1
|
Michalek M, Salnikov E, Bechinger B. Structure and topology of the huntingtin 1-17 membrane anchor by a combined solution and solid-state NMR approach. Biophys J 2013; 105:699-710. [PMID: 23931318 PMCID: PMC3736738 DOI: 10.1016/j.bpj.2013.06.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022] Open
Abstract
The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein's polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development of Huntington's disease. This huntingtin 1-17 domain is on the one hand known to markedly increase polyglutamine aggregation rates and on the other hand has been shown to be involved in cellular membrane interactions. Here, we determined the high-resolution structure of huntingtin 1-17 in dodecyl phosphocholine micelles and the topology of its helical domain in oriented phosphatidylcholine bilayers. Using two-dimensional solution NMR spectroscopy the low-energy conformations of the polypeptide were identified in the presence of dodecyl phosphocholine detergent micelles. In a next step a set of four solid-state NMR angular restraints was obtained from huntingtin 1-17 labeled with (15)N and (2)H at selected sites. Of the micellar ensemble of helical conformations only a limited set agrees in quantitative detail with the solid-state angular restraints of huntingtin 1-17 obtained in supported planar lipid bilayers. Thereby, the solid-state NMR data were used to further refine the domain structure in phospholipid bilayers. At the same time its membrane topology was determined and different motional regimes of this membrane-associated domain were explored. The pronounced structural transitions of huntingtin 1-17 upon membrane-association result in a α-helical conformation from K6 to F17, i.e., up to the very start of the polyglutamine tract. This amphipathic helix is aligned nearly parallel to the membrane surface (tilt angle ∼77°) and is characterized by a hydrophobic ridge on one side and an alternation of cationic and anionic residues that run along the hydrophilic face of the helix. This arrangement facilitates electrostatic interactions between huntingtin 1-17 domains and possibly with the proximal polyglutamine tract.
Collapse
|
research-article |
12 |
98 |
2
|
Müller-Caspary K, Krause FF, Grieb T, Löffler S, Schowalter M, Béché A, Galioit V, Marquardt D, Zweck J, Schattschneider P, Verbeeck J, Rosenauer A. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy 2017; 178:62-80. [PMID: 27217350 DOI: 10.1016/j.ultramic.2016.05.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.
Collapse
|
|
8 |
82 |
3
|
Nagai K, Tanaka T, Kodaira N, Kimura S, Takahashi Y, Nakayama T. Data resource profile: JMDC claims databases sourced from Medical Institutions. J Gen Fam Med 2020; 21:211-218. [PMID: 33304714 PMCID: PMC7689231 DOI: 10.1002/jgf2.367] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
JMDC, Inc. (JMDC) has created a database, using data collected from medical institutions in Japan, consisting of claims (for hospitalization and outpatient treatment), diagnosis procedure combination (DPC) assessment forms, and clinical laboratory test values. The oldest data in this database that can be accessed relate to treatment in April 2014. Currently (the end of October 2019), the number of medical institutions is 218, consisting of 131 DPC-eligible hospitals and 87 DPC-ineligible hospitals. Using this database, it is possible to carry out an analysis that makes up for certain limitations of JMDC's another database of data from health insurance societies (eg, the disease status and test results cannot be ascertained, and there is insufficient access to data for elderly people). In addition, it is noteworthy that this database includes not only data from DPC-eligible hospitals but also data from some DPC-ineligible hospitals.
Collapse
|
research-article |
5 |
78 |
4
|
Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J Biol Chem 2014; 289:35111-23. [PMID: 25342746 PMCID: PMC4271201 DOI: 10.1074/jbc.m114.609446] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.
