1
|
Wang J, Zhi D, Zhou H, He X, Zhang D. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti 4O 7 anode. WATER RESEARCH 2018; 137:324-334. [PMID: 29567608 DOI: 10.1016/j.watres.2018.03.030] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.
Collapse
|
|
7 |
241 |
2
|
Li Z, Guo C, Lyu J, Hu Z, Ge M. Tetracycline degradation by persulfate activated with magnetic Cu/CuFe 2O 4 composite: Efficiency, stability, mechanism and degradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:85-96. [PMID: 30904816 DOI: 10.1016/j.jhazmat.2019.03.075] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Magnetically separable Cu/CuFe2O4 composite obtained by a solvothermal method was used to active persulfate (PS) for the removal of tetracycline (TC). Under different pH conditions, Cu/CuFe2O4 catalyst exhibited a higher catalytic activity for PS activation to degrade TC than that of CuFe2O4. The effects of some key parameters including initial pH value, PS concentration, catalyst dosage, reaction temperature and coexisting ions on TC degradation were investigated in Cu/CuFe2O4/PS system. The reuse of Cu/CuFe2O4 catalyst at pH 3.50, 7.00 and 11.00 indicated that the catalyst showed a low stability due to the corrosion of metallic copper (Cu°), but bicarbonate ions could enhance the stability and recyclability of this catalyst through the suppression of copper leaching. Both sulfate and hydroxyl radicals were the main reactive species in Cu/CuFe2O4/PS system. Cu° can not only work as electron donor to active PS to produce the reactive radicals but also act as an electron bridge to facilitate the fast electron transfer between PS and catalyst. The structural cuprous and ferrous ions on the surface of CuFe2O4 participated in the PS activation process through the redox reactions, as confirmed by XPS analysis. The possible degradation pathways of TC were proposed based on the identified intermediates.
Collapse
|
|
6 |
138 |
3
|
Golshan M, Kakavandi B, Ahmadi M, Azizi M. Photocatalytic activation of peroxymonosulfate by TiO 2 anchored on cupper ferrite (TiO 2@CuFe 2O 4) into 2,4-D degradation: Process feasibility, mechanism and pathway. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:325-337. [PMID: 30048947 DOI: 10.1016/j.jhazmat.2018.06.069] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/09/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
A thorough study of photo-oxidation efficiency of TiO2@CuFe2O4 dissociating peroxymonosulfate (PMS) is reported in detail. The origin of high catalytic activity was discussed as evidence by numerous controlled trials and several operational parameters. Based on quenching tests, possible mechanism and pathway of degradation were proposed. 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in TiO2@CuFe2O4/UV/PMS system could abide pseudo-first-order kinetics. Moreover, reaction rate constant (Kobs) showed a linear increasing trend as PMS and catalyst concentrations increased. Over 97.2% of 2,4-D (20 mg/L) was degraded within 60 min at 0.3 mM PMS and 0.1 g/L TiO2@CuFe2O4. However, the water matrix species inhibited 2,4-D degradation to different amounts and the inhibiting effect was as follows: HCO3- > NO3- > Cl- > SO42-. As-prepared catalyst showed a high ability of PMS activation, compared to other studied oxidants. Particularly, sulfate radicals were accounted for 2,4-D degradation in the catalytic oxidation reaction. TiO2@CuFe2O4 catalyst displayed the excellent recyclability and durability. Identification of intermediates and end-products brought about the conclusion that enhanced degradation involving dechlorination, dehydrogenation, hydroxylation, and ring cleavage, through SO4-, OH, O2- and holes attack during TiO2@CuFe2O4/PMS photocatalysis of 2,4-D. As conclusion, integration of TiO2, CuFe2O4 and UV light to efficient activation of PMS can be proposed as a successful and promising method to wastewater treatment effectively, because of the cogeneration of different reactive oxidizing species, simple and easy recovery of catalyst and good catalytic activity.
