Key Words
- APC, antigen presenting cells
- CRC, Colorectal cancer
- CTLA-4, anticytotoxic T-lymphocyte antigen 4
- DCregs, regulatory DCs
- DCs, dendritic cells
- GM-CSF, granulocyte macrophage colony stimulating factor
- HMGB, high mobility group box
- HNSCC, head and neck squamous cell carcinoma
- IFN, interferon
- IL, interleukin
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex
- NK,natural killer
- PAMP, pathogen-associated molecular pattern
- PD-1, programmed death 1
- PRRs, pattern recognition receptors
- TDLNs, draining lymph nodes
- TGF, transforming growth factor
- TIDCs, tumor-infiltrating DCs
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T helper
- VEGF, vascular endothelial growth factor
- colorectal cancer
- dendritic cells
- immune response
- immunoescape
- mDCs, myeloid dendritic cells
- pDCs, plasmacytoid dendritic cells
- tumor microenvironment
Collapse
|
Review |
10 |
63 |
17
|
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100043. [PMID: 35399823 PMCID: PMC7886629 DOI: 10.1016/j.phyplu.2021.100043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 04/28/2023]
Abstract
BACKGROUND Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. PURPOSE The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. METHODOLOGY We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo). These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). RESULTS Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. CONCLUSION The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.
Collapse
Key Words
- 18β-GA, 18β-glycyrrhetinic acid
- : ACE2, angiotensin-converting enzyme 2
- ALI, acute lung injury
- ARDS, acute Respiratory Distress Syndrome
- Acute lung injury protector
- COVID-19
- COVID-19, Coronavirus disease 2019
- COX-2, cyclooxygenase-2
- DCs, dendritic cells
- Gl, glycyrrhizin
- Glycyrrhizin and licorice extract;Antiviral and antimicrobial, Anti-inflammatory and antioxidant
- HBsAg, hepatitis B surface antigen
- HCV, hepatitis C virus
- HMGB1, high-mobility group box 1
- IL, interleukin
- Immunododulator
- MAPKs, mitogen-activated protein kinases
- MERS, Middle East respiratory syndrome
- MR, mineralocorticoid receptor
- MRSA, Methicillin-resistant Staphylococcus aureus
- NO, nitric oxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- S, Spike
- SARS, severe acute respiratory syndrome
- TCM, traditional Chinese medicine
- TLR, toll-like receptor
- TMPRSS2, type 2 transmembrane serine protease
- TNF-α, tumor necrosis factor alpha
- h, hour
- iNOS, inducible nitric oxide synthase
- licorice extract, LE
Collapse
|
Review |
4 |
57 |
18
|
Disturbed Yin-Yang balance: stress increases the susceptibility to primary and recurrent infections of herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:383-398. [PMID: 32140387 PMCID: PMC7049575 DOI: 10.1016/j.apsb.2019.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), a neurotropic herpes virus, is able to establish a lifelong latent infection in the human host. Following primary replication in mucosal epithelial cells, the virus can enter sensory neurons innervating peripheral tissues via nerve termini. The viral genome is then transported to the nucleus where it can be maintained without producing infectious progeny, and thus latency is established in the cell. Yin–Yang balance is an essential concept in traditional Chinese medicine (TCM) theory. Yin represents stable and inhibitory factors, and Yang represents the active and aggressive factors. When the organism is exposed to stress, especially psychological stress caused by emotional stimulation, the Yin–Yang balance is disturbed and the virus can re-engage in productive replication, resulting in recurrent diseases. Therefore, a better understanding of the stress-induced susceptibility to HSV-1 primary infection and reactivation is needed and will provide helpful insights into the effective control and treatment of HSV-1. Here we reviewed the recent advances in the studies of HSV-1 susceptibility, latency and reactivation. We included mechanisms involved in primary infection and the regulation of latency and described how stress-induced changes increase the susceptibility to primary and recurrent infections.