Collapse
|
Research Support, N.I.H., Intramural |
11 |
65 |
5
|
Caillon L, Lequin O, Khemtémourian L. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2091-8. [PMID: 23707907 DOI: 10.1016/j.bbamem.2013.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/26/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
Abstract
Human islet amyloid polypeptide (IAPP) forms amyloid fibrils in the pancreatic islets of patients suffering from type 2 diabetes mellitus (T2DM). The formation of IAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet β-cells during the pathogenesis of T2DM. Several studies have demonstrated a clear interaction between IAPP and lipid membranes. However the effect of different lipid compositions and of various membrane mimetics (including micelles, bicelles, SUV and LUV) on fibril formation kinetics and fibril morphology has not yet systematically been analysed. Here we report that the interaction of IAPP with various membrane models promoted different processes of fibril formation. Our data reveal that in SDS and DPC micelles, IAPP adopts a stable α-helical structure for several days, suggesting that the micelle models may stabilize monomeric or small oligomeric species of IAPP. In contrast, zwitterionic DMPC/DHPC bicelles and DOPC SUV accelerate the fibril formation compared to zwitterionic DOPC LUV, indicating that the size of the membrane model and its curvature influence the fibrillation process. Negatively charged membranes decrease the lag-time of the fibril formation kinetics while phosphatidylethanolamine and cholesterol have an opposite effect, probably due to the modulation of the physical properties of the membrane and/or due to direct interactions with IAPP within the membrane core. Finally, our results show that the modulation of lipid composition influences not only the growth of fibrils at the membrane surface but also the interactions of β-sheet oligomers with membranes.
Collapse
Key Words
- 1,1,1,3,3,3-hexafluoro-2-propanol
- 1,2-dihexanoyl-sn-glycero-3-phosphocholine
- 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)
- 1,2-dioleoyl-sn-glycero-3-phospho-L-serine
- 1,2-dioleoyl-sn-glycero-3-phosphocholine
- 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
- 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- Aggregation kinetics
- Amyloid
- CD
- Chol
- DHPC
- DMPC
- DMSO
- DOPC
- DOPE
- DOPG
- DOPS
- DPC
- DPPC
- Fibril morphology
- HFIP
- IAPP
- LUV
- Model membranes (LUV SUV, bicelles, micelles)
- POPC
- Phospholipid
- SDS
- SM
- ThT
- Thioflavin T
- cholesterol
- circular dichroism
- dimethyl sulfoxide
- dodecyl phosphocholine
- human Islet Amyloid Polypeptide
- large unilamellar vesicle
- sodium dodecyl sulphate
- sphingomyelin
Collapse
|
Journal Article |
12 |
65 |
6
|
Ye X, Ji Z, Wei C, McHale CM, Ding S, Thomas R, Yang X, Zhang L. Inhaled formaldehyde induces DNA-protein crosslinks and oxidative stress in bone marrow and other distant organs of exposed mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:705-718. [PMID: 24136419 DOI: 10.1002/em.21821] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Formaldehyde (FA), a major industrial chemical and ubiquitous environmental pollutant, has been classified as a leukemogen. The causal relationship remains unclear, however, due to limited evidence that FA induces toxicity in bone marrow, the site of leukemia induction, and in other distal organs. Although induction of DNA-protein crosslinks (DPC), a hallmark of FA toxicity, was not previously detected in the bone marrow of FA-exposed rats and monkeys in studies published in the 1980s, our recent studies showed increased DPC in the bone marrow, liver, kidney, and testes of exposed Kunming mice. To confirm these preliminary results, in the current study we exposed BALB/c mice to 0, 0.5, 1.0, and 3.0 mg m(-3) FA (8 hr per day, for 7 consecutive days) by nose-only inhalation and measured DPC levels in bone marrow and other organs of exposed mice. As oxidative stress is a potential mechanism of FA toxicity, we also measured glutathione (GSH), reactive oxygen species (ROS), and malondialdehyde (MDA), in the bone marrow, peripheral blood mononuclear cells, lung, liver, spleen, and testes of exposed mice. Significant dose-dependent increases in DPC, decreases in GSH, and increases in ROS and MDA were observed in all organs examined (except for DPC in lung). Bone marrow was among the organs with the strongest effects for DPC, GSH, and ROS. In conclusion, exposure of mice to FA by inhalation induced genotoxicity and oxidative stress in bone marrow and other organs. These findings strengthen the biological plausibility of FA-induced leukemogenesis and systemic toxicity.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
55 |
7
|
Abstract
Smad4 or DPC4 belongs to a family of signal transduction proteins that are phosphorylated and activated by transmembrane serine-threonine receptor kinases in response to transforming growth factor beta (TGF-β) signaling via several pathways. The gene acts as a tumour suppressor gene and inactivation of smad4/DPC4 is best recognised in pancreatic cancer. However, smad4/DPC4 is also mutated in other conditions and cancers such as juvenile polyposis syndrome with and without hereditary haemorrhagic telangiectasia, colorectal and prostate cancers.Immunohistochemistry for smad4/DPC4 protein is most useful in separating benign/reactive conditions from pancreatic cancer in needle/core biopsies. In normal and reactive states, the protein is localised to the cytoplasm and nucleus, while the protein is lost in high-grade pancreatic intraepithelial neoplasia/carcinoma in situ and pancreatic cancer.