Collapse
|
|
7 |
124 |
4
|
Luo C, Jiang J, Ma J, Pang S, Liu Y, Song Y, Guan C, Li J, Jin Y, Wu D. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. WATER RESEARCH 2016; 96:12-21. [PMID: 27016634 DOI: 10.1016/j.watres.2016.03.039] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH < 6). NOM significantly decreased kobs due to the effects of radical scavenging and UV absorption with the former one being dominant. kobs decreased from 2.32 × 10(-3) s(-1) to 0.92 × 10(-3) s(-1) with the CO3(2-)/HCO3(-) concentration increased from 0.5 mM to 10 mM in the UV/persulfate process, while kobs slightly decreased from 2.54 × 10(-3) s(-1) in the absence of Cl(-) to 2.10 × 10(-3) s(-1) in the presence of 10 mM Cl(-). Most of these kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved.
Collapse
|
|
9 |
122 |
5
|
Wang L, Liu Y, Ma J, Zhao F. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell. WATER RESEARCH 2016; 88:322-328. [PMID: 26512810 DOI: 10.1016/j.watres.2015.10.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/26/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
Sulphamethoxazole (SMX) is extensively used in humans and livestock, but its appearance in natural water raises environmental concerns. This study demonstrated that SMX and its degradation product, 3-amino-5-methylisoxazole (3A5MI), could be effectively degraded in microbial fuel cell (MFC) reactors. Approximately 85% of 20 ppm SMX was degraded within 12 h, and this was a more rapid biodegradation rate than has been previously shown in the literature. In addition, 3A5MI, a toxic chemical that forms in the SMX degradation process, can be further mineralized. The degradation products of SMX were detected by mass spectrometry, and three speculated by-products were confirmed with chemical standards. It was observed that nitrogen atoms of SMX were progressively eliminated during the degradation process, which may relate with the degradation of SMX and 3A5MI. An antibacterial activity test showed that the biotoxicity of SMX towards Shewanella oneidensis MR-1 and Escherichia coli DH5α was greatly reduced after MFC treatment. Moreover, the ATP level of the MFC microbe was nearly threefold higher than that in open-circuit controls, which may be related to the rapid degradation of SMX in MFCs. This study can facilitate further investigations about the biodegradation of SMX.
Collapse
|
|
9 |
103 |
6
|
Chen J, Qu R, Pan X, Wang Z. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. WATER RESEARCH 2016; 103:215-223. [PMID: 27459151 DOI: 10.1016/j.watres.2016.07.041] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment.
Collapse
|
|
9 |
99 |
7
|
Zhang H, Wang Z, Li R, Guo J, Li Y, Zhu J, Xie X. TiO 2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. CHEMOSPHERE 2017; 185:351-360. [PMID: 28704666 DOI: 10.1016/j.chemosphere.2017.07.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Heterogeneous photocatalysis namely titanium dioxide supported on reed straw biochar (acid pre-treated) (TiO2/pBC) was synthesized by sol-gel method. The morphology, surface area and structure of TiO2/pBC were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). Low calcination condition maintained the structure of biochar completely and prevented the agglomeration of TiO2 particles. Due to the combination of adsorption and photocatalysis, TiO2/pBC performed higher removal efficiency of sulfamethoxazole (SMX) than pure TiO2 powder under UV light irradiation. The photocatalytic degradation (PCD) of SMX was also studied with the water collected from the Yellow River. Three high concentration inorganic anions (Cl-, NO3-, SO42-) of the river exerted certain degree of detrimental effects on the contaminant degradation. TiO2/pBC showed stable photocatalytic activity after five sequential PCD cycles. The biochar was able to promote further PCD on TiO2 by adsorbing SMX and intermediates thereby prolonging the separation lifetime of electrons (e-) and valence band hole (h+). The transformation intermediates of SMX were identified and three possible degradation reactions of hydroxylation, opening of isoxazole ring and cleavage of SN bond might occur during the PCD of SMX.
