1
|
Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, Ebeling PR, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O'Keefe R, Papapoulos S, Howe TS, van der Meulen MCH, Weinstein RS, Whyte MP. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2014; 29:1-23. [PMID: 23712442 DOI: 10.1002/jbmr.1998] [Citation(s) in RCA: 1048] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/11/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Bisphosphonates (BPs) and denosumab reduce the risk of spine and nonspine fractures. Atypical femur fractures (AFFs) located in the subtrochanteric region and diaphysis of the femur have been reported in patients taking BPs and in patients on denosumab, but they also occur in patients with no exposure to these drugs. In this report, we review studies on the epidemiology, pathogenesis, and medical management of AFFs, published since 2010. This newer evidence suggests that AFFs are stress or insufficiency fractures. The original case definition was revised to highlight radiographic features that distinguish AFFs from ordinary osteoporotic femoral diaphyseal fractures and to provide guidance on the importance of their transverse orientation. The requirement that fractures be noncomminuted was relaxed to include minimal comminution. The periosteal stress reaction at the fracture site was changed from a minor to a major feature. The association with specific diseases and drug exposures was removed from the minor features, because it was considered that these associations should be sought rather than be included in the case definition. Studies with radiographic review consistently report significant associations between AFFs and BP use, although the strength of associations and magnitude of effect vary. Although the relative risk of patients with AFFs taking BPs is high, the absolute risk of AFFs in patients on BPs is low, ranging from 3.2 to 50 cases per 100,000 person-years. However, long-term use may be associated with higher risk (∼100 per 100,000 person-years). BPs localize in areas that are developing stress fractures; suppression of targeted intracortical remodeling at the site of an AFF could impair the processes by which stress fractures normally heal. When BPs are stopped, risk of an AFF may decline. Lower limb geometry and Asian ethnicity may contribute to the risk of AFFs. There is inconsistent evidence that teriparatide may advance healing of AFFs.
Collapse
|
Review |
11 |
1048 |
2
|
Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O'Ryan F, Reid IR, Ruggiero SL, Taguchi A, Tetradis S, Watts NB, Brandi ML, Peters E, Guise T, Eastell R, Cheung AM, Morin SN, Masri B, Cooper C, Morgan SL, Obermayer-Pietsch B, Langdahl BL, Al Dabagh R, Davison KS, Kendler DL, Sándor GK, Josse RG, Bhandari M, El Rabbany M, Pierroz DD, Sulimani R, Saunders DP, Brown JP, Compston J. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res 2015; 30:3-23. [PMID: 25414052 DOI: 10.1002/jbmr.2405] [Citation(s) in RCA: 891] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
This work provides a systematic review of the literature from January 2003 to April 2014 pertaining to the incidence, pathophysiology, diagnosis, and treatment of osteonecrosis of the jaw (ONJ), and offers recommendations for its management based on multidisciplinary international consensus. ONJ is associated with oncology-dose parenteral antiresorptive therapy of bisphosphonates (BP) and denosumab (Dmab). The incidence of ONJ is greatest in the oncology patient population (1% to 15%), where high doses of these medications are used at frequent intervals. In the osteoporosis patient population, the incidence of ONJ is estimated at 0.001% to 0.01%, marginally higher than the incidence in the general population (<0.001%). New insights into the pathophysiology of ONJ include antiresorptive effects of BPs and Dmab, effects of BPs on gamma delta T-cells and on monocyte and macrophage function, as well as the role of local bacterial infection, inflammation, and necrosis. Advances in imaging include the use of cone beam computerized tomography assessing cortical and cancellous architecture with lower radiation exposure, magnetic resonance imaging, bone scanning, and positron emission tomography, although plain films often suffice. Other risk factors for ONJ include glucocorticoid use, maxillary or mandibular bone surgery, poor oral hygiene, chronic inflammation, diabetes mellitus, ill-fitting dentures, as well as other drugs, including antiangiogenic agents. Prevention strategies for ONJ include elimination or stabilization of oral disease prior to initiation of antiresorptive agents, as well as maintenance of good oral hygiene. In those patients at high risk for the development of ONJ, including cancer patients receiving high-dose BP or Dmab therapy, consideration should be given to withholding antiresorptive therapy following extensive oral surgery until the surgical site heals with mature mucosal coverage. Management of ONJ is based on the stage of the disease, size of the lesions, and the presence of contributing drug therapy and comorbidity. Conservative therapy includes topical antibiotic oral rinses and systemic antibiotic therapy. Localized surgical debridement is indicated in advanced nonresponsive disease and has been successful. Early data have suggested enhanced osseous wound healing with teriparatide in those without contraindications for its use. Experimental therapy includes bone marrow stem cell intralesional transplantation, low-level laser therapy, local platelet-derived growth factor application, hyperbaric oxygen, and tissue grafting.
Collapse
|
Review |
10 |
891 |
3
|
Cummings SR, Ferrari S, Eastell R, Gilchrist N, Jensen JEB, McClung M, Roux C, Törring O, Valter I, Wang AT, Brown JP. Vertebral Fractures After Discontinuation of Denosumab: A Post Hoc Analysis of the Randomized Placebo-Controlled FREEDOM Trial and Its Extension. J Bone Miner Res 2018; 33:190-198. [PMID: 29105841 DOI: 10.1002/jbmr.3337] [Citation(s) in RCA: 451] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Abstract
Denosumab reduces bone resorption and vertebral and nonvertebral fracture risk. Denosumab discontinuation increases bone turnover markers 3 months after a scheduled dose is omitted, reaching above-baseline levels by 6 months, and decreases bone mineral density (BMD) to baseline levels by 12 months. We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7 months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant-years during the on-treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100 participant-years). Among participants with ≥1 off-treatment vertebral fracture, the proportion with multiple (>1) was larger among those who discontinued denosumab (60.7%) than placebo (38.7%; p = 0.049), corresponding to a 3.4% and 2.2% risk of multiple vertebral fractures, respectively. The odds (95% confidence interval) of developing multiple vertebral fractures after stopping denosumab were 3.9 (2.1-7. 2) times higher in those with prior vertebral fractures, sustained before or during treatment, than those without, and 1.6 (1.3-1.9) times higher with each additional year of off-treatment follow-up; among participants with available off-treatment total hip (TH) BMD measurements, the odds were 1.2 (1.1-1.3) times higher per 1% annualized TH BMD loss. The rates (per 100 participant-years) of nonvertebral fractures during the off-treatment period were similar (2.8, denosumab; 3.8, placebo). The vertebral fracture rate increased upon denosumab discontinuation to the level observed in untreated participants. A majority of participants who sustained a vertebral fracture after discontinuing denosumab had multiple vertebral fractures, with greatest risk in participants with a prior vertebral fracture. Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov: NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research.
