1
|
Jama HA, Muralitharan RR, Xu C, O'Donnell JA, Bertagnolli M, Broughton BRS, Head GA, Marques FZ. Rodent models of hypertension. Br J Pharmacol 2021; 179:918-937. [PMID: 34363610 DOI: 10.1111/bph.15650] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated blood pressure (BP), or hypertension, is the main risk factor for cardiovascular disease. As a multifactorial and systemic disease that involves multiple organs and systems, hypertension remains a challenging disease to study. Models of hypertension are invaluable to support the discovery of the specific genetic, cellular and molecular mechanisms underlying essential hypertension, as well as to test new possible treatments to lower BP. Rodent models have proven to be an invaluable tool for advancing the field. In this review, we discuss the strengths and weaknesses of rodent models of hypertension through a systems approach. We highlight the ways how target organs and systems including the kidneys, vasculature, the sympathetic nervous system (SNS), immune system and the gut microbiota influence BP in each rodent model. We also discuss often overlooked hypertensive conditions such as pulmonary hypertension and hypertensive-pregnancy disorders, providing an important resource for researchers.
Collapse
|
Review |
4 |
39 |
2
|
Syed AA, Lahiri S, Mohan D, Valicherla GR, Gupta AP, Riyazuddin M, Kumar S, Maurya R, Hanif K, Gayen JR. Evaluation of anti-hypertensive activity of Ulmus wallichiana extract and fraction in SHR, DOCA-salt- and L-NAME-induced hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:555-565. [PMID: 27720848 DOI: 10.1016/j.jep.2016.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulmus wallichiana Planchon (Himalayan Elm), a traditional medicinal plant, used in fracture healing in folk tradition of Uttarakhand, Himalaya, India. It is also used as diuretic. U. rhynchophylla, native to China, known as Gou Teng in Chinese medicine, is used for hypertension (WHO). U. macrocarpa has antihypertensive and vasorelaxant activity. However, no detailed studies related to hypertension have been reported previously, so we have explored the antihypertensive activity of U. wallichiana. AIM OF THE STUDY To investigate the pharmacological effect of ethanolic extract (EE) and butanolic fraction (BF) of U. wallichiana in hypertensive rats. MATERIALS AND METHODS SHR, DOCA-salt- and L-NAME-induced hypertension models were used. Treatment was performed by oral administration of EE and BF of U. wallichiana (500mg/kg/day and 50mg/kg/day) for 14 days. Then blood pressure was measured by non-invasive blood pressure (NIBP) measurement technique. Invasive blood pressure (IBP) was also reported to support the NIBP data. Concentrations of plasma renin, angiotensin II (Ang II), nitrate/nitrite (NO), cGMP were estimated. Angiotensin-converting enzyme (ACE) activity and ROS activity were also estimated. RESULTS Blood pressure was significantly higher in SHR as compared to normotensive wistar group (170.59±0.83mmHg vs 121.54±1.24mmHg, respectively). SBP was increased in DOCA-salt induced group compared to their control (132.77±3.90mmHg vs 107.85±5.95mmHg, respectively) and L-NAME-induced group compared to their control (168.55±5.07mmHg vs 113.03±4.13mmHg, respectively). The treatment of extract and fraction of U. wallichiana significantly decreased the blood pressure in SHR+EE (151.26±1.85mmHg, p<0.001), SHR+BF (140.44±1.16mmHg, p<0.001); DOCA+EE (113.43±5.44mmHg, p<0.05), DOCA+BF (105.09±5.12mmHg, p<0.05) and L-NAME+EE (119.76±4.39mmHg, p<0.001), L-NAME+BF (117.50±7.27mmHg, p<0.001) compared to their respective diseased control groups. The plasma renin, Ang II and ACE activity were also significantly decreased and augmented the NO and cGMP levels. It also down regulated the expression of Renin, ACE, NOS3 and TGF-β1 at mRNA levels. CONCLUSIONS The EE and BF probably reducing the BP via Renin-angiotensin-aldosterone system and NO/cGMP signaling pathway. The decrease in blood pressure may be due to presence of quercetin analogue flavonoids (2S,3S)-(+)-3',4',5,7-tetrahydroxydihydroflavonol-6-C-β-D-glucopyranoside; 6-Glucopyranosyl-3,3',4',5,7-pentahydroxyflavone; 6-Glucopyranosyl-4',5,7-trihydroxyflavanone and (2S,3S)-(+)-4',5,7-trihydroxydihydroflavonol-6-C-β-D-glucopyranoside, may be due to its antioxidant activity. Thus EE and BF of U. wallichiana found to have the potential ability to be used as herbal medicament to treat hypertension.