Collapse
|
|
8 |
95 |
8
|
Chopra S, Kumar D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020; 6:e04087. [PMID: 32510000 PMCID: PMC7265064 DOI: 10.1016/j.heliyon.2020.e04087] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pharmaceutical and personal care products (PPCPs) are the one of sub-class under emerging organic contaminants (EOCs). Ibuprofen is the world's third most consumable drug. This drug enters into our water system through human pharmaceutical use. It attracts the attention of environmentalist on the basis of risk associated, presence and transformation in the environment. The detection and removal are the two key area where we need to focus. The concentration of such compounds in waterbodies detected through conventional and also by the advanced methods. This review we described the available technologies including chemical, physical and biological methods, etc used the for removal of Ibuprofen. The pure culture based method, mixed culture approach and activated sludge culture approach focused and pathway of degradation of ibuprofen was deciphered by using the various methods of structure determination. The various degradation methods used for Ibuprofen are discussed. The advanced methods coupled with physical, chemical, biological, chemical methods like ozonolysis, oxidation and adsorption, nanotechnology based methods, nanocatalysis and use of nonosensors to detect the presence of small amount in waterbodies can enhance the future degradation of this drug. It is necessary to develop the new detection methods to enhance the detection of such pollutants. With the developments in new detection methods based on GC-MS//MS, HPLC, LC/MS and nanotechnology based sensors makes easier detection of these compounds which can detect even very minute amount with great sensitivity and in less time. Also, the isolation and characterization of more potent microbial strains and nano-photocatalysis will significantly increase the future degradation of such harmful compounds from the environment.
Collapse
|
Review |
5 |
94 |
9
|
Zhang X, Chen J, Jiang S, Zhang X, Bi F, Yang Y, Wang Y, Wang Z. Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): Degradation pathway and mechanism studies. J Colloid Interface Sci 2020; 588:122-137. [PMID: 33388578 DOI: 10.1016/j.jcis.2020.12.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Anatase/rutile titanium dioxide (TiO2) with heterophase junction and large Brunauer-Emmett-Teller (BET) specific surface area (50.1 m2 g-1) is successfully synthesized by calcinating Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) with 30% O2/Ar at the temperature of 600 °C (M-O-600). Several techniques are used to examine the physicochemical, photoelectrochemical and optical properties of samples, and their photocatalytic performances are evaluated by photodegradation of gaseous toluene and liquidus tetracycline (TC) under visible light illumination. It is found that the calcination temperature has significant influence on the crystal structure and physicochemical parameters of TiO2. The weight fractions of rutile and anatase TiO2 of M-O-600 are approximately 0.7 and 0.3, which displays outstanding photocatalytic activity. Through the construction of heterophase junction, M-O-600 has better oxygen adsorption and higher density of localized states, which effectively promotes the generation of superoxide radical (·O2-) and hydroxyl radical (·OH) species. In-situ infrared spectra indicate that toluene is oxidized to benzyl alcohol, benzaldehyde and benzoic acid in turn and then oxidized to formic acid and acetic acid before eventually degraded into H2O and CO2. Gas chromatography-mass spectrometry (GC-MS) is also used to further investigate the degradation pathway of toluene. Degradation pathway and mechanism of TC are studied by liquid chromatography-tandem mass spectrometry (LC-MS). Moreover, three-dimensional excitation-emission matrix fluorescence spectroscopy (3D EEMs) and total organic carbon (TOC) show that TC can be effectively mineralized through a series of reactions by M-O-600 during photocatalysis.
Collapse
|
Journal Article |
5 |
87 |
10
|
Li H, Li Y, Xiang L, Huang Q, Qiu J, Zhang H, Sivaiah MV, Baron F, Barrault J, Petit S, Valange S. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:32-41. [PMID: 25621831 DOI: 10.1016/j.jhazmat.2015.01.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 05/29/2023]
Abstract
A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment.
