1
|
Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, Xiang Y, Gao Q, Wen C, Ma W, Liu W, Zhang M, Yang Z, Wang W, Zhang R, Chen B, Xie T, Sui X, Tao W. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B 2021; 11:4045-4054. [PMID: 35024325 PMCID: PMC8727776 DOI: 10.1016/j.apsb.2021.03.036] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is a non-apoptotic regulated cell death caused by iron accumulation and subsequent lipid peroxidation. Currently, the therapeutic role of ferroptosis on cancer is gaining increasing interest. Baicalin an active component in Scutellaria baicalensis Georgi with anticancer potential various cancer types; however, the effects of baicalein on bladder cancer and the underlying molecular mechanisms remain largely unknown. In the study, we investigated the effect of baicalin on bladder cancer cells 5637 and KU-19-19. As a result, we show baicalin exerted its anticancer activity by inducing apoptosis and cell death in bladder cancer cells. Subsequently, we for the first time demonstrate baicalin-induced ferroptotic cell death in vitro and in vivo, accompanied by reactive oxygen species (ROS) accumulation and intracellular chelate iron enrichment. The ferroptosis inhibitor deferoxamine but not necrostatin-1, chloroquine (CQ), N-acetyl-l-cysteine, l-glutathione reduced, or carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) rescued baicalin-induced cell death, indicating ferroptosis contributed to baicalin-induced cell death. Mechanistically, we show that ferritin heavy chain 1 (FTH1) was a key determinant for baicalin-induced ferroptosis. Overexpression of FTH1 abrogated the anticancer effects of baicalin in both 5637 and KU19-19 cells. Taken together, our data for the first time suggest that the natural product baicalin exerts its anticancer activity by inducing FTH1-dependent ferroptosis, which will hopefully provide a prospective compound for bladder cancer treatment.
Collapse
|
brief-report |
4 |
160 |
2
|
Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, Gerli R. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 2020; 68:213-224. [PMID: 32681497 PMCID: PMC7366458 DOI: 10.1007/s12026-020-09145-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection is characterized by a protean clinical picture that can range from asymptomatic patients to life-threatening conditions. Severe COVID-19 patients often display a severe pulmonary involvement and develop neutrophilia, lymphopenia, and strikingly elevated levels of IL-6. There is an over-exuberant cytokine release with hyperferritinemia leading to the idea that COVID-19 is part of the hyperferritinemic syndrome spectrum. Indeed, very high levels of ferritin can occur in other diseases including hemophagocytic lymphohistiocytosis, macrophage activation syndrome, adult-onset Still's disease, catastrophic antiphospholipid syndrome and septic shock. Numerous studies have demonstrated the immunomodulatory effects of ferritin and its association with mortality and sustained inflammatory process. High levels of free iron are harmful in tissues, especially through the redox damage that can lead to fibrosis. Iron chelation represents a pillar in the treatment of iron overload. In addition, it was proven to have an anti-viral and anti-fibrotic activity. Herein, we analyse the pathogenic role of ferritin and iron during SARS-CoV-2 infection and propose iron depletion therapy as a novel therapeutic approach in the COVID-19 pandemic.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
128 |
3
|
González-Montero J, Brito R, Gajardo AIJ, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol 2018; 10:74-86. [PMID: 30344955 PMCID: PMC6189069 DOI: 10.4330/wjc.v10.i9.74] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide. Its associated mortality, morbidity and complications have significantly decreased with the development of interventional cardiology and percutaneous coronary angioplasty (PCA) treatment, which quickly and effectively restore the blood flow to the area previously subjected to ischemia. Paradoxically, the restoration of blood flow to the ischemic zone leads to a massive production of reactive oxygen species (ROS) which generate rapid and severe damage to biomolecules, generating a phenomenon called myocardial reperfusion injury (MRI). In the clinical setting, MRI is associated with multiple complications such as lethal reperfusion, no-reflow, myocardial stunning, and reperfusion arrhythmias. Despite significant advances in the understanding of the mechanisms accounting for the myocardial ischemia reperfusion injury, it remains an unsolved problem. Although promising results have been obtained in experimental studies (mainly in animal models), these benefits have not been translated into clinical settings. Thus, clinical trials have failed to find benefits from any therapy to prevent MRI. There is major evidence with respect to the contribution of oxidative stress to MRI in cardiovascular diseases. The lack of consistency between basic studies and clinical trials is not solely based on the diversity inherent in epidemiology but is also a result of the methodological weaknesses of some studies. It is quite possible that pharmacological issues, such as doses, active ingredients, bioavailability, routes of administration, co-therapies, startup time of the drug intervention, and its continuity may also have some responsibility for the lack of consistency between different studies. Furthermore, the administration of high ascorbate doses prior to reperfusion appears to be a safe and rational therapy against the development of oxidative damage associated with myocardial reperfusion. In addition, the association with N-acetylcysteine (a glutathione donor) and deferoxamine (an iron chelator) could improve the antioxidant cardioprotection by ascorbate, making it even more effective in preventing myocardial reperfusion damage associated with PCA following AMI.