Collapse
|
Randomized Controlled Trial |
7 |
451 |
4
|
Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O. Clinical Features of 24 Patients With Rebound-Associated Vertebral Fractures After Denosumab Discontinuation: Systematic Review and Additional Cases. J Bone Miner Res 2017; 32:1291-1296. [PMID: 28240371 DOI: 10.1002/jbmr.3110] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/04/2017] [Accepted: 02/22/2017] [Indexed: 11/05/2022]
Abstract
We aimed to study the clinical and imaging characteristics of patients sustaining vertebral fractures after denosumab discontinuation. For this purpose, we conducted a computerized advanced literature search that identified 13 published cases, and we additionally included another 11 new cases from our centers. Twenty-four postmenopausal women with vertebral fracture(s) after denosumab discontinuation, experiencing 112 fractures in total, were analyzed. The mean number of fractures per patient was 4.7. The most commonly affected vertebrae were T12 and L1. All fractures occurred 8 to 16 months after the last denosumab injection. Eighty-three percent of the patients were treatment naïve, whereas 33% had prevalent vertebral fractures. Five (23%) patients were on concurrent aromatase inhibitor treatment. When patients were divided according to treatment duration with an arbitrary cut-off of 2 years, those with ≤2 years of denosumab treatment had fewer fractures compared with those with >2 years (mean ± SEM fractures 3.2 ± 0.7 versus 5.2 ± 1.4, p = 0.055). Vertebroplasty was used in 5 patients, resulting in additional clinical vertebral fractures in all cases. We conclude that vertebral fracture(s) after denosumab discontinuation are in the majority of patients multiples, and they occur a few months after the effect of the last dose is depleted. Therefore, patients should not delay or omit denosumab doses. Fractures are typically osteoporotic, located at the lower thoracic and the upper lumbar spine. Vertebroplasty is an unsuccessful treatment strategy for such patients. © 2017 American Society for Bone and Mineral Research.
Collapse
|
Meta-Analysis |
8 |
260 |
5
|
McClung MR, Brown JP, Diez-Perez A, Resch H, Caminis J, Meisner P, Bolognese MA, Goemaere S, Bone HG, Zanchetta JR, Maddox J, Bray S, Grauer A. Effects of 24 Months of Treatment With Romosozumab Followed by 12 Months of Denosumab or Placebo in Postmenopausal Women With Low Bone Mineral Density: A Randomized, Double-Blind, Phase 2, Parallel Group Study. J Bone Miner Res 2018; 33:1397-1406. [PMID: 29694685 DOI: 10.1002/jbmr.3452] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 01/14/2023]
Abstract
Over 12 months, romosozumab increased bone formation and decreased bone resorption, resulting in increased bone mineral density (BMD) in postmenopausal women with low BMD (NCT00896532). Herein, we report the study extension evaluating 24 months of treatment with romosozumab, discontinuation of romosozumab, alendronate followed by romosozumab, and romosozumab followed by denosumab. Postmenopausal women aged 55 to 85 years with a lumbar spine (LS), total hip (TH), or femoral neck T-score ≤-2.0 and ≥-3.5 were enrolled and randomly assigned to placebo, one of five romosozumab regimens (70 mg, 140 mg, 210 mg monthly [QM]; 140 mg Q3M; 210 mg Q3M) for 24 months, or open-label alendronate for 12 months followed by romosozumab 140 mg QM for 12 months. Eligible participants were then rerandomized 1:1 within original treatment groups to placebo or denosumab 60 mg Q6M for an additional 12 months. Percentage change from baseline in BMD and bone turnover markers (BTMs) at months 24 and 36 and safety were evaluated. Of 364 participants initially randomized to romosozumab, placebo, or alendronate, 315 completed 24 months of treatment and 248 completed the extension. Romosozumab markedly increased LS and TH BMD through month 24, with largest gains observed with romosozumab 210 mg QM (LS = 15.1%; TH = 5.4%). Women receiving romosozumab who transitioned to denosumab continued to accrue BMD, whereas BMD returned toward pretreatment levels with placebo. With romosozumab 210 mg QM, bone formation marker P1NP initially increased after treatment initiation and gradually decreased to below baseline by month 12, remaining below baseline through month 24; bone resorption marker β-CTX rapidly decreased after treatment, remaining below baseline through month 24. Transition to denosumab further decreased both BTMs, whereas after transition to placebo, P1NP returned to baseline and β-CTX increased above baseline. Adverse events were balanced between treatment groups through month 36. These data suggest that treatment effects of romosozumab are reversible upon discontinuation and further augmented by denosumab. © 2018 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
|
Clinical Trial, Phase II |
7 |
152 |
6
|
Lewiecki EM, Dinavahi RV, Lazaretti-Castro M, Ebeling PR, Adachi JD, Miyauchi A, Gielen E, Milmont CE, Libanati C, Grauer A. One Year of Romosozumab Followed by Two Years of Denosumab Maintains Fracture Risk Reductions: Results of the FRAME Extension Study. J Bone Miner Res 2019; 34:419-428. [PMID: 30508316 DOI: 10.1002/jbmr.3622] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 12/29/2022]
Abstract
Romosozumab, a humanized monoclonal antibody that binds and inhibits sclerostin, has the dual effect of increasing bone formation and decreasing bone resorption. As previously reported in the pivotal FRActure study in postmenopausal woMen with ostEoporosis (FRAME), women with a T-score of ≤ -2.5 at the total hip or femoral neck received subcutaneous placebo or romosozumab once monthly for 12 months, followed by open-label subcutaneous denosumab every 6 months for an additional 12 months. Upon completion of the 24-month primary analysis period, eligible women entered the extension phase and received denosumab for an additional 12 months. Here, we report the final analysis results through 36 months, including efficacy assessments of new vertebral, clinical, and nonvertebral fracture; bone mineral density (BMD); and safety assessments. Of 7180 women enrolled, 5743 (80%) completed the 36-month study (2851 romosozumab-to-denosumab; 2892 placebo-to-denosumab). Through 36 months, fracture risk was reduced in subjects receiving romosozumab versus placebo for 12 months followed by 24 months of denosumab for both groups: new vertebral fracture (relative risk reduction [RRR], 66%; incidence, 1.0% versus 2.8%; p < 0.001), clinical fracture (RRR, 27%; incidence, 4.0% versus 5.5%; p = 0.004), and nonvertebral fracture (RRR, 21%; incidence, 3.9% versus 4.9%; p = 0.039). BMD continued to increase for the 2 years with denosumab treatment in both arms. The substantial difference in BMD achieved through 12 months of romosozumab treatment versus placebo was maintained through the follow-up period when both treatment arms received denosumab. Subject incidence of adverse events, including positively adjudicated serious cardiovascular adverse events, were overall balanced between groups. In conclusion, in postmenopausal women with osteoporosis, 12 months of romosozumab led to persistent fracture reduction benefit and ongoing BMD gains when followed by 24 months of denosumab. The sequence of romosozumab followed by denosumab may be a promising regimen for the treatment of osteoporosis. © 2018 American Society for Bone and Mineral Research.