Collapse
Key Words
- 4E-BP, eIF4E-binding protein
- AD, Alzheimer's disease
- AKT, protein kinase B
- AMPK, AMP-dependent kinase
- BCL-2, B-cell lymphoma 2
- CNS, central nervous system
- CORT, corticosterone
- CPE, cytopathic effect
- CTCF, CCCTC-binding factor
- CTL, cytotoxic T lymphocyte
- CoREST, REST corepressor 1
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- DEX, dexamethasone
- GREs, GR response elements
- GRs, glucocorticoid receptors
- H3K9, histone H3 on lysines 9
- HCF-1, host cell factor 1
- HDACs, histone deacetylases
- HPA axis, hypothalamo–pituitary–adrenal axis
- HPK, herpetic simplex keratitis
- HPT axis, hypothalamic–pituitary–thyroid axis
- HSV-1
- HSV-1, herpes simplex virus type 1
- Herpes simplex virus type 1
- ICP, infected cell polypeptide
- IRF3, interferon regulatory factor 3
- KLF15, Krüppel-like transcription factor 15
- LAT, latency-associated transcripts
- LRF, Luman/CREB3 recruitment factor
- LSD1, lysine-specific demethylase 1
- Latency
- MAVS, mitochondrial antiviral-signaling protein
- MOI, multiplicity of infection
- ND10, nuclear domains 10
- NGF, nerve growth factor
- NK cells, natural killer cells
- OCT-1, octamer binding protein 1
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1
- PI3K, phosphoinositide 3-kinases
- PML, promyelocytic leukemia protein
- PNS, peripheral nervous system
- PRC1, protein regulator of cytokinesis 1
- PRRs, pattern-recognition receptors
- PTMs, post-translational modifications
- RANKL, receptor activator of NF-κB ligands
- REST, RE1-silencing transcription factor
- ROS, reactive oxygen species
- Reactivation
- SGKs, serum and glucocorticoid-regulated protein kinases
- SIRT1, sirtuin 1
- Stress
- Susceptibility
- T3, thyroid hormone
- TCM, traditional Chinese medicine
- TG, trigeminal ganglia
- TK, thymidine kinase
- TRIM14, tripartite motif-containing 14
- TRKA, tropomyosin receptor kinase A
- TRM, tissue resident memory T cells
- cGAS, cyclic GMP-AMP synthase
- mTOR, mammalian target of rapamycin
- sncRNAs, small non-coding RNAs
Collapse
|
Review |
5 |
53 |
19
|
Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 2015; 10:3544-51. [PMID: 25483705 DOI: 10.4161/hv.36174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells.
Collapse
Key Words
- ANX, Annexin; BALT, bronchus-associated lymphoid tissue
- C5aR, C5a receptor
- DCs, dendritic cells
- DENV, dengue virus
- EDIII, envelope domain III
- FAE, follicle-associated epithelium
- GALT, gut-associated lymphoid tissue
- GENALT, genital-associated lymphoid tissue
- GP2, Glycoprotein 2
- Hsp60, heat shock protein 60
- LPS, lipopolysaccharide
- M cells
- M cells, microfold cells
- MALT, mucosa-associated lymphoid tissue
- NALT, nasopharynx- or nose-associated lymphoid tissue
- OVA, ovalbumin
- OmpH, outer membrane protein H
- PP, Peyer's patches
- PRRs, pathogen recognition receptors
- PrPC, cellular prion protein
- SELEX, Systematic Evolution of Ligands by EXponential enrichment
- SIgA secretory IgA
- TLR-4, Toll-like receptor-4
- UEA-1,Ulex europaeus agglutinin-1
- antigen
- infection
- mucosal immunity
- pσ1, reovirus surface protein σ1
- vaccine
Collapse
|
Review |
10 |
51 |
20
|
Lee SH, Danishmalik SN, Sin JI. DNA vaccines, electroporation and their applications in cancer treatment. Hum Vaccin Immunother 2016; 11:1889-900. [PMID: 25984993 DOI: 10.1080/21645515.2015.1035502] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous animal studies and recent clinical studies have shown that electroporation-delivered DNA vaccines can elicit robust Ag-specific CTL responses and reduce disease severity. However, cancer antigens are generally poorly immunogenic, requiring special conditions for immune response induction. To date, many different approaches have been used to elicit Ag-specific CTL and anti-neoplastic responses to DNA vaccines against cancer. In vivo electroporation is one example, whereas others include DNA manipulation, xenogeneic antigen use, immune stimulatory molecule and immune response regulator application, DNA prime-boost immunization strategy use and different DNA delivery methods. These strategies likely increase the immunogenicity of cancer DNA vaccines, thereby contributing to cancer eradication. However, cancer cells are heterogeneous and might become CTL-resistant. Thus, understanding the CTL resistance mechanism(s) employed by cancer cells is critical to develop counter-measures for this immune escape. In this review, the use of electroporation as a DNA delivery method, the strategies used to enhance the immune responses, the cancer antigens that have been tested, and the escape mechanism(s) used by tumor cells are discussed, with a focus on the progress of clinical trials using cancer DNA vaccines.