Collapse
|
Review |
7 |
114 |
4
|
Aaseth J, Skaug MA, Cao Y, Andersen O. Chelation in metal intoxication--Principles and paradigms. J Trace Elem Med Biol 2015; 31:260-6. [PMID: 25457281 DOI: 10.1016/j.jtemb.2014.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/14/2014] [Accepted: 10/06/2014] [Indexed: 01/19/2023]
Abstract
The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review.
Collapse
|
Review |
10 |
105 |
5
|
Tang LJ, Luo XJ, Tu H, Chen H, Xiong XM, Li NS, Peng J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:401-410. [PMID: 32621060 DOI: 10.1007/s00210-020-01932-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent regulated necrosis. This study aims to evaluate the contribution of ferroptosis to ischemia or reperfusion injury, and lay a basis for precise therapy of myocardial infarction. The Sprague-Dawley (SD) rat hearts were subjected to ischemia for different duration or the hearts were treated with 1 h-ischemia plus different duration of reperfusion. The myocardial injury was assessed by biochemical assays and hematoxylin & eosin (HE) staining. The ferroptosis was evaluated with the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), iron, and malondialdehyde. Iron chelator (deferoxamine) was applied to verify the contribution of ferroptosis to ischemia and reperfusion injury. The results showed that ischemic injury (infarction and CK release) was getting worse with the extension of ischemia, but no significant changes in ferroptosis indexes (ACSL4, GPX4, iron, and malondialdehyde) in cardiac tissues were observed. Differently, the levels of ACSL4, iron, and malondialdehyde were gradually elevated with the extension of reperfusion concomitant with a decrease of GPX4 level. In the ischemia-treated rat hearts, no significant changes in myocardial injury were observed in the presence of deferoxamine, while in the ischemia/reperfusion-treated rat hearts, myocardial injury was markedly attenuated in the presence of deferoxamine concomitant with a reduction of ferroptosis. Based on these observations, we conclude that ferroptosis occurs mainly in the phase of myocardial reperfusion but not ischemia. Thus, intervention of ferroptosis exerts beneficial effects on reperfusion injury but not ischemic injury, laying a basis for precise therapy for patients with myocardial infarction.
Collapse
|
|
4 |
102 |
6
|
Li Q, Wan J, Lan X, Han X, Wang Z, Wang J. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2017; 37:3110-3123. [PMID: 28534662 PMCID: PMC5584702 DOI: 10.1177/0271678x17709186] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023]
Abstract
Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.
Collapse
|
research-article |
8 |
95 |
7
|
Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release 2018; 279:69-78. [PMID: 29649529 DOI: 10.1016/j.jconrel.2018.04.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
93 |
8
|
Iron deposition-induced ferroptosis in alveolar type II cells promotes the development of pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166204. [PMID: 34175430 DOI: 10.1016/j.bbadis.2021.166204] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a newly discovered type of regulated cell death, characterized by the iron-dependent accumulation of lipid reactive oxygen species, which has been implicated in numerous human diseases. However, its role in pulmonary fibrosis, a fatal lung disease with unknown etiology, is largely unknown. Here, we investigated the role of ferroptosis in pulmonary fibrosis. We found a large amount of iron deposition in the lung tissue of patients with pulmonary fibrosis. We observed ferroptosis in alveolar type II (ATII) cells, fibrotic lung tissues of BLM-induced pulmonary fibrosis mice. BLM-induced increase in iron level was accompanied by pathological changes, collagen deposition, and ferroptosis in ATII cells, indicating iron deposition-induced ferroptosis, which promoted the development of pulmonary fibrosis. Moreover, deferoxamine (DFO) completely prevented the pro-fibrosis effects of BLM by reducing iron deposition and ferroptosis in ATII cells. Genes associated with intracellular iron metabolism and homeostasis, such as transferrin receptor 1, divalent metal transporter 1, and ferroportin-1, and showed abnormal expression levels in animal tissues and lung epithelial MLE-12 cells, which responded to BLM stimulation. Overall, we demonstrated that BLM-induced iron deposition in MLE-12 cells is prone to both mitochondrial dysfunction and ferroptosis and that DFO reverses this phenotype. In the future, understanding the role of ferroptosis may shed new light on the etiology of pulmonary fibrosis. Ferroptosis inhibitors or genetic engineering of ferroptosis-related genes might offer potential targets to treat pulmonary fibrosis.