Collapse
|
Multicenter Study |
6 |
138 |
7
|
Anastasilakis AD, Papapoulos SE, Polyzos SA, Appelman-Dijkstra NM, Makras P. Zoledronate for the Prevention of Bone Loss in Women Discontinuing Denosumab Treatment. A Prospective 2-Year Clinical Trial. J Bone Miner Res 2019; 34:2220-2228. [PMID: 31433518 DOI: 10.1002/jbmr.3853] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 11/08/2022]
Abstract
Cessation of denosumab treatment is associated with increases in bone turnover above baseline values and rapid bone loss. We investigated the efficacy of zoledronate to prevent this bone loss in women with postmenopausal osteoporosis who were treated with denosumab (mean duration 2.2 years) and discontinued treatment after achieving osteopenia. Women were randomized to receive a single 5-mg infusion of zoledronate (ZOL) (n = 27) or two additional 60-mg injections of denosumab (Dmab) (n = 30). Both groups were followed for a total period of 24 months. At 24 months lumbar spine-bone mineral density (LS-BMD) was not different from baseline in the ZOL group, but decreased in the Dmab group by (mean ± SD) 4.82% ± 0.7% (p < 0.001) from the 12-month value; the difference in BMD changes between the two groups, the primary endpoint of the study, was statistically significant (p = 0.025). Results of femoral neck (FN)-BMD changes were similar. ZOL infusion was followed by small but significant increases in serum procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX) during the first year and stabilization thereafter. In the Dmab group, bone turnover marker values did not change during the first 12 months but increased significantly at 15 months and in the majority of women these remained elevated at 24 months. Neither baseline nor 12-month bone turnover marker values were associated with BMD changes in either group of women. In the Dmab group, three patients sustained vertebral fractures (two patients multiple clinical, one patient morphometric) whereas one patient in the ZOL group sustained clinical vertebral fractures 12 months after the infusion. In conclusion, a single intravenous infusion of ZOL given 6 months after the last Dmab injection prevents bone loss for at least 2 years independently of the rate of bone turnover. Follow-up is recommended, because in a few patients ZOL treatment might not have the expected effect at 2 years. © 2019 American Society for Bone and Mineral Research.
Collapse
|
Multicenter Study |
6 |
108 |
8
|
Tsai JN, Uihlein AV, Burnett-Bowie SAM, Neer RM, Zhu Y, Derrico N, Lee H, Bouxsein ML, Leder BZ. Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT Study. J Bone Miner Res 2015; 30:39-45. [PMID: 25043459 PMCID: PMC4396184 DOI: 10.1002/jbmr.2315] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 01/22/2023]
Abstract
Combined teriparatide and denosumab increases spine and hip bone mineral density more than either drug alone. The effect of this combination on skeletal microstructure and microarchitecture, however, is unknown. Because skeletal microstructure and microarchitecture are important components of skeletal integrity, we performed high-resolution peripheral quantitative computed tomography (HR-pQCT) assessments at the distal tibia and radius in postmenopausal osteoporotic women randomized to receive teriparatide 20 µg daily (n = 31), denosumab 60 mg every 6 months (n = 33), or both (n = 30) for 12 months. In the teriparatide group, total volumetric bone mineral density (vBMD) did not change at either anatomic site but increased in both other groups at both sites. The increase in vBMD at the tibia was greater in the combination group (3.1 ± 2.2%) than both the denosumab (2.2 ± 1.9%) and teriparatide groups (-0.3 ± 1.9%) (p < 0.02 for both comparisons). Cortical vBMD decreased by 1.6 ± 1.9% at the tibia and by 0.9 ± 2.8% at the radius in the teriparatide group, whereas it increased in both other groups at both sites. Tibia cortical vBMD increased more in the combination group (1.5 ± 1.5%) than both monotherapy groups (p < 0.04 for both comparisons). Cortical thickness did not change in the teriparatide group but increased in both other groups. The increase in cortical thickness at the tibia was greater in the combination group (5.4 ± 3.9%) than both monotherapy groups (p < 0.01 for both comparisons). In the teriparatide group, radial cortical porosity increased by 20.9 ± 37.6% and by 5.6 ± 9.9% at the tibia but did not change in the other two groups. Bone stiffness and failure load, as estimated by finite element analysis, did not change in the teriparatide group but increased in the other two groups at both sites. Together, these findings suggest that the use of denosumab and teriparatide in combination improves HR-pQCT measures of bone quality more than either drug alone and may be of significant clinical benefit in the treatment of postmenopausal osteoporosis.
Collapse
|
Comparative Study |
10 |
99 |
9
|
Samelson EJ, Miller PD, Christiansen C, Daizadeh NS, Grazette L, Anthony MS, Egbuna O, Wang A, Siddhanti SR, Cheung AM, Franchimont N, Kiel DP. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res 2014; 29:450-7. [PMID: 23873632 PMCID: PMC3946983 DOI: 10.1002/jbmr.2043] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022]
Abstract
Atherosclerosis and osteoporosis are chronic diseases that progress with age, and studies suggest aortic calcification, an indicator of atherosclerosis, is inversely associated with bone mineral density (BMD). The osteoprotegerin (OPG)/receptor activator of NF-κB (RANK)/RANK ligand (RANKL) system has been proposed as a shared regulatory system for bone and vasculature. Denosumab (DMAb), a monoclonal antibody against RANKL, improved BMD and reduced fracture risk in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. We evaluated whether or not treatment with DMAb influenced progression of aortic calcification (AC) and incidence of cardiovascular (CV) adverse events. We included 2363 postmenopausal women with osteoporosis (1142 placebo, 1221 DMAb), selected from 7808 participants in the FREEDOM trial (3906 placebo, 3902 DMAb), at high risk of CV events according to modified Raloxifene Use for the Heart (RUTH) criteria. CV adverse events were reported by participants. AC scores were assessed using a semiquantitative method from lateral spine X-rays. Change in AC score from baseline to 12 (n = 1377), 24 (n = 1231), and 36 months (n = 1045) was calculated as AC score at follow-up minus AC score at baseline. AC progression was defined as change in AC score >0. Baseline characteristics, CV risk factors, and AC scores were similar between treatment groups. Mean age of participants was 74 years (range, 60-90), 88% were white, and 77% had AC score >0 at baseline. Frequency of AC progression over 3 years did not differ between women in placebo (22%) and DMAb (22%) groups (p = 0.98). AC progression did not differ between treatment groups when analyzed by baseline estimated glomerular filtration rate or by baseline AC scores. Frequency of CV adverse events did not differ between placebo (40%) and DMAb (38%) groups (p = 0.26). In conclusion, DMAb treatment had no effect on progression of AC or incidence of CV adverse events compared to placebo.