Collapse
Key Words
- AFP, α-fetoprotein
- APCs, antigen presenting cells
- CEA, carcinoembryonic antigen
- CTLA-4, cytotoxic T lymphocyte-associated antigen-4
- DCs, dendritic cells
- DNA vaccine
- EP, electroporation
- GITR, glucocorticoid-induced tumor necrosis factor receptor family-related gene
- HPV, human papillomavirus
- HSP, heat shock protein
- HSV, herpes simplex virus
- ID, intradermal
- IM, intramuscular
- MAGE, melanoma-associated antigen
- MART, melanoma antigen recognized by T cells
- PAP, prostatic acid phosphatase
- PD, programmed death
- PRAME, preferentially expressed antigen in melanoma
- PSA, prostate-specific antigen
- PSMA, prostate-specific membrane antigen
- WT1, Wilm's tumor
- anti-tumor immunity
- cancer
- hTERT, human telomerase reverse transcriptase
- tumor immune evasion
Collapse
|
Review |
9 |
48 |
21
|
Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic treatments to trigger robust cancer immunotherapy. Acta Pharm Sin B 2021; 11:3244-3261. [PMID: 34729313 PMCID: PMC8546854 DOI: 10.1016/j.apsb.2021.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP) via hydrophobic interaction. After accumulated at tumor sites, FGP disassembles to smaller FeS-GOx for enhanced deep tumor penetration. GOx maintains high enzymatic activity to catalyze glucose with assistant of oxygen to generate hydrogen peroxide (H2O2) as starvation therapy. Fenton reaction involving the regenerated H2O2 in turn produced more hydroxyl radicals for enhanced CDT. Following near-infrared laser at 808 nm, FGPs displayed pronounced tumor inhibition in vitro and in vivo by the combination therapy. The consequent increased exposure to calreticulin amplified ICD and promoted dendritic cells maturation. In combination with anti-CTLA4 checkpoint blockade, FGP can absolutely eliminate primary tumor and avidly inhibit distant tumors due to the enhanced intratumoral infiltration of cytotoxic T lymphocytes. Our work presents a promising strategy for primary tumor and metastasis inhibition.