Collapse
|
Journal Article |
4 |
73 |
9
|
De Gregorio C, Contador D, Díaz D, Cárcamo C, Santapau D, Lobos-Gonzalez L, Acosta C, Campero M, Carpio D, Gabriele C, Gaspari M, Aliaga-Tobar V, Maracaja-Coutinho V, Ezquer M, Ezquer F. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther 2020; 11:168. [PMID: 32357914 PMCID: PMC7195803 DOI: 10.1186/s13287-020-01680-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic polyneuropathy (DPN) is the most common and early developing complication of diabetes mellitus, and the key contributor for foot ulcers development, with no specific therapies available. Different studies have shown that mesenchymal stem cell (MSC) administration is able to ameliorate DPN; however, limited cell survival and safety reasons hinder its transfer from bench to bedside. MSCs secrete a broad range of antioxidant, neuroprotective, angiogenic, and immunomodulatory factors (known as conditioned medium), which are all decreased in the peripheral nerves of diabetic patients. Furthermore, the abundance of these factors can be boosted in vitro by incubating MSCs with a preconditioning stimulus, enhancing their therapeutic efficacy. We hypothesize that systemic administration of conditioned medium derived from preconditioned MSCs could reverse DPN and prevent foot ulcer formation in a mouse model of type II diabetes mellitus. METHODS Diabetic BKS db/db mice were treated with systemic administration of conditioned medium derived from preconditioned human MSCs; conditioned medium derived from non-preconditioned MSCs or vehicle after behavioral signs of DPN was already present. Conditioned medium or vehicle administration was repeated every 2 weeks for a total of four administrations, and several functional and structural parameters characteristic of DPN were evaluated. Finally, a wound was made in the dorsal surface of both feet, and the kinetics of wound closure, re-epithelialization, angiogenesis, and cell proliferation were evaluated. RESULTS Our molecular, electrophysiological, and histological analysis demonstrated that the administration of conditioned medium derived from non-preconditioned MSCs or from preconditioned MSCs to diabetic BKS db/db mice strongly reverts the established DPN, improving thermal and mechanical sensitivity, restoring intraepidermal nerve fiber density, reducing neuron and Schwann cell apoptosis, improving angiogenesis, and reducing chronic inflammation of peripheral nerves. Furthermore, DPN reversion induced by conditioned medium administration enhances the wound healing process by accelerating wound closure, improving the re-epithelialization of the injured skin and increasing blood vessels in the wound bed in a skin injury model that mimics a foot ulcer. CONCLUSIONS Studies conducted indicate that MSC-conditioned medium administration could be a novel cell-free therapeutic approach to reverse the initial stages of DPN, avoiding the risk of lower limb amputation triggered by foot ulcer formation and accelerating the wound healing process in case it occurs.
Collapse
|
research-article |
5 |
73 |
10
|
Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML, Wang T, Li JY, Wang ZY. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 2016; 280:13-23. [PMID: 26996132 DOI: 10.1016/j.expneurol.2016.03.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Accumulating evidence suggests that an abnormal accumulation of iron in the substantia nigra (SN) is one of the defining characteristics of Parkinson's disease (PD). Accordingly, the potential neuroprotection of Fe chelators is widely acknowledged for the treatment of PD. Although desferrioxamine (DFO), an iron chelator widely used in clinical settings, has been reported to improve motor deficits and dopaminergic neuronal survival in animal models of PD, DFO has poor penetration to cross the blood-brain barrier and elicits side effects. We evaluated whether an intranasal administration of DFO improves the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic neurons in the nigrostriatal axis and investigated the molecular mechanisms of intranasal DFO treatment in preventing MPTP-induced neurodegeneration. Treatment with DFO efficiently alleviated behavioral deficits, increased the survival of tyrosine hydroxylase (TH)-positive neurons, and decreased the action of astrocytes in the SN and striatum in an MPTP-induced PD mouse model. Interestingly, we found that DFO up-regulated the expression of HIF-1α protein, TH, vascular endothelial growth factor (VEGF), and growth associated protein 43 (GAP43) and down-regulated the expression of α-synuclein, divalent metal transporter with iron-responsive element (DMT1+IRE), and transferrin receptor (TFR). This was accompanied by a decrease in iron-positive cells in the SN and striatum of the DFO-treated group. We further revealed that DFO treatment significantly inhibited the MPTP-induced phosphorylation of the c-Jun N-terminal kinase (JNK) and differentially enhanced the phosphorylation of extracellular regulated protein kinases (ERK) and mitogen-activated protein kinase (MAPK)/P38 kinase. Additionally, the effects of DFO on increasing the Bcl-2/Bax ratio were further validated in vitro and in vivo. In SH-SY5Y cells, the DFO-mediated up-regulation of HIF-1α occurred via the activation of the ERK and P38MAPK signaling pathway. Collectively, the present data suggest that intranasal DFO treatment is effective in reversing MPTP-induced brain abnormalities and that HIF-1-pathway activation is a potential therapy target for the attenuation of neurodegeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
68 |
11
|
Garton TP, He Y, Garton HJL, Keep RF, Xi G, Strahle JM. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res 2016; 1635:86-94. [PMID: 26772987 DOI: 10.1016/j.brainres.2015.12.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