Collapse
|
|
9 |
32 |
3
|
Wu H, Lam TYC, Shum TF, Tsai TY, Chiou J. Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertens Res 2022; 45:270-282. [PMID: 34857899 PMCID: PMC8766282 DOI: 10.1038/s41440-021-00796-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
The role of the gut microbiota in various metabolic diseases has been widely studied. This study aims to test the hypothesis that gut microbiota dysbiosis is associated with DOCA-salt-induced hypertension, while captopril, an antihypertensive drug, is able to rebalance the gut microbiota alterations caused by hypertension. Treatment with captopril resulted in an approximate 32 mmHg reduction in systolic blood pressure (162.57 vs. 194.61 mmHg) in DOCA-salt-induced hypertensive rats, although it was significantly higher than that in SHAM rats (136.10 mmHg). Moreover, the nitric oxide (NO) level was significantly increased (20.60 vs. 6.42 µM) while the angiotensin II (Ang II) content (42.40 vs. 59.47 pg/ml) was attenuated nonsignificantly by captopril treatment in comparison to those of DOCA-salt-induced hypertensive rats. The introduction of captopril significantly decreased the levels of tumor necrosis factor-α (TNF-ɑ) and interleukin-6 (IL-6). Hypertrophy and fibrosis in kidneys and hearts were also significantly attenuated by captopril. Furthermore, gut microbiota dysbiosis was observed in DOCA-salt-induced hypertensive rats. The abundances of several phyla and genera, including Proteobacteria, Cyanobacteria, Escherichia-Shigella, Eubacterium nodatum and Ruminococcus, were higher in DOCA-salt-induced hypertensive rats than in SHAM rats, while these changes were reversed by captopril treatment. Of particular interest, the genera Bifidobacterium and Akkermansia, reported as beneficial bacteria in the gut, were abundant in only hypertensive rats treated with captopril. These results provide evidence that captopril has the potential to rebalance the dysbiotic gut microbiota of DOCA-salt-induced hypertensive rats, suggesting that the alteration of the gut flora by captopril may contribute to the hypotensive effect of this drug.
Collapse
|
research-article |
3 |
19 |
4
|
Polak A, Harasim-Symbor E, Malinowska B, Kasacka I, Pędzińska-Betiuk A, Weresa J, Chabowski A. The effects of chronic FAAH inhibition on myocardial lipid metabolism in normotensive and DOCA-salt hypertensive rats. Life Sci 2017. [PMID: 28633967 DOI: 10.1016/j.lfs.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS There is significant evidence that the endocannabinoid system (ECS) takes part in the regulation of the cardiovascular system in hypertension. It is quite well established that hypertension causes several changes in the heart metabolism, but it is still unknown whether the ECS affects this process. Therefore, we investigated the influence of prolonged ECS activation on myocardial lipid metabolism in deoxycorticosterone acetate (DOCA)-salt hypertensive rats by chronic fatty acid amide hydrolase (FAAH) inhibition. MATERIALS AND METHODS We examined the uptake and oxidation of palmitic acid during the heart perfusion as well as intramyocardial and plasma lipid contents using gas liquid chromatography. Total, plasmalemmal and intracellular expressions of selected proteins were estimated by the Western blot technique. Moreover, the left ventricle's morphology, including myocardial vessels density, was measured using immunohistochemistry. KEY FINDINGS We demonstrated that hypertension induced cardiomyocytes and myocardial blood vessels hypertrophy, followed by a reduction in myocardial palmitate oxidation. Interestingly, prolonged activation of the ECS in the normotensive rats induced cardiomyocyte enlargement and intensified fatty acids metabolism. We have also shown that FAAH inhibition improved morphology of coronary blood vessels and only partially maintained its effect on lipid metabolism in the DOCA-salt hearts (i.e. elevated plasma and intramyocardial TAG contents as well as plasmalemmal FAT/CD36 and total FATP1 expressions). SIGNIFICANCE This study revealed that chronic FAAH inhibition has no protective effects on the heart lipid metabolism in hypertension.