Collapse
|
Review |
7 |
54 |
8
|
Zhu WJ, Li M, Liu C, Qu JP, Min YH, Xu SW, Li S. Avermectin induced liver injury in pigeon: mechanisms of apoptosis and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:74-81. [PMID: 24138898 DOI: 10.1016/j.ecoenv.2013.09.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
Extensive use of avermectin (AVM) can result in environment pollution, and it is important to evaluate the potential impact this antibiotic has on ecological systems. Few published literatures have discussed the liver injury mechanisms induced by AVM on birds. In this study, pigeons were exposed to feed containing AVM (0, 20, 40 and 60 mg/kg diet) for 30, 60, 90 days respectively. The results showed that AVM increased the number of apoptosis and the expression level of caspase-3, 8, fas mRNA in the liver of pigeons. Ultrastructural alterations, including mitochondrial damage and chromatin aggregation, become severe with increase exposure dose. Exposure to AVM induced significant changes in antioxidant enzyme {superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)} activities and malondialdehyde (MDA) content, augmented protein carbonyl (PCO) content and DNA-protein crosslink (DPC) coefficient, in a concentration-dependent manner in the liver of pigeons. Our results show that AVM has toxic effect in pigeon liver, and the mechanism of injury caused by AVM is closely related to apoptosis and oxidative stress.
Collapse
|
|
12 |
44 |
9
|
Nakamura J, Nakamura M. DNA-protein crosslink formation by endogenous aldehydes and AP sites. DNA Repair (Amst) 2020; 88:102806. [PMID: 32070903 DOI: 10.1016/j.dnarep.2020.102806] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Covalent binding between proteins and a DNA strand produces DNA-protein crosslinks (DPC). DPC are one of the most deleterious types of DNA damage, leading to the blockage of DNA replication and transcription. Both DNA lesions and endogenous products with carbonyl functional groups can produce DPC in genomic DNA under normal physiological conditions. For example, formaldehyde, the most abundant endogenous human carcinogen, and apurinic/apyrimidinic (AP) sites, the most common type of endogenous DNA lesions, has been shown to crosslink proteins and/or DNA through their carbonyl functional groups. Unfortunately, compared to other types of DNA damage, DPC have been less studied and understood. However, a recent advancement has allowed researchers to determine accurate yields of various DNA lesions including formaldehyde-derived DPC with high sensitivity and specificity, paving the way for new developments in this field of research. Here, we review the current literature and remaining unanswered questions on DPC formation by endogenous formaldehyde and various aldehydic 2-deoxyribose lesions.