Abstract
Neuronal degeneration following neonatal intraventricular hemorrhage (IVH) is incompletely understood. Understanding the mechanisms of degeneration and cell loss may point toward specific treatments to limit injury. We evaluated the role of hemoglobin (Hb) in cell death after intraventricular injection in neonatal rats. Hb was injected into the right lateral ventricle of post-natal day 7 rats. Rats exposed to anesthesia were used for controls. The CA-1 region of the hippocampus was analyzed via immunohistochemistry, hematoxylin and eosin (H&E) staining, Fluoro-Jade C staining, Western blots, and double-labeling stains. Compared to controls, intraventricular injection of Hb decreased hippocampal volume (27% decrease; p<0.05), induced neuronal loss (31% loss; p<0.01), and increased neuronal degeneration (2.7 fold increase; p<0.01), which were all significantly reduced with the iron chelator, deferoxamine. Hb upregulated p-JNK (1.8 fold increase; p<0.05) and increased expression of the Hb/haptoglobin endocytotic receptor CD163 in neurons in vivo and in vitro (cultured cortical neurons). Hb induced expression of the CD163 receptor, which co-localized with p-JNK in hippocampal neurons, suggesting a potential pathway by which Hb enters the neuron to result in cell death. There were no differences in neuronal loss or degenerating neurons in Hb-injected animals that developed hydrocephalus versus those that did not. Intraventricular injection of Hb causes hippocampal neuronal degeneration and cell loss and increases brain p-JNK levels. p-JNK co-localized with the Hb/haptoglobin receptor CD163, suggesting a novel pathway by which Hb enters the neuron after IVH to result in cell death.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
57 |
12
|
Cao Y, Skaug MA, Andersen O, Aaseth J. Chelation therapy in intoxications with mercury, lead and copper. J Trace Elem Med Biol 2015; 31:188-92. [PMID: 24894443 DOI: 10.1016/j.jtemb.2014.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/15/2022]
Abstract
In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy.
Collapse
|
Review |
10 |
55 |
13
|
Ram M, Singh V, Kumawat S, Kumar D, Lingaraju MC, Uttam Singh T, Rahal A, Kumar Tandan S, Kumar D. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol 2015; 764:9-21. [PMID: 26101070 DOI: 10.1016/j.ejphar.2015.06.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/24/2022]
Abstract
Deferoxamine has shown cutaneous wound healing potential by increased neovascularization. We hypothesized that topically applied deferoxamine facilitates wound healing in diabetic rats by modulating important cytokines and growth factors that take part in healing processes in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin and wound was created under pentobarbitone anesthesia. The diabetic rats were divided into two groups, of which one (control) was treated with ointment base and other with deferoxamine ointment (0.1%). Wound closure measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor 1-alpha (SDF-1α), transforming growth factor beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) mRNA and proteins were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histological changes were assessed by H&E staining. The per cent wound closure was significantly higher from day 7 onwards in deferoxamine-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and their protein levels were significantly higher on days 3, 7 and 14 in deferoxamine-treated rats. The mRNA expression and protein levels of TNF-α, MMP-9 and IL-1β were progressively and markedly reduced in deferoxamine-treated rats. The collagen deposition and formation of blood vessels were greater in deferoxamine-treated rats. It is suggested that topical application of deferoxamine ointment might be useful in cutaneous wound healing in diabetic patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
53 |
14
|
Li S, Wang X, Chen J, Guo J, Yuan M, Wan G, Yan C, Li W, Machens HG, Rinkevich Y, Yang X, Song H, Chen Z. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. Int J Biol Macromol 2022; 202:657-670. [PMID: 35066024 DOI: 10.1016/j.ijbiomac.2022.01.080] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Chronic non-healing diabetic wounds and ulcers can be fatal, lead to amputations, and remain a major challenge to medical, and health care sectors. Susceptibility to infection and impaired angiogenesis are two central reasons for the clinical consequences associated with chronic non-healing diabetic wounds. Herein, we successfully developed calcium ion (Ca2+) cross-linked sodium alginate (SA) hydrogels with both pro-angiogenesis and antibacterial properties. Our results demonstrated that deferoxamine (DFO) and copper nanoparticles (Cu-NPs) worked synergistically to enhance the proliferation, migration, and angiogenesis of human umbilical venous endothelial cells in vitro. Results of colony formation assay indicated Cu-NPs were effective against E. coli and S. aureus in a dose-dependent manner in vitro. An SA hydrogel containing both DFO and Cu-NPs (SA-DFO/Cu) was prepared using a Ca2+ cross-linking method. Cytotoxicity assay and colony formation assay indicated that the hydrogel exhibited beneficial biocompatible and antibacterial properties in vitro. Furthermore, SA-DFO/Cu significantly accelerated diabetic wound healing, improved angiogenesis and reduced long-lasting inflammation in a mouse model of diabetic wound. Mechanistically, DFO and Cu-NPs synergistically stimulated the levels of hypoxia-inducible factor 1α and vascular endothelial growth factor in vivo. Given the pro-angiogenesis, antibacterial and healing properties, the hydrogel possesses high potential for clinical application in refractory wounds.