Collapse
Key Words
- ALP, alkaline phosphatise
- ALT, alanine transaminase
- AST, aspartate aminotransferase
- ATP, adenosine triphosphate
- BUN, blood urea nitrogen
- CDT, chemodynamic therapy
- CLSM, confocal laser scanning microscope
- CREA, creatinine
- CRT, calreticulin
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- CTLs, cytotoxic T lymphocytes
- Cancer immunotherapy
- Ce6, Chlorin e6
- DAMPs, damage-related molecular patterns
- DAPI, 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride
- DCs, dendritic cells
- DLS, dynamic light scattering
- DMPO, dimethyl pyridine N-oxide
- EDC, 1-ethyl-3-(3ʹ-dimethylaminopropyl) carbodiimide
- EDS, energy-dispersive spectrometry
- EPR, enhanced permeability and retention
- ESR, electron spin resonance
- FG, FeS-GOx nanodots
- FGP, FeS-GOx@PTX nanoparticles
- FITC, fluorescein Isothiocyanate
- FeCl2·4H2O, iron dichloride tetrahydrate
- FeS-based cascade bioreactor
- GOx, glucose oxidase
- Glu, glucose
- Glucose oxidase
- H&E, hematoxylin and eosin
- H2DCFDA, 2,7-dichlorodihydrofluorescein acetoacetic acid
- HMGB-1, high mobility group box protein 1
- HPF, 2-[6-(4,-hydroxy) phenoxy-3H-xanthene-3-on-9-yl
- HSA, human serum albumin
- ICB, immune checkpoint blockade
- ICD amplifier
- ICD, immunogenic cell death
- IFN-γ, interferon-γ
- MB, methylene blue
- MCTS, multicellular tumor spheroids
- MFI, median fluorescence Intensity
- Metastasis inhibition
- NHS, N-hydroxy succinimide
- Na2S, sodium sulfide
- OH, hydroxyl
- PBS, phosphate buffer saline
- PTT, photothermal therapy
- PTX, paclitaxel
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- Synergistic therapy
- TAA, tumor-associated antigens
- TDLN, tumor-draining lymph nodes
- TEM, transmission microscope
- TMB, 3,3ʹ,5,5ʹ-tetramathylbenzidine
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling
- Tumor penetration
- XPS, X-ray photoelectron spectroscopy
- XRD, X-ray diffraction patterns
Collapse
|
|
4 |
42 |
22
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
|
Review |
4 |
41 |
23
|
Ahmed MS, Byeon SE, Jeong Y, Miah MA, Salahuddin M, Lee Y, Park SS, Bae YS. Dab2, a negative regulator of DC immunogenicity, is an attractive molecular target for DC-based immunotherapy. Oncoimmunology 2015; 4:e984550. [PMID: 25949867 DOI: 10.4161/2162402x.2014.984550] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 12/28/2022] Open
Abstract
Dab2 is an adapter protein involved in receptor-mediated signaling, endocytosis, cell adhesion, hematopoietic cell differentiation, and angiogenesis. It plays a pivotal role in controlling cellular homeostasis. In the immune system, the Dab2 is a Foxp3 target gene and is required for regulatory T (Treg) cell function. Dab2 expression and its biological function in dendritic cells (DCs) have not been described. In this study, we found that Dab2 was significantly induced during the development of mouse bone marrow (BM)-derived DCs (BMDCs) and human monocyte-derived DCs (MoDCs). Even in a steady state, Dab2 was expressed in mouse splenic DCs (spDCs). STAT5 activation, Foxp3 expression, and hnRNPE1 activation mediated by PI3K/Akt signaling were required for Dab2 expression during GM-CSF-derived BMDC development regardless of TGF-β signaling. Dab2-silencing was accompanied by enhanced IL-12 and IL-6 expression, and an improved capacity of DC for antigen uptake, migration and T cell stimulation, which generated strong CTL in vaccinated mice. Vaccination with Dab2-silenced DCs inhibited tumor growth more effectively than did vaccination with wild type DCs. Dab2-overexpression abrogated the efficacy of the DC vaccine in DC-based tumor immunotherapy. These data strongly suggest that Dab2 might be an intrinsic negative regulator of the immunogenicity of DCs, thus might be an attractive molecular target to improve DC vaccine efficacy.