Collapse
|
Review |
5 |
42 |
10
|
Boeszoermenyi A, Nagy HM, Arthanari H, Pillip CJ, Lindermuth H, Luna RE, Wagner G, Zechner R, Zangger K, Oberer M. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J Biol Chem 2015; 290:26361-72. [PMID: 26350461 PMCID: PMC4646293 DOI: 10.1074/jbc.m115.682203] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10-31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp(21) and Trp(25)) and right (harboring Trp(29)) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp(21) and Trp(25) and two adjacent leucines. Trp(29) serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
38 |
11
|
Mäler L. Solution NMR studies of cell-penetrating peptides in model membrane systems. Adv Drug Deliv Rev 2013; 65:1002-11. [PMID: 23137785 DOI: 10.1016/j.addr.2012.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a class of short, often cationic peptides that have the capability to translocate across cellular membranes, and although the translocation most likely involves several pathways, they interact directly with membranes, as well as with model bilayers. Most CPPs attain a three-dimensional structure when interacting with bilayers, while they are more or less unstructured in aqueous solution. To understand the relationship between structure and the effect that CPPs have on membranes it is of great importance to investigate CPPs at atomic resolution in a suitable membrane model. Moreover, the location in bilayers is likely to be correlated with the translocation mechanism. Solution-state NMR offers a unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating CPP-lipid interactions. Structural propensities and cell-penetrating capabilities can be derived from a combination of CPP solution structures and studies of the effect that the peptides have on bilayers and the localization in a bilayer.
Collapse
|
Review |
12 |
28 |
12
|
Majert S, Kohl H. High-resolution STEM imaging with a quadrant detector--conditions for differential phase contrast microscopy in the weak phase object approximation. Ultramicroscopy 2014; 148:81-86. [PMID: 25461584 DOI: 10.1016/j.ultramic.2014.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
Differential phase contrast is a contrast mechanism that can be utilized in the scanning transmission electron microscope (STEM) to determine the distribution of magnetic or electric fields. In practice, several different detector geometries can be used to obtain differential phase contrast. As recent high resolution differential phase contrast experiments with the STEM are focused on ring quadrant detectors, we evaluate the contrast transfer characteristics of different quadrant detector geometries, namely two ring quadrant detectors with different inner detector angles and a conventional quadrant detector, by calculating the corresponding phase gradient transfer functions. For an ideal microscope and a weak phase object, this can be done analytically. The calculated phase gradient transfer functions indicate that the barely illuminated ring quadrant detector setup used for imaging magnetic fields in the specimen reduces the resolution limit to about 2.5Å for an aberration corrected STEM. Our results show that the resolution can be drastically improved by using a conventional quadrant detector instead.
Collapse
|
Journal Article |
11 |
26 |
13
|
Wu XJ, Zhu JW, Jing J, Xue D, Liu H, Zheng M, Lu ZF. VEGF165 modulates proliferation, adhesion, migration and differentiation of cultured human outer root sheath cells from central hair follicle epithelium through VEGFR-2 activation in vitro. J Dermatol Sci 2013; 73:152-60. [PMID: 24296159 DOI: 10.1016/j.jdermsci.2013.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/22/2013] [Accepted: 10/02/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND The functional state of vasculature is tightly controlled by vascular endothelial growth factor receptor-2 (VEGFR-2). Recent studies revealed that VEGFR-2 is expressed on hair follicle keratinocytes. OBJECTIVE We proposed to investigate its effect on proliferation, adhesion and migration of cultured human outer root sheath cells from central hair follicle epithelium. METHODS These studies were undertaken in vitro using human outer root sheath cells from central hair follicle epithelium, immunohistochemistry analysis, immunofluorescence microscopy, western blot analysis, MTT, trans well analysis, and RT-PCR. RESULTS Our results show that VEGFR-2 is expressed in these cells in vivo and in vitro. Furthermore, proliferation and migration of cultured human outer root sheath cells from central hair follicle epithelium is increased by VEGF165, while homotypic adhesion is decreased but heterotypic adhesion is increased. VEGF165 upregulates integrin β1 but dowregulates lgr6 expression. In addition, phosphorylation of VEGFR-2, Erk1/2, c-Jun and p38, are increased following VEGF165 treatment and these effects are reversed by a VEGFR-2 neutralizing antibody. CONCLUSION Our results suggest a role of VEGF/VEGFR-2 beyond angiogenesis in hair follicle regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