Collapse
|
|
3 |
53 |
15
|
Zhang Y, He ML. Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Res 2017; 1677:86-92. [PMID: 28963052 DOI: 10.1016/j.brainres.2017.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
The neurotoxicity of amyloid-β peptide (Aβ), a predominant histopathological hallmark lesion of Alzheimer's disease (AD), is enhanced by iron, as found in amyloid plaques of Alzheimer's disease (AD) patients. We investigated whether deferoxamine (DFX) treatment promotes functional recovery and tissue repair in APP/PS1 double transgenic mice. Twelve-month-old APP/PS1 mice were randomly divided into two groups (APP/PS1 and DFX). Neurological deficits were monitored for 2weeks following DFX treatment. To characterize the activation of the microglia, expression of the M1 and M2 phenotypes was analyzed by immunohistochemistry and immunoblotting. Moreover, deposition of iron and Aβ, as well as apoptosis, were examined, and a behavioral test was performed. DFX significantly ameliorated cognitive function and deposition of Aβ as well as inhibited apoptosis in the brain. Consistent with these observations, DFX induced M2 activation of microglia and inhibited M1 activation of microglia in the hippocampus of APP/PS1 mice. In conclusion, DFX treatment improved functional recovery of AD mice, and the mechanism may involve DFX-induced M2 activation of microglia.
Collapse
|
Journal Article |
8 |
52 |
16
|
Dalamaga M, Karampela I, Mantzoros CS. Commentary: Could iron chelators prove to be useful as an adjunct to COVID-19 Treatment Regimens? Metabolism 2020; 108:154260. [PMID: 32418885 PMCID: PMC7207125 DOI: 10.1016/j.metabol.2020.154260] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
The pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to global health. Currently, no specific prophylactic and therapeutic treatment is available. No evidence from randomized clinical trials (RCTs) that a treatment may ameliorate the clinical outcome of patients with COVID-19 exists with the only exception of preliminary evidence from remdesivir trials. Here, we present evidence from the literature and a compelling hypothesis on the potential immunomodulatory, iron chelating and anti-oxidant effects of iron chelators in the treatment of COVID-19 and its complications. Interestingly, iron chelation has been shown in vitro to suppress endothelial inflammation in viral infection, which is the main pathophysiologic mechanism behind systemic organ involvement induced by SARS-CoV-2, by inhibiting IL-6 synthesis through decreasing NF-kB. Iron chelators exhibit iron chelating, antiviral and immunomodulatory effects in vitro and in vivo, particularly against RNA viruses. These agents could attenuate ARDS and help control SARS-CoV-2 via multiple mechanisms including: 1) inhibition of viral replication; 2) decrease of iron availability; 3) upregulation of B cells; 4) improvement of the neutralizing anti-viral antibody titer; 5) inhibition of endothelial inflammation and 6) prevention of pulmonary fibrosis and lung decline via reduction of pulmonary iron accumulation. Both retrospective analyses of data in electronic health records, as well as proof of concept studies in humans and large RCTs are needed to fully elucidate the efficacy and safety of iron chelating agents in the therapeutic armamentarium of COVID-19, probably as an adjunctive treatment.