Collapse
Key Words
- BAT, blocking the TGF-β-activated translation element
- BM, bone marrow
- CFSE, 5, 6-carboxyfluorescein succinimidyl ester
- CTL, cytotoxic T lymphocyte
- DCs, dendritic cells
- Dab2
- Dab2, disabled-2 adaptor protein
- Dab2KD, Dab2-knockdown
- Foxp3, forkhead box P3
- GM-CSF, granulocyte-macrophage colony stimulating factor
- OT-1 and OT-2 mice, OVA257–264 and OVA323–339-peptide-specific T cell receptor transgenic mice
- OVA, ovalbumin
- PI3K, phosphoinositide-3 kinase
- STAT5, transducer and activator of transcription 5
- TGF-β, transforming growth factor-β
- Treg, regulatory T
- WT, wild type
- dendritic cells
- hMoDC, human monocyte-derived dendritic cell
- hnRNP E1, heterogeneous nuclear ribonucleoprotein E1
- imDC, immature DC
- immunogenicity
- mDC, mature DC
- molecular target
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
27 |
24
|
Recent advances in the anti-HCV mechanisms of interferon. Acta Pharm Sin B 2014; 4:241-7. [PMID: 26579391 PMCID: PMC4629091 DOI: 10.1016/j.apsb.2014.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN) in combination with ribavirin has been the standard of care (SOC) for chronic hepatitis C for the past few decades. Although the current SOC lacks the desired efficacy, and 4 new direct-acting antiviral agents have been recently approved, interferons are still likely to remain the cornerstone of therapy for some time. Moreover, as an important cytokine system of innate immunity, host interferon signaling provides a powerful antiviral response. Nevertheless, the mechanisms by which HCV infection controls interferon production, and how interferons, in turn, trigger anti-HCV activities as well as control the outcome of HCV infection remain to be clarified. In this report, we review current progress in understanding the mechanisms of IFN against HCV, and also summarize the knowledge of induction of interferon signaling by HCV infection.
Collapse
Key Words
- Antiviral agent
- CHC, chronic hepatitis C
- DCs, dendritic cells
- DNAM1, DNAX accessory molecule-1
- E2, envelop 2
- GAS, IFN-γ-activated site
- GWAS, genome-wide association studies
- Hepatitis C virus
- IFN, interferon
- IFN-α, interferon-α
- IFNAR1, interferon-alpha receptor 1
- IFNAR2, interferon-alpha receptor 2
- IFNGR1, interferon gamma receptor 1
- IFNGR2, interferon gamma receptor 2
- IFNL4, IFN-lambda 4
- IL-10R2, interleukin-10 receptor 2
- IL-29, interleukin-29
- IRF-3, interferon regulatory factor 3
- IRGs, IFN regulatory genes
- ISG15, interferon-stimulated gene 15
- ISGF3, IFN-stimulated gene factor 3
- ISGs, IFN-stimulated genes
- ISREs, IFN-stimulated response elements
- Interferon
- JAKs, Janus activated kinases
- MAVS, mitochondrial antiviral signaling protein
- MDA-5, melanoma differentiation-associated gene-5
- MHC, major histocompatibility complex
- Molecular mechanism
- NKCs, natural killer cells
- NKTCs, natural killer T cells
- OAS, 2′-5′-oligoadenylate synthetase
- PAMPs, pathogen-associated molecular patterns
- PBMCs, peripheral blood mononuclear cells
- PKR, protein kinase R
- PRRs, pattern recognition receptors
- RIG-I, retinoic acid-inducible gene-I
- RLRs, RIG-I-like receptors
- RdRp, RNA dependent RNA polymerase
- SNPs, single-nucleotide polymorphisms
- SOC, standard of care
- STAT1, signal transducer and activator of transcription 1
- STAT2, signal transducer and activator of transcription 2
- SVR, sustained virological response
- TH1, T-helper-1
- TH2, T-helper-2
- TLRs, Toll-like receptors
- TYK2, tyrosine kinase 2
- USP18, ubiquitin specific peptidase 18
- dsRNA, double-stranded RNA
- pDC, plasmacytoid dendritic cell
Collapse
|
Review |
11 |
24 |
25
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
|
Review |
5 |
23 |