14
|
Inoue N, Fushimi K. Adjunctive Corticosteroids decreased the risk of mortality of non-HIV Pneumocystis Pneumonia. Int J Infect Dis 2018; 79:109-115. [PMID: 30529109 DOI: 10.1016/j.ijid.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES A mortality rate of non-human immunodeficiency virus-infected pneumocystis pneumonia (non-HIV PCP) is 30-60%. But the effectiveness of adjunctive corticosteroids with trimethoprim-sulfamethoxazole has been unclear, and we examined whether it lowered risk of mortality in non-HIV PCP. METHODS We did an observational study of adult non-HIV PCP patients from April 2010 through March 2016, using Japanese nationwide healthcare records of the Diagnostic Procedure Combination database (DPC). The risk was estimated by the time-dependent Cox regression analyses with inverse probability weights. RESULT 1299 eligible non-HIV PCP patients were identified. 737 patients were severe respiratory status (partial pressure of oxygen in arterial blood [PaO2] ≤60mm Hg) and 562 were moderate (PaO2 >60mm Hg) at hospital admission. Among patients with severe respiratory status, the adjunctive corticosteroids was associated with lower risk of 60-day mortality (HR 0.71; 95% confidence interval [CI], 0.55-0.91), and significantly decreased mortality rates (24.7% vs 36.6%, P=0.006). In contrast, no significant differences were observed in the risk of 60-day mortality (HR 1.17; 95% CI, 0.73-1.86) and the mortality rate (10.9% vs 9.1%, P=0.516) among patients with moderate respiratory status. CONCLUSION The adjunctive corticosteroids were associated with lower risk of 60-day mortality in severe non-HIV PCP patients.
Collapse
|
Observational Study |
7 |
25 |
15
|
Kojima Y, Machida YJ. DNA-protein crosslinks from environmental exposure: Mechanisms of formation and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:716-729. [PMID: 32329115 PMCID: PMC7575214 DOI: 10.1002/em.22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Many environmental carcinogens cause DNA damage, which can result in mutations and other alterations in genomic DNA if not repaired promptly. Because of the bulkiness of the lesions, DNA-protein crosslinks (DPCs) are one of the types of toxic DNA damage with potentially deleterious consequences. Despite the importance of DPCs, how cells remove these complex DNA adducts has been incompletely understood. However, major progress in the DPC repair field over the past 5 years now supports the view that cells are equipped with multiple mechanisms to cope with DPCs. Here, we first provide an overview of environmental substances that induce DPCs, describing the sources of exposure and mechanisms of DPC formation. We then review current models of DPC repair and discuss their significance for environmental carcinogens.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
19 |
16
|
DNA- and DNA-Protein-Crosslink Repair in Plants. Int J Mol Sci 2019; 20:ijms20174304. [PMID: 31484324 PMCID: PMC6747210 DOI: 10.3390/ijms20174304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
DNA-crosslinks are one of the most severe types of DNA lesions. Crosslinks (CLs) can be subdivided into DNA-intrastrand CLs, DNA-interstrand CLs (ICLs) and DNA-protein crosslinks (DPCs), and arise by various exogenous and endogenous sources. If left unrepaired before the cell enters S-phase, ICLs and DPCs pose a major threat to genomic integrity by blocking replication. In order to prevent the collapse of replication forks and impairment of cell division, complex repair pathways have emerged. In mammals, ICLs are repaired by the so-called Fanconi anemia (FA) pathway, which includes 22 different FANC genes, while in plants only a few of these genes are conserved. In this context, two pathways of ICL repair have been defined, each requiring the interaction of a helicase (FANCJB/RTEL1) and a nuclease (FAN1/MUS81). Moreover, homologous recombination (HR) as well as postreplicative repair factors are also involved. Although DPCs possess a comparable toxic potential to cells, it has only recently been shown that at least three parallel pathways for DPC repair exist in plants, defined by the protease WSS1A, the endonuclease MUS81 and tyrosyl-DNA phosphodiesterase 1 (TDP1). The importance of crosslink repair processes are highlighted by the fact that deficiencies in the respective pathways are associated with diverse hereditary disorders.