Collapse
|
research-article |
5 |
48 |
17
|
LeBlanc RH, Chen R, Selim MH, Hanafy KA. Heme oxygenase-1-mediated neuroprotection in subarachnoid hemorrhage via intracerebroventricular deferoxamine. J Neuroinflammation 2016; 13:244. [PMID: 27618864 PMCID: PMC5020472 DOI: 10.1186/s12974-016-0709-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a devastating disease that affects over 30,000 Americans per year. Previous animal studies have explored the therapeutic effects of deferoxamine (DFX) via its iron-chelating properties after SAH, but none have assessed the necessity of microglial/macrophage heme oxygenase-1 (HO-1 or Hmox1) in DFX neuroprotection, nor has the efficacy of an intracerebroventricular (ICV) administration route been fully examined. We explored the therapeutic efficacy of systemic and ICV DFX in a SAH mouse model and its effect on microglial/macrophage HO-1. METHODS Wild-type (WT) mice were split into the following treatment groups: SAH sham + vehicle, SAH + vehicle, SAH + intraperitoneal (IP) DFX, and SAH + ICV DFX. For each experimental group, neuronal damage, cognitive outcome, vasospasm, cerebral and hematogenous myeloid cell populations, cerebral IL-6 concentration, and mitochondrial superoxide anion production were measured. HO-1 co-localization to microglia was measured using confocal images. Trans-wells with WT or HO-1(-/-) microglia and hippocampal neurons were treated with vehicle, red blood cells (RBCs), or RBCs with DFX; neuronal damage, TNF-α concentration, and microglial HO-1 expression were measured. HO-1 conditional knockouts were used to study myeloid, neuronal, and astrocyte HO-1 involvement in DFX-induced neuroprotection and cognitive recovery. RESULTS DFX treatment after SAH decreased cortical damage and improved cognitive outcome after SAH yet had no effect on vasospasm; ICV DFX was most neuroprotective. ICV DFX treatment after SAH decreased cerebral IL-6 concentration and trended towards decreased mitochondrial superoxide anion production. ICV DFX treatment after SAH effected an increase in HO-1 co-localization to microglia. DFX treatment of WT microglia with RBCs in the trans-wells showed decreased neuronal damage; this effect was abolished in HO-1(-/-) microglia. ICV DFX after SAH decreased neuronal damage and improved cognition in Hmox1 (fl/fl) control and Nes (Cre) :Hmox1 (fl/fl) mice, but not LyzM (Cre) :Hmox1 (fl/fl) mice. CONCLUSIONS DFX neuroprotection is independent of vasospasm. ICV DFX treatment provides superior neuroprotection in a mouse model of SAH. Mechanisms of DFX neuroprotection after SAH may involve microglial/macrophage HO-1 expression. Monitoring patient HO-1 expression during DFX treatment for hemorrhagic stroke may help clinicians identify patients that are more likely to respond to treatment.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
48 |
18
|
Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res 2014; 1602:44-52. [PMID: 25152462 DOI: 10.1016/j.brainres.2014.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
Post-hemorrhagic chronic hydrocephalus (PHCH) is a common complication after intraventricular hemorrhage (IVH). The mechanism of PHCH is not fully understood, and its treatment is relatively difficult. In the present study, a rat model of PHCH was used to elucidate the role of iron in the pathogenesis of PHCH. The action of deferoxamine (DFX) in IVH-induced PHCH, the expression of brain ferritin, the concentration of iron in cerebrospinal fluid (CSF), and changes in Wnt1/Wnt3a gene expression were determined. Results indicate that iron plays an important role in the occurrence of hydrocephalus after IVH. The iron chelator, DFX, can decrease the concentrations of iron and ferritin after cerebral hemorrhage and can thereby decrease the incidence of hydrocephalus. In addition, after IVH, the gene expression of Wnt1 and Wnt3a was enhanced, with protein expression also upregulated; DFX was able to suppress both gene and protein expression of Wnt1 and Wnt3a in brain tissue. This indicates that iron may be the key stimulus that activates the Wnt signaling pathway and regulates subarachnoid fibrosis after cerebral hemorrhage, and that DFX may be a candidate for preventing PHCH in patients with IVH.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
47 |
19
|
Marsella M, Borgna-Pignatti C. Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease. Hematol Oncol Clin North Am 2015; 28:703-27, vi. [PMID: 25064709 DOI: 10.1016/j.hoc.2014.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron overload is an inevitable consequence of blood transfusions and is often accompanied by increased iron absorption from the gut. Chelation therapy is necessary to prevent the consequences of hemosiderosis. Three chelators, deferoxamine, deferiprone, and deferasirox, are presently available and a fourth is undergoing clinical trials. The efficacy of all 3 available chelators has been demonstrated. Also, many studies have shown the efficacy of the combination of deferoxamine plus deferiprone as an intensive treatment of severe iron overload. Alternating chelators can reduce adverse effects and improve compliance. Adherence to therapy is crucial for good results.
Collapse
|
Review |
10 |
47 |
20
|
Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway. Food Chem Toxicol 2023; 174:113644. [PMID: 36731815 DOI: 10.1016/j.fct.2023.113644] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease, mainly presented by the deterioration of articular cartilage. Amounts of data demonstrated this deterioration is composed of oxidative stress, pro-inflammation and chondrocyte death events. Ferroptosis is a novel form of cell death that differs from apoptosis and autophagy, recent studies have shown that chondrocyte ferroptosis contributes to the development of osteoarthritis. Cardamonin (CAD) has been demonstrated to possess antioxidant and anti-inflammatory properties in several diseases, whether CAD may influence the OA progression is still obscure. Therefore, we aimed to determine whether CAD alleviates chondrocyte ferroptosis and its effect on OA with potential mechanism. In this study, we found that inflammation, cartilage degradation and ferroptosis induced by interleukin-1β (IL-1β) were significantly alleviated by CAD. Moreover, the administration of the ferroptosis inhibitor, Deferoxamine (DFO) reversed the inflammatory and cartilage degradation effects of IL-1β as well. Chondrocyte mitochondrial morphology and function were alleviated by both CAD and DFO. We found that CAD increased collagen II, p53, SLC7A11 GPX4 expression and decreased MMP13, iNOS, COX2 expression in chondrocytes, further investigation showed that the P53 signaling pathway was involved. In vivo, intra-articular injection of CAD significantly ameliorated cartilage damage in a rat OA model, induced collagen II and SLC7A11 expression by immunohistochemistry. Our study proves that CAD ameliorated OA cartilage degradation by regulating ferroptosis via P53 signaling pathway, suggesting a potential role of CAD in OA treatment.