Collapse
|
Journal Article |
8 |
9 |
5
|
Renoprotective Effect of the Histone Deacetylase Inhibitor CG200745 in DOCA-Salt Hypertensive Rats. Int J Mol Sci 2019; 20:ijms20030508. [PMID: 30691015 PMCID: PMC6387176 DOI: 10.3390/ijms20030508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The novel histone deacetylase inhibitor CG200745 was initially developed to treat various hematological and solid cancers. We investigated the molecular mechanisms associated with the renoprotective effects of CG200745 using deoxycorticosterone acetate (DOCA)-salt hypertensive (DSH) rats. DOCA strips (200 mg/kg) were implanted into rats one week after unilateral nephrectomy. Two weeks after DOCA implantation, DSH rats were randomly divided into two groups that received either physiological saline or CG200745 (5 mg/kg/day) for another two weeks. The extent of glomerulosclerosis and tubulointerstitial fibrosis was determined by Masson's trichrome staining. The renal expression of fibrosis and inflammatory markers was detected by semiquantitative immunoblotting, a polymerase chain reaction, and immunohistochemistry. Pathological signs such as glomerulosclerosis, tubulointerstitial fibrosis, increased systolic blood pressure, decreased creatinine clearance, and increased albumin-to-creatinine ratios in DSH rats were alleviated by CG200745 treatment compared to those manifestations in positive control animals. Furthermore, this treatment counteracted the increased expression of αSMA, TGF-β1, and Bax, and the decreased expression of Bcl-2 in the kidneys of DSH rats. It also attenuated the increase in the number of apoptotic cells in DSH rats. Thus, CG200745 can effectively prevent the progression of renal injury in DSH rats by exerting anti-inflammatory, anti-fibrotic, and anti-apoptotic effects.
Collapse
|
Journal Article |
6 |
9 |
6
|
Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway. Hypertens Res 2020; 44:168-178. [PMID: 32908237 DOI: 10.1038/s41440-020-00548-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023]
Abstract
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
Collapse
|
Journal Article |
5 |
6 |
7
|
Hisamichi M, Kamijo-Ikemori A, Sugaya T, Ichikawa D, Natsuki T, Hoshino S, Kimura K, Shibagaki Y. Role of angiotensin II type 1a receptor in renal injury induced by deoxycorticosterone acetate-salt hypertension. FASEB J 2016; 31:72-84. [PMID: 27663860 PMCID: PMC5161521 DOI: 10.1096/fj.201600684rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the in vivo role of angiotensin II type 1a (AT1a) receptor in renal damage as a result of hypertension by using transgenic mice with AT1a receptor gene disruption. Transgenic mice that express human liver-type fatty acid binding protein (L-FABP) with or without disruption of the AT1a receptor gene (L-FABP+/− AT1a−/−, and L-FABP+/− AT1a+/+, respectively) were used with urinary L-FABP as an indicator of tubulointerstitial damage. Those female mice were administered subcutaneously deoxycorticosterone acetate (DOCA)–salt tablets plus drinking water that contained 1% saline for 28 d after uninephrectomy. In L-FABP+/− AT1a+/+ mice that received DOCA-salt treatment, hypertension was induced and slight expansion of glomerular area, glomerular sclerosis, and tubulointerstitial damage were observed. In L-FABP+/− AT1a−/− mice that received DOCA-salt treatment, hypertension was similarly induced and the degree of glomerular damage was significantly more severe than in L-FABP+/− AT1a+/+-DOCA mice. Urinary L-FABP levels were significantly higher in L-FABP+/− AT1a−/−-DOCA mice compared with those in L-FABP+/− AT1a+/+-DOCA mice. Hydralazine treatment significantly attenuated renal damage that was found in L-FABP+/− AT1a−/−-DOCA mice along with a reduction in blood pressure. In summary, activation of the AT1a receptor may contribute to maintenance of the glomerular structure against hypertensive renal damage.—Hisamichi, M., Kamijo-Ikemori, A., Sugaya, T., Ichikawa, D., Natsuki, T., Hoshino, S., Kimura, K., Shibagaki, Y. Role of angiotensin II type 1a receptor in renal injury induced by deoxycorticosterone acetate–salt hypertension.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
3 |
8
|
Lu YY, Li SJ, Zhang Z, He S, Guo YT, Hong MN, Shao S, Wang RQ, Zhang J, Wang JG, Gao PJ, Li XD. C-atrial natriuretic peptide (ANP) 4-23 attenuates renal fibrosis in deoxycorticosterone-acetate-salt hypertensive mice. Exp Cell Res 2023; 431:113738. [PMID: 37572787 DOI: 10.1016/j.yexcr.2023.113738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.