Collapse
|
Review |
6 |
15 |
17
|
Perry M, Ghosal G. Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease. Front Mol Biosci 2022; 9:916697. [PMID: 35782873 PMCID: PMC9240642 DOI: 10.3389/fmolb.2022.916697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are deleterious DNA lesions that occur when proteins are covalently crosslinked to the DNA by the action of variety of agents like reactive oxygen species, aldehydes and metabolites, radiation, and chemotherapeutic drugs. Unrepaired DPCs are blockades to all DNA metabolic processes. Specifically, during DNA replication, replication forks stall at DPCs and are vulnerable to fork collapse, causing DNA breakage leading to genome instability and cancer. Replication-coupled DPC repair involves DPC degradation by proteases such as SPRTN or the proteasome and the subsequent removal of DNA-peptide adducts by nucleases and canonical DNA repair pathways. SPRTN is a DNA-dependent metalloprotease that cleaves DPC substrates in a sequence-independent manner and is also required for translesion DNA synthesis following DPC degradation. Biallelic mutations in SPRTN cause Ruijs-Aalfs (RJALS) syndrome, characterized by hepatocellular carcinoma and segmental progeria, indicating the critical role for SPRTN and DPC repair pathway in genome maintenance. In this review, we will discuss the mechanism of replication-coupled DPC repair, regulation of SPRTN function and its implications in human disease and cancer.
Collapse
|
review-article |
3 |
15 |
18
|
Carotenuto A, Cipolletta E, Gomez-Monterrey I, Sala M, Vernieri E, Limatola A, Bertamino A, Musella S, Sorriento D, Grieco P, Trimarco B, Novellino E, Iaccarino G, Campiglia P. Design, synthesis and efficacy of novel G protein-coupled receptor kinase 2 inhibitors. Eur J Med Chem 2013; 69:384-92. [PMID: 24077529 DOI: 10.1016/j.ejmech.2013.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a relevant signaling node of the cellular transduction network, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Emerging evidence suggests that GRK2 is up regulated in pathological situations such as heart failure, hypertrophy and hypertension, and its inhibition offers a potential therapeutic solution to these diseases. We explored the GRK2 inhibitory activity of a library of cyclic peptides derived from the HJ loop of G protein-coupled receptor kinases 2 (GRK2). The design of these cyclic compounds was based on the conformation of the HJ loop within the X-ray structure of GRK2. One of these compounds, the cyclic peptide 7, inhibited potently and selectively the GRK2 activity, being more active than its linear precursor. In a cellular system, this peptide confirms the beneficial signaling properties of a potent GRK2 inhibitor. Preferred conformations of the most potent analog were investigated by NMR spectroscopy.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
15 |
19
|
Perry M, Biegert M, Kollala SS, Mallard H, Su G, Kodavati M, Kreiling N, Holbrook A, Ghosal G. USP11 mediates repair of DNA-protein cross-links by deubiquitinating SPRTN metalloprotease. J Biol Chem 2021; 296:100396. [PMID: 33567341 PMCID: PMC7960550 DOI: 10.1016/j.jbc.2021.100396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
DNA-protein cross-links (DPCs) are toxic DNA lesions that interfere with DNA metabolic processes such as replication, transcription, and recombination. USP11 deubiquitinase participates in DNA repair, but the role of USP11 in DPC repair is not known. SPRTN is a replication-coupled DNA-dependent metalloprotease that cleaves proteins cross-linked to DNA to promote DPC repair. SPRTN function is tightly regulated by a monoubiquitin switch that controls SPRTN auto-proteolysis and chromatin accessibility during DPC repair. Previously, VCPIP1 and USP7 deubiquitinases have been shown to regulate SPRTN. Here, we identify USP11 as an SPRTN deubiquitinase. USP11 interacts with SPRTN and cleaves monoubiquitinated SPRTN in cells and in vitro. USP11 depletion impairs SPRTN deubiquitination and promotes SPRTN auto-proteolysis in response to formaldehyde-induced DPCs. Loss of USP11 causes an accumulation of unrepaired DPCs and cellular hypersensitivity to treatment with DPC-inducing agents. Our findings show that USP11 regulates SPRTN auto-proteolysis and SPRTN-mediated DPC repair to maintain genome stability.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
13 |
20
|