Collapse
|
|
2 |
47 |
21
|
Zhang J, Hu W, Ding C, Yao G, Zhao H, Wu S. Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling. Toxicol Lett 2019; 313:50-59. [PMID: 31238089 DOI: 10.1016/j.toxlet.2019.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Iron overload causes osteoporosis by enhancing osteoclastic bone resorption. During differentiation, osteoclasts demand high energy and contain abundant mitochondria. In mitochondria, iron is used for the synthesis of Fe-S clusters to support mitochondria biogenesis and electron transport chain. Moreover, mitochondrial reactive oxygen species (ROS) play an important role in osteoclastogenesis. Activation of MAPKs (ERK1/2, JNK, and p38) by ROS is essential and contribute to osteoclast differentiation. How iron chelation impairs electron transport chain and ROS dependent MAPKs activation during osteoclast differentiation is unknown. This study aimed to determine the direct effects of iron chelation on osteoclast differentiation, electron transport chain and MAPKs activation. In the present study, we found that when iron chelator, deferoxamine (DFO), was added, a dose-dependent inhibition of osteoclast differentiation and bone resorption was observed. Supplementation of transferrin-bound iron recovered osteoclastogenesis. Iron chelation resulted in a marked decrease in ferritin level, and increased expression of transferrin receptor 1 and ferroportin. As an iron chelator, DFO negatively affected mitochondrial function through decreasing activities of all the complexes. Expressions of mitochondrial subunits encoded both by mitochondrial and nuclear DNA were decreased. DFO augmented production of mitochondrial ROS, but inhibited the phosphorylation of ERK1/2, JNK, and p38, even in the presence of hydrogen peroxide. These results suggest that iron chelation directly inhibits iron-uptake stimulated osteoclast differentiation and suppresses electron transport chain. Iron chelation negatively regulates MAPKs activation, and this negative regulation is independent on ROS stimulation.
Collapse
|
Journal Article |
6 |
45 |
22
|
Watson A, Lipina C, McArdle HJ, Taylor PM, Hundal HS. Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1. Cell Signal 2016; 28:412-424. [PMID: 26827808 PMCID: PMC4804389 DOI: 10.1016/j.cellsig.2016.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/02/2022]
Abstract
Iron is an indispensable micronutrient that regulates many aspects of cell function, including growth and proliferation. These processes are critically dependent upon signalling via the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Herein, we test whether iron depletion induced by cell incubation with the iron chelator, deferoxamine (DFO), mediates its effects on cell growth through mTORC1-directed signalling and protein synthesis. We have used Caco-2 cells, a well-established in vitro model of human intestinal epithelia. Iron depletion increased expression of iron-regulated proteins (TfR, transferrin receptor and DMT1, divalent metal transporter, as predicted, but it also promoted a marked reduction in growth and proliferation of Caco-2 cells. This was strongly associated with suppressed mTORC1 signalling, as judged by reduced phosphorylation of mTOR substrates, S6K1 and 4E-BP1, and diminished protein synthesis. The reduction in mTORC1 signalling was tightly coupled with increased expression and accumulation of REDD1 (regulated in DNA damage and development 1) and reduced phosphorylation of Akt and TSC2. The increase in REDD1 abundance was rapidly reversed upon iron repletion of cells but was also attenuated by inhibitors of gene transcription, protein phosphatase 2A (PP2A) and by REDD1 siRNA--strategies that also antagonised the loss in mTORC1 signalling associated with iron depletion. Our findings implicate REDD1 and PP2A as crucial regulators of mTORC1 activity in iron-depleted cells and indicate that their modulation may help mitigate atrophy of the intestinal mucosa that may occur in response to iron deficiency.