Collapse
|
|
2 |
2 |
9
|
Khodir SA, Sweed E, Gadallah M, Shabaan A. Astaxanthin attenuates cardiovascular dysfunction associated with deoxycorticosterone acetate-salt-induced hypertension in rats. Clin Exp Hypertens 2022; 44:382-395. [PMID: 35322744 DOI: 10.1080/10641963.2022.2055764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypertension is a major global health problem. It is a major risk factor of cardiovascular disease. One of the most used experimental models in studying antihypertensive action is the deoxycorticosterone acetate (DOCA)-salt hypertensive rat. This study aimed to investigate the cardiovascular protective effect of astaxanthin (ASX) in DOCA-salt-induced hypertension and its possible underlying mechanisms. METHODS A total of 48 adult male Wistar albino rats were divided into three groups: control, DOCA, and DOCA + ASX. Blood pressure, serum cardiac enzyme levels, some oxidative stress and inflammatory biomarker levels, and lipid profile levels were measured. The weight of the left ventricle to tibial length ratio was calculated. Apoptosis detection and total genomic DNA extraction in aortic and cardiac tissues were investigated. The apoptotic marker BAX was also immunohistochemically assessed in the heart and aorta. RESULTS Compared to the control group, the DOCA group was associated with a significant increase in blood pressure, serum cardiac enzyme levels, oxidative stress and inflammatory biomarker levels, lipid profile except serum high-density lipoprotein (HDL), weight of the left ventricle to tibial length, and total released DNA fragmentation level of the left ventricle and aorta and a significant decrease in reduced glutathione (GSH) and HDL. Compared to the DOCA group, the DOCA + ASX group significantly improved the DOCA-induced changes. CONCLUSION ASX has beneficial protective effects on DOCA-salt-induced hypertension via DNA fragmentation protection, apoptosis inhibition, antioxidant, anti-inflammatory, and its effects on lipid levels.
Collapse
|
|
3 |
1 |
10
|
Gandhi H, Naik P, Agrawal N, Yadav M. Protective effects of MCR-1329, a dual α1 and angII receptor antagonist, in mineralocorticoid-induced hypertension. Pharmacol Rep 2016; 68:952-9. [PMID: 27371897 DOI: 10.1016/j.pharep.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND With the prototypical structures of losartan and prazosin as the axis of our research, MCR-1329 emerged as a potential designed multiple ligand from a series of compounds designed to possess dual antagonistic activity on the α1 and AT1 receptor. After confirming the activity of MCR-1329 in in vitro and acute in vivo models, the present study was undertaken to determine the efficacy of MCR-1329 in a mammalian test system. METHODS A rat model of deoxycorticosterone acetate (DOCA)-salt induced renal hypertension following unilateral nephrectomy was utilized to determine the effect of MCR-1329. For mechanistic evaluations, MCR-1329 was evaluated on rat aortic strips in vitro and on rat aortic smooth muscle cells to determine the role of MCR-1329 on phosphoinositide 3 kinase (PI3K) signaling. RESULTS Results of the study showed that MCR-1329 prevents development of arterial hypertension. It was also observed that MCR-1329 upheld the intimal structures of major arteries like the thoracic aorta. Acetylcholine (Ach)-mediated relaxation remained intact in arteries from MCR-1329 treated animals. It was observed that MCR-1329 partially prevents Thr-308 phosphorylation of Akt following ligand-mediated receptor stimulation in vascular smooth muscle cells. Addition of LY294002 to the reaction medium caused a near-complete inhibition of Akt-phosphorylation. This suggested that MCR-1329 elicits its antihypertensive role by blocking activation of receptor-mediated PI3K-Akt downstream signaling as well as through preservation of arterial integrity. CONCLUSIONS MCR-1329 has the potential to be evaluated further for clinical development as a potential antihypertensive agent with multiple mechanisms of action.