Collapse
|
Evaluation Study |
10 |
85 |
11
|
Wang C, Cai M, Liu Y, Yang F, Zhang H, Liu J, Li S. Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi 2MoO 6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight. J Colloid Interface Sci 2021; 605:727-740. [PMID: 34365309 DOI: 10.1016/j.jcis.2021.07.137] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Developing durable photocatalysts with highly efficient antibiotics degradation is crucial for environment purification. Herein, tetra (4-carboxyphenyl) porphyrin (TCPP) was loaded onto the surface of Bi2MoO6 microspheres to gain hierarchical organic-inorganic TCPP/Bi2MoO6 (TCPP/BMO) heterojunctions via a facile impregnation strategy. The catalytic properties of these catalysts were comprehensively investigated through the photodegradation of tetracycline hydrochloride (TC) under visible light. Among all the TCPP/BMO heterojunctions, the highest photodegradation rate constant (0.0278 min-1) was achieved with 0.25 wt% TCPP (TCPP/BMO-2), which was approximately 1.15 folds greater than that of pristine Bi2MoO6 and far superior to pure TCPP. The extremely high photocatalytic performance is attributed to the interfacial interaction between TCPP and Bi2MoO6, which favors the efficient separation of charge carriers and the enhancement of visible-light absorbance. TCPP/BMO-2 possesses high mineralization capability and good recycling performance. Photo-induced O2-, h+, and OH were mainly responsible for the degradation of TC. The degradation pathways of TC and toxicity of degradation intermediates were analyzed based on the intermediates detected by the high performance liquid chromatography-mass spectrometer (HPLC-MS) and the toxicity assessment by the quantitative structure-activity relationship (QSAR) prediction. A possible photocatalytic mechanism over TCPP/BMO is proposed. This work offers an insight in developing the porphyrin-based organic-inorganic heterojunctions for effectively remedying pharmaceutical wastewater.
Collapse
|
Journal Article |
4 |
85 |
12
|
Ding T, Lin K, Yang B, Yang M, Li J, Li W, Gan J. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. BIORESOURCE TECHNOLOGY 2017; 238:164-173. [PMID: 28433904 DOI: 10.1016/j.biortech.2017.04.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 05/21/2023]
Abstract
Naproxen is one of the most prevalent pharmaceuticals and of great environment concern. Information about bioremediation of naproxen by algae remains limited and no study has been reported on the degradation mechanism and the toxicity of NPX on algae. In this study, both Cymbella sp. and Scenedesmus quadricauda showed complete growth inhibition (100%) at 100mgL-1 within 24h. Biochemical characteristics including chlorophyll a, carotenoid contents and enzyme activities for these two microalgae were affected by NPX at relatively high concentrations after 4d of exposure. Degradation of naproxen was accelerated by both algae species. Cymbella sp. showed a more satisfactive effect in the bioremediation of NPX with higher removal efficiency. A total of 12 metabolites were identified by LC-MS/MS and the degradation pathways of naproxen in two algae were proposed. Hydroxylation, decarboxylation, demethylation, tyrosine conjunction and glucuronidation contributed to naproxen transformation in algal cells.