Gomez A, Cardoso C, Genta FA, Terra WR, Ferreira C. Active site characterization and molecular cloning of Tenebrio molitor midgut trehalase and comments on their insect homologs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:768-780. [PMID: 23770497 DOI: 10.1016/j.ibmb.2013.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
The soluble midgut trehalase from Tenebrio molitor (TmTre1) was purified after several chromatographic steps, resulting in an enzyme with 58 kDa and pH optimum 5.3 (ionizing active groups in the free enzyme: pK(e1) = 3.8 ± 0.2 pK(e2) = 7.4 ± 0.2). The purified enzyme corresponds to the deduced amino acid sequence of a cloned cDNA (TmTre1-cDNA), because a single cDNA coding a soluble trehalase was found in the T. molitor midgut transcriptome. Furthermore, the mass of the protein predicted to be coded by TmTre1-cDNA agrees with that of the purified enzyme. TmTre1 has the essential catalytic groups Asp 315 and Glu 513 and the essential Arg residues R164, R217, R282. Carbodiimide inactivation of the purified enzyme at different pH values reveals an essential carboxyl group with pKa = 3.5 ± 0.3. Phenylglyoxal modified a single Arg residue with pKa = 7.5 ± 0.2, as observed in the soluble trehalase from Spodoptera frugiperda (SfTre1). Diethylpyrocarbonate modified a His residue that resulted in a less active enzyme with pK(e1) changed to 4.8 ± 0.2. In TmTre1 the modified His residue (putatively His 336) is more exposed than the His modified in SfTre1 (putatively His 210) and that affects the ionization of an Arg residue. The architecture of the active site of TmTre1 and SfTre1 is different, as shown by multiple inhibition analysis, the meaning of which demands further research. Trehalase sequences obtained from midgut transcriptomes (pyrosequencing and Illumina data) from 8 insects pertaining to 5 different orders were used in a cladogram, together with other representative sequences. The data suggest that the trehalase gene went duplication and divergence prior to the separation of the paraneopteran and holometabolan orders and that the soluble trehalase derived from the membrane-bound one by losing the C-terminal transmembrane loop.
Collapse
|
Comparative Study |
12 |
12 |
21
|
Sinha S, Ng WJ, Bhattacharjya S. NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle: Implications in antimicrobial activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183432. [PMID: 32781154 DOI: 10.1016/j.bbamem.2020.183432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/11/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potentially vital as the next generation of antibiotics against multidrug resistant bacterial pathogens. Thanatin, an insect derived pathogen inducible 21-residue long antimicrobial peptide, demonstrates antimicrobial activity toward broad range of pathogens. Thanatin is an excellent candidate for antibiotics development due to potent in vivo activity in animal model and low toxicity to human cells. Recent studies indicated mode of action of thanatin could be intriguing and may comprise bacterial membrane permeabilization and interactions with periplasmic proteins. In order to better understand selectivity and membrane disruption, here, we determined 3-D structure of the thanatin in zwitterionic DPC-d38 micelle by NMR spectroscopy. The depth of insertion of thanatin into micelle structure was investigated by spin labelled doxyl lipids, 5-DSA and 16-DSA. DPC-bound structure of thanatin is defined by a β-hairpin structure and an extended and turn conformations, for residues G1-I8, at the N-terminus. The β-hairpin structure is delineated by two antiparallel β-strands, residues I9-C11 and residues K17-R20, which is connected by loop consisted of residues N12-G16. There are cross β-strands sidechain-sidechain packing interactions among hydrophobic and aromatic residues. Spin labelled lipid studies revealed a set of spatially proximal residues V6, I8, Q19, R20 and M21 may be deeply inserted into the hydrophobic core of the DPC micelle. While, residues including those at the turn/loop are merely surface localized. The atomic resolution structure and orientation of thanatin in zwitterionic DPC micelle may be utilized for understating mode of action in lipid membrane and further development of non-toxic analogs.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
12 |
22
|