Collapse
|
|
9 |
1 |
11
|
Maji UK, Ghosh TK, Chatterjee M, Bhattacharya S, Bank S, Jana P. Role of aspirin activated nitric oxide synthase in controlling DOCA-salt-induced hypertension in rats through the stimulation of renal r-cortexin in kidney cortex cells. Int J Health Sci (Qassim) 2022; 16:46-57. [PMID: 35949696 PMCID: PMC9288135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Because the damage of kidney tissue is associated with hypertension and impaired nitric oxide (NO) synthesis, and as aspirin is reported to stimulate the synthesis of renal r-cortexin, an anti-hypertensive protein, we investigated the role of aspirin as bolus dose on elevated blood pressure induced by deoxycorticosterone acetate (DOCA)-salt in animal model. METHODS The chronic antihypertensive effect of aspirin on DOCA treated with ASA group of rats (n = 6) was evaluated after ingestion of 0.35 μM aspirin as a bolus dose in every 24 h using tail cuff methods. The plasma aspirin, NO, and r-cortexin levels were determined by spectrophotometric, methemoglobin, and ELISA methods, respectively. Synthesis of r-cortexin mRNA was determined. Aspirin activated nitric oxide synthase (AANOS) was purified by chromatographic methods. RESULTS Our results showed after 3 h of administration of aspirin (0.35 μM) to the DOCA treated with ASA group of rats decreased the systolic blood pressure from 139.39 ± 7.36 mm of Hg to 116.57 ± 6.89 mm of Hg and diastolic blood pressure from 110.4 ± 7 mm of Hg to 86.4 ± 2.76 mm of Hg. The reduction of BPs was found to be related to the increased plasma aspirin from 0.00 μM to 0.042 μM, plasma NO from 0.4 ± 0.19 nM to 1.9 ± 0.5 nM, and cortexin levels from 64.36 ± 12.6 nM to 216.7 ± 21.3 nM. The molecular weight of purified AANOS is 18 kDa. CONCLUSION It can be concluded that aspirin possesses antihypertensive effect on blood pressure in chronic administration. Aspirin can stimulate NO synthesis through the activation of AANOS, which stimulated the production of r-cortexin in kidney cortex cells and thereby reducing elevated BP in hypertensive rats.
Collapse
|
research-article |
3 |
|
12
|
Development and Evaluation of a Disease Large Animal Model for Preclinical Assessment of Renal Denervation Therapies. Animals (Basel) 2020; 10:ani10091446. [PMID: 32824935 PMCID: PMC7552649 DOI: 10.3390/ani10091446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
New-generation catheters-based renal denervation (RDN) is under investigation for the treatment of uncontrolled hypertension (HTN). We assessed the feasibility of a large animal model of HTN to accommodate the human RDN devices. Ten minipigs were instrumented to measure blood pressure (BP) in an awake-state. HTN was induced with subcutaneous 11-deoxycorticosterone (DOCA, 100 mg/kg) implants. Five months after, the surviving animals underwent RDN with the Symplicity® system. Norepinephrine (NE) renal gradients were determined before and 1 month after RDN. Renal arteries were processed for histological (hematoxylin-eosin, Movat pentachrome) and immunohistochemical (S100, tyrosine-hydroxylase) analyses. BP significantly rose after DOCA implants. Six animals died prematurely, mainly from infectious causes. The surviving animals showed stable BP levels after 5 months. One month after RDN, nerve damage was showed in three animals, with impedance drop >10%, NE gradient drop and reduction in BP. The fourth animal showed no nerve damage, impedance drop <10%, NE gradient increase and no change in BP. In conclusion, the minipig model of DOCA-induced HTN is feasible, showing durable effects. High mortality should be addressed in next iterations of this model. RDN may partially offset the DOCA-induced HTN. Impedance drop and NE renal gradient could be markers of RDN success.
Collapse
|
Journal Article |
5 |
|
13
|
ARMAS CRUZ R, SANZ del FIERRO R. [A Case of Addison's disease; Doca treatment; Complication]. Rev Med Chil 1945; 73:972-974. [PMID: 21010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
|
80 |
|