Collapse
|
Comparative Study |
11 |
83 |
10
|
Yu EW, Tsourdi E, Clarke BL, Bauer DC, Drake MT. Osteoporosis Management in the Era of COVID-19. J Bone Miner Res 2020; 35:1009-1013. [PMID: 32406536 PMCID: PMC7273005 DOI: 10.1002/jbmr.4049] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023]
Abstract
Osteoporosis is a chronic condition that reflects reduced bone strength and an associated increased risk for fracture. As a chronic condition, osteoporosis generally requires sustained medical intervention(s) to limit the risks for additional bone loss, compromise of skeletal integrity, and fracture occurrence. Further complicating this issue is the fact that the abrupt cessation of some therapies can be associated with an increased risk for harm. It is in this context that the COVID-19 pandemic has brought unprecedented disruption to the provision of health care globally, including near universal requirements for social distancing. In this Perspective, we provide evidence, where available, regarding the general care of patients with osteoporosis in the COVID-19 era and provide clinical recommendations based primarily on expert opinion when data are absent. Particular emphasis is placed on the transition from parenteral osteoporosis therapies. It is hoped that these recommendations can be used to safely guide care for patients with osteoporosis until a return to routine clinical care standards is available. © 2020 American Society for Bone and Mineral Research.
Collapse
|
Congress |
5 |
76 |
11
|
Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, Goemaere S, Recknor C, Brandi ML, Eastell R, Kopperdahl DL, Engelke K, Fuerst T, Radcliffe HS, Libanati C. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res 2014; 29:158-65. [PMID: 23794225 PMCID: PMC4238810 DOI: 10.1002/jbmr.2024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 01/23/2023]
Abstract
In the randomized, placebo-controlled FREEDOM study of women aged 60 to 90 years with postmenopausal osteoporosis, treatment with denosumab once every 6 months for 36 months significantly reduced hip and new vertebral fracture risk by 40% and 68%, respectively. To gain further insight into this efficacy, we performed a nonlinear finite element analysis (FEA) of hip and spine quantitative computed tomography (QCT) scans to estimate hip and spine strength in a subset of FREEDOM subjects (n = 48 placebo; n = 51 denosumab) at baseline, 12, 24, and 36 months. We found that, compared with baseline, the finite element estimates of hip strength increased from 12 months (5.3%; p < 0.0001) and through 36 months (8.6%; p < 0.0001) in the denosumab group. For the placebo group, hip strength did not change at 12 months and decreased at 36 months (-5.6%; p < 0.0001). Similar changes were observed at the spine: strength increased by 18.2% at 36 months for the denosumab group (p < 0.0001) and decreased by -4.2% for the placebo group (p = 0.002). At 36 months, hip and spine strength increased for the denosumab group compared with the placebo group by 14.3% (p < 0.0001) and 22.4% (p < 0.0001), respectively. Further analysis of the finite element models indicated that strength associated with the trabecular bone was lost at the hip and spine in the placebo group, whereas strength associated with both the trabecular and cortical bone improved in the denosumab group. In conclusion, treatment with denosumab increased hip and spine strength as estimated by FEA of QCT scans compared with both baseline and placebo owing to positive treatment effects in both the trabecular and cortical bone compartments. These findings provide insight into the mechanism by which denosumab reduces fracture risk for postmenopausal women with osteoporosis.
Collapse
|
Randomized Controlled Trial |
11 |
75 |
12
|
Burckhardt P, Faouzi M, Buclin T, Lamy O. Fractures After Denosumab Discontinuation: A Retrospective Study of 797 Cases. J Bone Miner Res 2021; 36:1717-1728. [PMID: 34009703 PMCID: PMC8518625 DOI: 10.1002/jbmr.4335] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
A rebound of osteoclast activity during the 2 years after a treatment or prevention of osteoporosis with denosumab (Dmab) leads to an increased risk of vertebral fractures (VFs). We attempted to identify the risk factors for these VF and to examine the protective role of bisphosphonates. For that, 22 specialists in Switzerland provided data of unselected patients, treated with denosumab for osteoporosis or breast cancer without metastases under aromatase inhibitors, who have received at least two injections of Dmab, with at least 1 year of follow-up after discontinuation. The questionnaire covered separately the periods before, during, and after Dmab treatment, and registered clinical, radiological, and lab data. For the analysis of the risk factors, the main outcomes were the time to the first VF after the treatment, the presence of multiple VFs (MVFs), and the number of VFs. The incidence of VF was 16.4% before, 2.2% during, and 10.3% after the treatment with Dmab. The risk of VF after Dmab discontinuation was associated with an increased risk of non-vertebral fractures. The pretreatment predictors of the post-treatment fracture risk were a parental hip fracture and previous VFs. Further risk factors appeared later, such as low total hip bone mineral density (BMD) during and after denosumab, increased bone resorption markers, and the loss of total hip BMD after the denosumab. Treatment with bisphosphonates, especially after Dmab, had a protective effect. Bisphosphonates given before Dmab did not further decrease the risk of VF in cases who got bisphosphonates after Dmab. This study shows that the risk of VF is poorly predictable before the prescription of denosumab. But during and after the treatment, bone resorption markers and BMD have a significant predictive value. Bisphosphonates after the treatment with denosumab are protective against VFs. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
|
research-article |
4 |
72 |
13
|