Collapse
|
research-article |
9 |
44 |
23
|
Dong X, Wu P, Yan L, Liu K, Wei W, Cheng Q, Liang X, Chen Y, Dai H. Oriented nanofibrous P(MMD-co-LA)/ Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials 2021; 280:121288. [PMID: 34894585 DOI: 10.1016/j.biomaterials.2021.121288] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Delayed injured nerve regeneration remains a clinical problem, partly ascribing to the lack of regulation of regenerative microenvironment, topographical cues, and blood nourishment. Functional electrospun conduits have been established as an efficacious strategy to facilitate nerve regeneration by providing structural guidance, regulating the regenerative immune microenvironment, and improving vascular regeneration. However, the synthetic polymers conventionally used to fabricate electrospinning scaffolds, such as poly(L-lactic acid), poly(glycolic acid), and poly(lactic-co-glycolic acid), can cause aseptic inflammation due to acidic degradation products. Therefore, a poly[3(S)-methyl-morpholine-2,5-dione-co-lactic] [P(MMD-co-LA)] containing alanine units with good mechanical properties and reduced acid degradation products, was obtained by melt ring-opening polymerization (ROP). Here, we aimed to explore the effect of oriented nanofiber/Deferoxamine (DFO, a hydrophilic angiogenic drug) scaffold in the rapid construction of a favorable regenerative microenvironment, including cell bridge, polarized vascular system, and immune microenvironment. In vitro studies have shown that the scaffold can sustainably release DFO, which accelerates the migration and tube formation of human umbilical vein endothelial cells (HUVECs), as well as the expression of genes related to angiogenesis. The physical clues provided by the arranged nanofibers can regulate the polarization of macrophages and reduce the expression of inflammatory factors. Furthermore, the in vivo results demonstrated a higher M2 polarization level of the oriented nanofibrous scaffold treatment group with reducedinflammation reaction in the injured nerve. Moreover, the in-situ release of DFO up-regulated the expression of HIF1-α and SDF-1α genes, as well as the expression of HIF1-α's target gene VEGF, further promoting revascularization and enhancing nerve regeneration at the defect site. The obtained results provide essential insights on accelerating the creation of the nerve regeneration microenvironment by combining the physiological processes of nerve regeneration with topographical cues and chemical signal induction.
Collapse
|
|
4 |
44 |
24
|
Duscher D, Trotsyuk AA, Maan ZN, Kwon SH, Rodrigues M, Engel K, Stern-Buchbinder ZA, Bonham CA, Barrera J, Whittam AJ, Hu MS, Inayathullah M, Rajadas J, Gurtner GC. Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds. J Control Release 2019; 308:232-239. [PMID: 31299261 DOI: 10.1016/j.jconrel.2019.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
Chronic wounds remain a significant burden to both the healthcare system and individual patients, indicating an urgent need for new interventions. Deferoxamine (DFO), an iron-chelating agent clinically used to treat iron toxicity, has been shown to reduce oxidative stress and increase hypoxia-inducible factor-1 alpha (HIF-1α) activation, thereby promoting neovascularization and enhancing regeneration in chronic wounds. However due to its short half-life and adverse side effects associated with systemic absorption, there is a pressing need for targeted DFO delivery. We recently published a preclinical proof of concept drug delivery system (TDDS) which showed that transdermally applied DFO is effective in improving chronic wound healing. Here we present an enhanced TDDS (eTDDS) comprised exclusively of FDA-compliant constituents to optimize drug release and expedite clinical translation. We evaluate the eTDDS to the original TDDS and compare this with other commonly used delivery methods including DFO drip-on and polymer spray applications. The eTDDS displayed excellent physicochemical characteristics and markedly improved DFO delivery into human skin when compared to other topical application techniques. We demonstrate an accelerated wound healing response with the eTDDS treatment resulting in significantly increased wound vascularity, dermal thickness, collagen deposition and tensile strength. Together, these findings highlight the immediate clinical potential of DFO eTDDS to treating diabetic wounds. Further, the topical drug delivery platform has important implications for targeted pharmacologic therapy of a wide range of cutaneous diseases.
Collapse
|
Comparative Study |
6 |
43 |
25
|
Iron overload and chelation therapy in myelodysplastic syndromes. Crit Rev Oncol Hematol 2014; 91:64-73. [PMID: 24529413 DOI: 10.1016/j.critrevonc.2014.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/21/2013] [Accepted: 01/14/2014] [Indexed: 01/19/2023] Open
Abstract
Iron overload remains a concern in MDS patients especially those requiring recurrent blood transfusions. The consequence of iron overload may be more relevant in patients with low and intermediate-1 risk MDS who may survive long enough to experience such manifestations. It is a matter of debate whether this overload has time to yield organ damage, but it is quite evident that cellular damage and DNA genotoxic effect are induced. Iron overload may play a critical role in exacerbating pre-existing morbidity or even unmask silent ones. Under these circumstances, iron chelation therapy could play an integral role in the management of these patients. This review entails an in depth analysis of iron overload in MDS patients; its pathophysiology, effect on survival, associated risks and diagnostic options. It also discusses management options in relation to chelation therapy used in MDS patients and the impact it has on survival, hematologic response and organ function.
Collapse
|
Review |
11 |
40 |