Shinjo D, Matsumoto K, Terashima K, Takimoto T, Ohnuma T, Noguchi T, Fushimi K. Volume effect in paediatric brain tumour resection surgery: analysis of data from the Japanese national inpatient database. Eur J Cancer 2019; 109:111-119. [PMID: 30716714 DOI: 10.1016/j.ejca.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/06/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Paediatric brain tumours are the second most common type of malignancies that occur during childhood. Surgical resection is usually the first step in the treatment of these patients; however, evidence pertaining to a 'volume effect' in paediatric brain tumour resection surgery and the associations among the surgical volume, clinical features and treatments are not well characterised. METHODS Data pertaining to paediatric patients (age ≤ 15 years) who underwent brain tumour resection surgery between April 2012 and March 2016 were retrieved from the Japanese administrative inpatient database and retrospectively analysed. Demographic characteristics, therapeutic procedures and in-hospital mortality were summarised according to the hospital surgical volume. Penalised logistic regression analysis was used to investigate the association between the hospital surgical volume and in-hospital mortality. RESULTS A total of 1354 paediatric patients were included. About 40% of the patients were in the 11- to 15-year age group. The male:female ratio was 53:47, the overall crude in-hospital mortality was 1.8% (n = 24) and the 30-day postoperative mortality was 0.4% (n = 6). The crude mortality ratio was 3.3% in the lowest quartile and 0.8% in the highest quartile by volume. After adjusting for covariates, a higher hospital surgical volume was associated with lower in-hospital mortality (compared with 1-4 surgeries per 4 years, 15-25 surgeries, odds ratio [OR]: 0.25; 95% confidence interval [CI]: 0.05-0.90, p = 0.033; ≥26 surgeries, OR: 0.31; 95% CI: 0.08-0.96, p = 0.042). CONCLUSIONS The present study indicated a volume-outcome relationship in paediatric brain tumour resection surgery cases. Further centralisation of surgeries should be considered to achieve better outcomes.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
23
|
Kanazawa N, Tani T, Imai S, Horiguchi H, Fushimi K, Inoue N. Existing Data Sources for Clinical Epidemiology: Database of the National Hospital Organization in Japan. Clin Epidemiol 2022; 14:689-698. [PMID: 35615723 PMCID: PMC9126156 DOI: 10.2147/clep.s359072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
This review introduces the National Hospital Organization (NHO) database in Japan. The NHO has maintained two databases through a system of data collection from 140 hospitals in the NHO. National Hospital Organization Clinical Data Archives (NCDA) is collecting clinical information in real time from the electronic medical records since January 2016, and Medical Information Analysis (MIA) databank is collecting daily insurance claims data since April 2010. The NHO database covers more than 8 million patients in 140 hospitals throughout Japan. The database consists of the information of patient profiles, hospital admission and discharge, diagnosis with ICD-10 codes, text data from medical chart, daily health insurance claims such as medical procedures, medications or surgeries, vital signs and laboratory data, and so on. The NHO database includes a wide variety of diseases and settings, including acute, chronic and intractable diseases, emergency medical services, disaster medicine, response to emerging infectious disease outbreaks, medical care according to health policies such as psychiatry, tuberculosis, or muscular dystrophy, and health systems in sparsely populated non-urban areas. Among several common diseases, the database has representativeness in terms of age distribution compared with the Patient Survey 2017 by the Ministry of Health, Labour and Welfare. Interested researchers can contact (700-dbproject@mail.hosp.go.jp) the NHO database division to obtain more information about the NHO database for utilization.
Collapse
|
Review |
3 |
11 |
24
|
Jan A, Hayat M, Wedyan M, Alturki R, Gazzawe F, Ali H, Alarfaj FK. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile. Comput Biol Med 2022; 151:106311. [PMID: 36410097 DOI: 10.1016/j.compbiomed.2022.106311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.
Collapse
|
|
3 |
9 |
25
|
Zazrin H, Shaked H, Chill JH. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:784-92. [PMID: 24192053 DOI: 10.1016/j.bbamem.2013.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354-363 and 371-379 separated by a more flexible segment of residues 364-370. In LPPG micelles a helical conformation was observed for residues 354-377 with greater flexibility in the 366-367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
7 |