Iseri K, Watanabe M, Yoshikawa H, Mitsui H, Endo T, Yamamoto Y, Iyoda M, Ryu K, Inaba T, Shibata T. Effects of Denosumab and Alendronate on Bone Health and Vascular Function in Hemodialysis Patients: A Randomized, Controlled Trial. J Bone Miner Res 2019; 34:1014-1024. [PMID: 30690785 DOI: 10.1002/jbmr.3676] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/26/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Mineral and bone disorders including osteoporosis are common in dialysis patients and contribute to increased morbimortality. However, whether denosumab and alendronate are effective and safe treatments in hemodialysis patients is not known. Thus, we conducted a prospective, three-center study of 48 hemodialysis patients who were diagnosed as having osteoporosis and had not received anti-osteoporotic agents previously. Participants were randomized to either denosumab or intravenous alendronate, and all subjects received elemental calcium and calcitriol during the initial 2 weeks. The primary endpoint was the percent change in lumbar spine bone mineral density (LSBMD) at 12 months of treatment. The secondary endpoints included the following: change in BMD at other sites; change of serum bone turnover markers (BTM), coronary artery calcium score (CACS), ankle-brachial pressure index (ABI), brachial-ankle pulse wave velocity (baPWV), flow mediated dilation (FMD), and intima-media thickness at the carotid artery (CA-IMT); change from day 0 to day 14 in serum levels of Ca and P; time course of serum calcium (Ca), phosphorus (P), and intact parathyroid hormone (i-PTH); new fractures; and adverse events. Initial supplementation with elemental calcium and calcitriol markedly ameliorated the decrease of serum corrected calcium (cCa) levels induced by denosumab during the first 2 weeks, whereas serum cCa levels in the alendronate group were increased. Denosumab and alendronate markedly decreased serum levels of BTM and increased LSBMD at 12 months compared with baseline. However, no significant differences were found in the changes in LSBMD between the two groups. The serum cCa, P, and i-PTH levels in the two groups were maintained within the appropriate range. In contrast to the anti-osteoporotic effects, no significant differences after 12 months of treatment were found in the CACS, CA-IMT, ABI, baPWV, and FMD compared with pretreatment in both groups. Denosumab and alendronate treatment improved LSBMD, reduced BTM, and appeared to be safe in hemodialysis patients with osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
|
Multicenter Study |
6 |
71 |
14
|
Poole KES, Treece GM, Gee AH, Brown JP, McClung MR, Wang A, Libanati C. Denosumab rapidly increases cortical bone in key locations of the femur: a 3D bone mapping study in women with osteoporosis. J Bone Miner Res 2015; 30:46-54. [PMID: 25088963 DOI: 10.1002/jbmr.2325] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 11/05/2022]
Abstract
Women with osteoporosis treated for 36 months with twice-yearly injections of denosumab sustained fewer hip fractures compared with placebo. Treatment might improve femoral bone at locations where fractures typically occur. To test this hypothesis, we used 3D cortical bone mapping of postmenopausal women with osteoporosis to investigate the timing and precise location of denosumab versus placebo effects in the hips. We analyzed clinical computed tomography scans from 80 female participants in FREEDOM, a randomized trial, wherein half of the study participants received subcutaneous denosumab 60 mg twice yearly and the others received placebo. Cortical 3D bone thickness maps of both hips were created from scans at baseline, 12, 24, and 36 months. Cortical mass surface density maps were also created for each visit. After registration of each bone to an average femur shape model followed by statistical parametric mapping, we visualized and quantified statistically significant treatment effects. The technique allowed us to pinpoint systematic differences between denosumab and control and to display the results on a 3D average femur model. Denosumab treatment led to an increase in femoral cortical mass surface density and thickness, already evident by the third injection (12 months). Overall, treatment with denosumab increased femoral cortical mass surface density by 5.4% over 3 years. One-third of the increase came from increasing cortical density, and two-thirds from increasing cortical thickness, relative to placebo. After 36 months, cortical mass surface density and thickness had increased by up to 12% at key locations such as the lateral femoral trochanter versus placebo. Most of the femoral cortex displayed a statistically significant relative difference by 36 months. Osteoporotic cortical bone responds rapidly to denosumab therapy, particularly in the hip trochanteric region. This mechanism may be involved in the robust decrease in hip fractures observed in denosumab-treated women at increased risk of fracture.
Collapse
|
Multicenter Study |
10 |
56 |
15
|
Everts-Graber J, Reichenbach S, Ziswiler HR, Studer U, Lehmann T. A Single Infusion of Zoledronate in Postmenopausal Women Following Denosumab Discontinuation Results in Partial Conservation of Bone Mass Gains. J Bone Miner Res 2020; 35:1207-1215. [PMID: 31991007 DOI: 10.1002/jbmr.3962] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022]
Abstract
Discontinuation of denosumab is associated with a rapid return of bone mineral density (BMD) to baseline and an increased risk of multiple vertebral fractures. No subsequent treatment regimen has yet been established for preventing either loss of BMD or multiple vertebral fractures after denosumab discontinuation. The aim of this 8-year observational study was to investigate the effect of a single zoledronate infusion, administered 6 months after the last denosumab injection, on fracture occurrence and loss of BMD. We report on 120 women with postmenopausal osteoporosis who were treated with 60 mg denosumab every 6 months for 2 to 5 years (mean duration 3 years) and then 5 mg zoledronate 6 months after the last denosumab injection. All patients were evaluated clinically, by dual-energy X-ray absorptiometry (DXA) and vertebral fracture assessment (VFA), before the first and after the last denosumab injection and at 2.5 years (median) after denosumab discontinuation. During this off-treatment period, 3 vertebral fractures (1.1 per 100 patient-years) and 4 nonvertebral fractures (1.5 per 100 patient-years) occurred. No patients developed multiple vertebral fractures. Sixty-six percent (confidence interval [CI] 57% to 75%) of BMD gained with denosumab was retained at the lumbar spine and 49% (CI 31% to 67%) at the total hip. There was no significant difference in the decrease of BMD between patients with BMD gains of >9% versus <9% while treated with denosumab. Previous antiresorptive treatment or prevalent fractures had no impact on the decrease of BMD, and all bone loss occurred within the first 18 months after zoledronate infusion. In conclusion, a single infusion of 5 mg zoledronate after a 2- to 5-year denosumab treatment cycle retained more than half of the gained BMD and was not associated with multiple vertebral fractures, as reported in patients who discontinued denosumab without subsequent bisphosphonate treatment. © 2020 American Society for Bone and Mineral Research.
