Poddar S, Capparelli EV, Rosser EW, Gipson RM, Wei L, Le T, Jung ME, Radu C, Nikanjam M. Development and preclinical pharmacology of a novel dCK inhibitor,
DI-87.
Biochem Pharmacol 2019;
172:113742. [PMID:
31812677 DOI:
10.1016/j.bcp.2019.113742]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND
Deoxycytidine kinase (dCK) is an essential enzyme for production of nucleotides via the salvage pathway; DI-87 is a novel dCK inhibitor in preclinical development for use in anticancer therapy. The current study utilizes PET imaging to evaluate PK-PD relationships and to determine optimal dosing of the drug.
METHODS
NSG mice bearing CEM tumors had plasma and tumor PK assessed using mass spectrometry following oral administration of DI-87. dCK inhibition was assessed after a single dose of oral DI-87 followed by a [18F]CFA PET probe and PET imaging. Tumor growth inhibition was assessed by orally administering DI-87 with concurrent intraperitoneal thymidine.
RESULTS
DI-87 had an in vitro EC50 of 10.2 nM with low protein binding. Peak DI-87 concentrations were observed between 1-3 h and 3-9 h in plasma and tumor, respectively, with tumor concentrations less than one third of plasma. Full dCK inhibition, as evaluated by PET imaging, was observed as early as 3 h following 25 mg/kg dosing and was maintained for 12 h, with full recovery of enzyme activity after 36 h. When DI-87 was administered as repeated doses in combination with thymidine, full dCK inhibition was maintained at 12 h (25 mg/kg twice daily dose) and led to maximal tumor growth inhibition.
CONCLUSIONS
DI-87 is a promising new compound for use in combination therapy against tumors expressing dCK. Utilizing a [18F]CFA PET probe targeting the pathway of interest allowed for efficient and accurate identification of the optimal dose for growth inhibition.
Collapse