Collapse
|
Observational Study |
5 |
56 |
16
|
de Molon RS, Shimamoto H, Bezouglaia O, Pirih FQ, Dry SM, Kostenuik P, Boyce RW, Dwyer D, Aghaloo TL, Tetradis S. OPG-Fc but Not Zoledronic Acid Discontinuation Reverses Osteonecrosis of the Jaws (ONJ) in Mice. J Bone Miner Res 2015; 30:1627-40. [PMID: 25727550 PMCID: PMC4995600 DOI: 10.1002/jbmr.2490] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 11/10/2022]
Abstract
Osteonecrosis of the jaws (ONJ) is a significant complication of antiresorptive medications, such as bisphosphonates and denosumab. Antiresorptive discontinuation to promote healing of ONJ lesions remains highly controversial and understudied. Here, we investigated whether antiresorptive discontinuation alters ONJ features in mice, employing the potent bisphosphonate zoledronic acid (ZA) or the receptor activator of NF-κB ligand (RANKL) inhibitor OPG-Fc, utilizing previously published ONJ animal models. Mice were treated with vehicle (veh), ZA, or OPG-Fc for 11 weeks to induce ONJ, and antiresorptives were discontinued for 6 or 10 weeks. Maxillae and mandibles were examined by μCT imaging and histologically. ONJ features in ZA and OPG-Fc groups included periosteal bone deposition, empty osteocyte lacunae, osteonecrotic areas, and bone exposure, each of which substantially resolved 10 weeks after discontinuing OPG-Fc but not ZA. Full recovery of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclast numbers occurred after discontinuing OPG-Fc but not ZA. Our data provide the first experimental evidence demonstrating that discontinuation of a RANKL inhibitor, but not a bisphosphonate, reverses features of osteonecrosis in mice. It remains unclear whether antiresorptive discontinuation increases the risk of skeletal-related events in patients with bone metastases or fracture risk in osteoporosis patients, but these preclinical data may nonetheless help to inform discussions on the rationale for a "drug holiday" in managing the ONJ patient.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
56 |
17
|
Everts-Graber J, Lehmann D, Burkard JP, Schaller B, Gahl B, Häuselmann H, Studer U, Ziswiler HR, Reichenbach S, Lehmann T. Risk of Osteonecrosis of the Jaw Under Denosumab Compared to Bisphosphonates in Patients With Osteoporosis. J Bone Miner Res 2022; 37:340-348. [PMID: 34787342 DOI: 10.1002/jbmr.4472] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Osteonecrosis of the jaw (ONJ) is a rare but serious adverse event associated with antiresorptive treatment. There is little evidence regarding the incidence of ONJ among patients with osteoporosis who are treated with denosumab versus bisphosphonates (BPs). The aim of this study was to determine the risk of ONJ in a real-world population. Subjects who underwent at least one dual-energy X-ray absorptiometry (DXA) examination were included in the osteoporosis register of the Swiss Society of Rheumatology between January 1, 2015, and September 30, 2019. Statistical analyses included incidence rates, rate ratios, and hazard ratios for ONJ, considering sequential therapies and drug holidays as covariates. Among 9956 registered patients, 3068 (89% female, median age 69 years [63 to 76]) were treated with BPs or denosumab for a cumulative duration of 11,101 and 4236 patient-years, respectively. Seventeen cases of ONJ were identified: 12 in patients receiving denosumab at the time of ONJ diagnosis and 5 in patients receiving oral or intravenous BP therapy. The diagnosis of ONJ was confirmed by independent and blinded maxillofacial surgeons, using the American Association of Oral and Maxillofacial Surgeons case definition of ONJ. The incidence of ONJ per 10,000 observed patient-years was 28.3 in patients receiving denosumab and 4.5 in patients with BP-associated ONJ, yielding a rate ratio of 6.3 (95% confidence interval [CI] 2.1 to 22.8), p < 0.001. Nine of 12 patients who developed ONJ during denosumab treatment had been pretreated with BPs, but none of the 5 patients with BP-related ONJ had previously received denosumab. The risk of ONJ was higher in patients receiving denosumab therapy compared with BPs (hazard ratio 3.49, 95% CI 1.16 to 10.47, p = 0.026). Previous BP therapy before switching to denosumab may be an additional risk factor for ONJ development. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
|
|
3 |
54 |
18
|
Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, Miller PD, Rao SD, Kendler DL, Lindsay R, Krege JH, Alam J, Taylor KA, Melby TE, Ruff VA. Remodeling- and Modeling-Based Bone Formation With Teriparatide Versus Denosumab: A Longitudinal Analysis From Baseline to 3 Months in the AVA Study. J Bone Miner Res 2018; 33:298-306. [PMID: 29024120 DOI: 10.1002/jbmr.3309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 01/22/2023]
Abstract
There has been renewed interest of late in the role of modeling-based formation (MBF) during osteoporosis therapy. Here we describe early effects of an established anabolic (teriparatide) versus antiresorptive (denosumab) agent on remodeling-based formation (RBF), MBF, and overflow MBF (oMBF) in human transiliac bone biopsies. Postmenopausal women with osteoporosis received subcutaneous teriparatide (n = 33, 20 μg/d) or denosumab (n = 36, 60 mg once/6 months), open-label for 6 months at 7 US and Canadian sites. Subjects received double fluorochrome labeling at baseline and before biopsy at 3 months. Sites of bone formation were designated as MBF if the underlying cement line was smooth, RBF if scalloped, and oMBF if formed over smooth cement lines adjacent to scalloped reversal lines. At baseline, mean RBF/bone surface (BS), MBF/BS, and oMBF/BS were similar between the teriparatide and denosumab groups in each bone envelope assessed (cancellous, endocortical, periosteal). All types of formation significantly increased from baseline in the cancellous and endocortical envelopes (differences p < 0.001) with teriparatide (range of changes 2.9- to 21.9-fold), as did MBF in the periosteum (p < 0.001). In contrast, all types of formation were decreased or not significantly changed with denosumab, except MBF/BS in the cancellous envelope, which increased 2.5-fold (difference p = 0.048). These data highlight mechanistic differences between these agents: all 3 types of bone formation increased significantly with teriparatide, whereas formation was predominantly decreased or not significantly changed with denosumab, except for a slight increase in MBF/BS in the cancellous envelope. © 2017 American Society for Bone and Mineral Research.
Collapse
|
Clinical Trial, Phase IV |
7 |
47 |
19
|
Choi NK, Solomon DH, Tsacogianis TN, Landon JE, Song HJ, Kim SC. Comparative Safety and Effectiveness of Denosumab Versus Zoledronic Acid in Patients With Osteoporosis: A Cohort Study. J Bone Miner Res 2017; 32:611-617. [PMID: 27736041 PMCID: PMC5340628 DOI: 10.1002/jbmr.3019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Limited head-to-head comparative safety and effectiveness data exist between denosumab and zoledronic acid in real-world healthcare. We aimed to examine the safety and effectiveness of denosumab compared to zoledronic acid with regard to risk of serious infection and cardiovascular disease (CVD) and osteoporotic fracture. We conducted a cohort study using claims data (2009-2013) from a US commercial insurance plan database. We included patients aged ≥50 years who were newly initiated on denosumab or zoledronic acid. The primary outcomes were (1) hospitalization for serious infection; (2) composite CVD endpoint including myocardial infarction, stroke, coronary revascularization, and heart failure; and (3) nonvertebral osteoporotic fracture including hip, wrist, forearm, and pelvic fracture. To control for potential confounders, we used 1:1 propensity score (PS) matching. Cox proportional hazards models compared the risk of serious infection, CVD, and osteoporotic fracture within 365 days after initiation of denosumab versus zoledronic acid. After PS matching, a total of 2467 pairs of denosumab and zoledronic acid initiators were selected with a mean age of 63 years and 96% were female. When compared with zoledronic acid, denosumab was not associated with an increased risk of serious infection (HR 0.81; 95% confidence interval [CI], 0.55 to 1.21) or CVD (HR 1.11; 95% CI, 0.60 to 2.03). Similar results were obtained for each component of CVD. The risk of osteoporotic fracture was also similar between groups (HR 1.21; 95% CI, 0.84 to 1.73). This large population-based cohort study shows that denosumab and zoledronic acid have comparable clinical safety and effectiveness with regard to the risk of serious infection, CVD, and osteoporosis fracture within 365 days after initiation of medications. © 2016 American Society for Bone and Mineral Research.
Collapse
|
Comparative Study |
8 |
41 |
20
|
Palmisano B, Spica E, Remoli C, Labella R, Di Filippo A, Donsante S, Bini F, Raimondo D, Marinozzi F, Boyde A, Robey P, Corsi A, Riminucci M. RANKL Inhibition in Fibrous Dysplasia of Bone: A Preclinical Study in a Mouse Model of the Human Disease. J Bone Miner Res 2019; 34:2171-2182. [PMID: 31295366 PMCID: PMC8408916 DOI: 10.1002/jbmr.3828] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Fibrous dysplasia of bone/McCune-Albright syndrome (Polyostotic FD/MAS; OMIM#174800) is a crippling skeletal disease caused by gain-of-function mutations of Gs α. Enhanced bone resorption is a recurrent histological feature of FD and a major cause of fragility of affected bones. Previous work suggests that increased bone resorption in FD is driven by RANKL and some studies have shown that the anti-RANKL monoclonal antibody, denosumab, reduces bone turnover and bone pain in FD patients. However, the effect of RANKL inhibition on the histopathology of FD and its impact on the natural history of the disease remain to be assessed. In this study, we treated the EF1α-Gs αR201C mice, which develop an FD-like phenotype, with an anti-mouse RANKL monoclonal antibody. We found that the treatment induced marked radiographic and microscopic changes at affected skeletal sites in 2-month-old mice. The involved skeletal segments became sclerotic due to the deposition of new, highly mineralized bone within developing FD lesions and showed a higher mechanical resistance compared to affected segments from untreated transgenic mice. Similar changes were also detected in older mice with a full-blown skeletal phenotype. The administration of anti-mouse RANKL antibody arrested the growth of established lesions and, in young mice, prevented the appearance of new ones. However, after drug withdrawal, the newly formed bone was remodelled into FD tissue and the disease progression resumed in young mice. Taken together, our results show that the anti-RANKL antibody significantly affected the bone pathology and natural history of FD in the mouse. Pending further work on the prevention and management of relapse after treatment discontinuation, our preclinical study suggests that RANKL inhibition may be an effective therapeutic option for FD patients. © 2019 American Society for Bone and Mineral Research.
Collapse
|
research-article |
6 |
38 |
21
|
Edwards BJ, Sun M, West DP, Guindani M, Lin YH, Lu H, Hu M, Barcenas C, Bird J, Feng C, Saraykar S, Tripathy D, Hortobagyi GN, Gagel R, Murphy WA. Incidence of Atypical Femur Fractures in Cancer Patients: The MD Anderson Cancer Center Experience. J Bone Miner Res 2016; 31:1569-76. [PMID: 26896384 DOI: 10.1002/jbmr.2818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/08/2016] [Accepted: 02/17/2016] [Indexed: 12/23/2022]
Abstract
Atypical femoral fractures (AFFs) are rare adverse events attributed to bisphosphonate (BP) use. Few cases of AFF in cancer have been described; the aim of this study is to identify the incidence and risk factors for AFF in a large cancer center. This retrospective study was conducted at the MD Anderson Cancer Center. The incidence rate of AFF among BP users was calculated from January 1, 2004 through December 31, 2013. The control group (n = 51) included 2 or 3 patients on BPs matched for age (≤1 year) and gender. Logistic regression analysis was used to assess the relationship between clinical characteristics and AFF. Twenty-three AFF cases were identified radiographically among 10,587 BP users, the total BP exposure was 53,789 months (4482 years), and the incidence of AFF in BP users was 0.05 cases per 100,000 person-years. Meanwhile, among 300,553 patients who did not receive BPs there were 2 cases of AFF as compared with the 23 cases noted above. The odds ratio (OR) of having AFF in BP users was 355.58 times higher (95% CI, 84.1 to 1501.4, p < 0.0001) than the risk in non-BP users. The OR of having AFF in alendronate users was 5.54 times greater (OR 5.54 [95% CI, 1.60 to 19.112, p = 0.007]) than the odds of having AFF among other BP users. Patients who were on zoledronic acid (ZOL) had smaller odds of developing AFF compared with other BP users in this matched case control sample. AFFs are rare, serious adverse events that occur in patients with cancer who receive BP therapy. Patients with cancer who receive BPs for prior osteoporosis therapy or for metastatic cancer are at higher risk of AFF. © 2016 American Society for Bone and Mineral Research.
Collapse
|
|
9 |
36 |
22
|
Cai G, Laslett LL, Aitken D, Halliday A, Pan F, Otahal P, Speden D, Winzenberg TM, Jones G. Effect of Zoledronic Acid and Denosumab in Patients With Low Back Pain and Modic Change: A Proof-of-Principle Trial. J Bone Miner Res 2018; 33:773-782. [PMID: 29297602 DOI: 10.1002/jbmr.3376] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/07/2017] [Accepted: 12/23/2017] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the effect of zoledronic acid (ZA) and denosumab on low back pain (LBP) and Modic change (MC) over 6 months. Adults aged ≥40 years with significant LBP for at least 6 months duration and MC (type 1, 2, or mixed) were randomized to receive ZA (5 mg/100 mL), denosumab (60 mg), or placebo. LBP was measured monthly by visual analogue scale (VAS) and the LBP Rating Scale (RS). MC was measured from MRIs of T12 -S1 vertebrae at screening and 6 months. A total of 103 participants with moderate/severe LBP (mean VAS = 57 mm; mean RS = 18) and median total MC area 538 mm2 were enrolled. Compared to placebo, LBP reduced significantly at 6 months in the ZA group for RS (-3.3; 95% CI, -5.9 to -0.7) but not VAS (-8.2; 95% CI, -18.8 to +2.4) with similar findings for denosumab (RS, -3.0; 95% CI, -5.7 to -0.3; VAS, -10.7; 95% CI, -21.7 to +0.2). There was little change in areal MC size overall and no difference between groups with the exception of denosumab in those with type 1 Modic change (-22.1 mm2 ; 95% CI, -41.5 to -2.7). In post hoc analyses, both medications significantly reduced VAS LBP in participants with milder disc degeneration and non-neuropathic pain, and denosumab reduced VAS LBP in those with type 1 MC over 6 months, compared to placebo. Adverse events were more frequent in the ZA group. These results suggests a potential therapeutic role for ZA and denosumab in MC-associated LBP. © 2018 American Society for Bone and Mineral Research.
Collapse
|
Multicenter Study |
7 |
35 |
23
|
Kostenuik PJ, Smith SY, Samadfam R, Jolette J, Zhou L, Ominsky MS. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys. J Bone Miner Res 2015; 30:657-69. [PMID: 25369992 DOI: 10.1002/jbmr.2401] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/11/2022]
Abstract
Postmenopausal osteoporosis is a chronic disease wherein increased bone remodeling reduces bone mass and bone strength. Antiresorptive agents including bisphosphonates are commonly used to mitigate bone loss and fracture risk. Osteoclast inhibition via denosumab (DMAb), a RANKL inhibitor, is a newer approach for reducing fracture risk in patients at increased risk for fracture. The safety of transitioning from bisphosphonate therapy (alendronate; ALN) to DMAb was examined in mature ovariectomized (OVX) cynomolgus monkeys (cynos). One day after OVX, cynos (7-10/group) were treated with vehicle (VEH, s.c.), ALN (50 μg/kg, i.v., twice monthly) or DMAb (25 mg/kg/month, s.c.) for 12 months. Other animals received VEH or ALN for 6 months and then transitioned to 6 months of DMAb. DMAb caused significantly greater reductions in serum CTx than ALN, and transition from ALN to DMAb caused further reductions relative to continued ALN. DMAb and ALN decreased serum calcium (Ca), and transition from ALN to DMAb resulted in a lesser decline in Ca relative to DMAb or to VEH-DMAb transition. Bone histomorphometry indicated significantly reduced trabecular and cortical remodeling with DMAb or ALN. Compared with ALN, DMAb caused greater reductions in osteoclast surface, eroded surface, cortical porosity and fluorochrome labeling, and transition from ALN to DMAb reduced these parameters relative to continued ALN. Bone mineral density increased in all active treatment groups relative to VEH controls. Destructive biomechanical testing revealed significantly greater vertebral strength in all three groups receiving DMAb, including those receiving DMAb after ALN, relative to VEH controls. Bone mass and strength remained highly correlated in all groups at all tested skeletal sites, consistent with normal bone quality. These data indicate that cynos transitioned from ALN to DMAb exhibited reduced bone resorption and cortical porosity, and increased BMD and bone strength, without deleterious effects on Ca homeostasis or bone quality.
Collapse
|
|
10 |
31 |
24
|
Niimi R, Kono T, Nishihara A, Hasegawa M, Kono T, Sudo A. Efficacy of Switching From Teriparatide to Bisphosphonate or Denosumab: A Prospective, Randomized, Open-Label Trial. JBMR Plus 2018; 2:289-294. [PMID: 30283910 DOI: 10.1002/jbm4.10054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 11/12/2022] Open
Abstract
There is no consensus on an optimal treatment after daily teriparatide (TPTD). We performed a prospective, randomized, open-label, 12-month trial to investigate the efficacy of follow-up treatment after daily TPTD treatment for Japanese patients. Three-hundred patients were enrolled in this study. Patients received oral bisphosphonate (BP) including alendronate (ALN; 35 mg/week) and minodoronate (MINO; 50 mg/month), or subcutaneous denosumab (60 mg/6 month). The primary efficacy measure was bone mineral density (BMD) responses in the lumbar spine (LS) and femoral neck (FN). Lumbar spine BMD increased by 1.3 ± 5.1% in the ALN subgroups, 0.5 ± 4.6% in the MINO subgroups, and 4.3 ± 3.5% in the denosumab subgroups. Femoral neck BMD increased by 0.7 ± 4.6% in the ALN subgroups, 0.2 ± 4.6% in the MINO subgroups, and 1.4 ± 3.4% in the denosumab subgroups. Lumbar spine BMD increases were significantly greater in the denosumab subgroup than the BP subgroups. There were no significant differences in FN BMD increases among the three subgroups. Lumbar spine BMD increases were significantly greater in the denosumab subgroup than the BP subgroups, whereas FN BMD increases were not significant. Denosumab treatment was more effective in increasing BMD and therefore has the potential benefit of fracture prevention. Further research is warranted to determine the optimal treatment after daily TPTD. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
|
Journal Article |
7 |
26 |
25
|
Cirnigliaro CM, La Fountaine MF, Parrott JS, Kirshblum SC, McKenna C, Sauer SJ, Shapses SA, Hao L, McClure IA, Hobson JC, Spungen AM, Bauman WA. Administration of Denosumab Preserves Bone Mineral Density at the Knee in Persons With Subacute Spinal Cord Injury: Findings From a Randomized Clinical Trial. JBMR Plus 2020; 4:e10375. [PMID: 33134767 PMCID: PMC7587457 DOI: 10.1002/jbm4.10375] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Persons with neurologically motor-complete spinal cord injury (SCI) have a marked loss of bone mineral density (BMD) of the long bones of the lower extremities, predisposing them to fragility fractures, especially at the knee. Denosumab, a commercially available human monoclonal IgG antibody to receptor activator of nuclear factor-κB ligand (RANKL), may provide an immunopharmacological solution to the rapid progressive deterioration of sublesional bone after SCI. Twenty-six SCI participants with subacute motor-complete SCI were randomized to receive either denosumab (60 mg) or placebo at baseline (BL), 6, and 12 months. Areal bone mineral density (aBMD) by dual energy x-ray absorptiometry (DXA) at 18 months at the distal femur was the primary outcome and aBMD of the proximal tibia and hip were the secondary outcomes analyzed in 18 of the 26 participants (denosumab, n = 10 and placebo, n = 8). The metrics of peripheral QCT (pQCT) were the exploratory outcomes analyzed in a subsample of the cohort (denosumab, n = 7 and placebo n = 7). The mean aBMD (±95% CI) for the denosumab versus the placebo groups demonstrated a significant group × time interactions for the following regions of interest at BL and 18 months: distal femoral metaphysis = mean aBMD 1.187; 95% CI, 1.074 to 1.300 and mean aBMD 1.202; 95% CI, 1.074 to 1.329 versus mean aBMD 1.162; 95% CI, 0.962 to 1.362 and mean aBMD 0.961; 95% CI, 0.763 to 1.159, respectively (p < 0.001); distal femoral epiphysis = mean aBMD 1.557; 95% CI, 1.437 to 1.675 and mean aBMD 1.570; 95% CI, 1.440 to 1.700 versus mean aBMD 1.565; 95% CI, 1.434 to 1.696 and mean aBMD 1.103; 95% CI, 0.898 to 1.309, respectively (p = 0.002); and proximal tibial epiphysis = mean aBMD 1.071; 95% CI, 0.957 to 1.186 and mean aBMD 1.050; 95% CI, 0.932 to 1.168 versus mean aBMD 0.994; 95% CI, 0.879 to 1.109 and mean aBMD 0.760; 95% CI, 0.601 to 0.919, respectively (p < 0.001). Analysis of pQCT imaging revealed a continued trend toward significantly greater loss in total volumetric BMD (vBMD) and trabecular vBMD at the 4% distal tibia region, with a significant percent loss for total bone mineral content. Thus, at 18 months after acute SCI, our findings show that denosumab maintained aBMD at the knee region, the site of greatest clinical relevance in the SCI population. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
|
Journal Article |
5 |
23 |