Collapse
|
|
8 |
84 |
13
|
Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO 2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J Colloid Interface Sci 2018; 527:202-213. [PMID: 29800869 DOI: 10.1016/j.jcis.2018.05.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
In order to achieve remarkable synergy between adsorption and photocatalysis for antibiotics elimination from water, in this study, a graphitized mesoporous carbon (GMC)-TiO2 nanocomposite was successfully synthesized by an extended resorcinol-formaldehyde (R-F) method. In the composite, the lamellar GMC nanosheets possessed large specific surface area and mesoporous structure, and could adsorb and enrich antibiotics effectively. This could not only reduce the antibiotic concentration in water shortly, but also greatly increase the chances for antibiotics to contact with and be degraded by photocatalysts and active species. Interestingly, GMC could also facilitate the transportation of photogenerated electrons to further improve the photocatalytic efficiency of TiO2, and 15 mg/L ciprofloxacin (CIP) could be totally mineralized in 1.5 h. Meanwhile, the biological inhibition of reaction solution on luminescence bacteria decreased obviously with antibiotics degradation until non-toxicity, reinforcing the thorough elimination of antibiotics. Besides, from the viewpoint of organic chemistry, several plausible CIP degradation pathways were established using HPLC-MS technique, and an interesting intermediate with five-membered ring structure was firstly proposed, which is helpful to deeply understand CIP degradation. Strong synergy between adsorption and photocatalysis, along with quick and efficient antibiotics elimination, double confirm the great potential of GMC-TiO2 nanocomposite for practical antibiotic wastewater purification.
Collapse
|
Journal Article |
7 |
84 |
14
|
Zhang Z, Xie X, Yu Z, Cheng H. Influence of chemical speciation on photochemical transformation of three fluoroquinolones (FQs) in water: Kinetics, mechanism, and toxicity of photolysis products. WATER RESEARCH 2019; 148:19-29. [PMID: 30343195 DOI: 10.1016/j.watres.2018.10.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 05/12/2023]
Abstract
This study investigated the contribution of direct, indirect, and self-sensitized photolysis to the photochemical fate of three model fluoroquinolones (FQs), i.e., lomefloxacin (LOM), norfloxacin (NOR), and ofloxacin (OFL), and demonstrated the influence of chemical speciation on their photodegradation behavior, a topic that has received relatively little attention. Results suggest that these FQs in water transformed mainly via direct photolysis, while hydroxyl radical played a key role in their indirect and self-sensitized photolysis. Chemical speciation of such zwitterionic compounds significantly affected the kinetics of their phototransformation, with the quantum yields of photodegradation decreased in the order of zwitterionic (FQsH) > anionic (FQs-) > cationic (FQsH2+). The photodegradation pathways of FQs depended on both their structures and chemical speciation. Defluorination for LOM in C-8 and NOR in C-6 was more significant when they were present in zwitterionic form than in the other forms. Cationic FQs underwent direct piperazinyl ring cleavage, and zwitterionic ones underwent piperazinyl ring oxidation, while the degradation pathway of piperazinyl ring for FQs in anionic form was structure dependent. Decarboxylation for zwitterionic FQs occurred more slowly compared to both cationic and anionic ones, and the FQs bearing electron-donating groups in C-8 position degraded more easily in cationic form than the anionic ones, while the opposite was true for the FQs without such a group in C-8 position. Results of Vibrio fischeri bioluminescence inhibition tests showed the toxicity of zwitterionic NOR and OFL significantly decreased after photodegradation, while the degradation products of LOM exhibited greater toxicity. These findings indicate that chemical speciation of zwitterionic compounds could affect the kinetics and pathways of their photochemical transformation, and thus have important implications on their fate and risk in aquatic environment.
Collapse
|
|
6 |
82 |
15
|
Hou L, Li X, Yang Q, Chen F, Wang S, Ma Y, Wu Y, Zhu X, Huang X, Wang D. Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:453-464. [PMID: 30716637 DOI: 10.1016/j.scitotenv.2019.01.190] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
On account of high oxidation ability of sulfate radical-based advanced oxidation processes (AOPs), the eco-friendly catalysts for peroxymonosulfate (PMS) activation have received considerable attentions. Previous studies mainly focused on Cobalt-based catalyst due to its high activation efficiency, such as Co3O4/MnO2 and FeCo-layered double hydroxide (LDH), whereas Cobalt-based catalyst usually has serious risk to environment. To avoid this risk, MnFe-LDH was primarily synthesized in this research by simple co-precipitation and subsequently utilized as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organic pollutants. The experimental results demonstrated that MnFe-LDH with a lower dosage (0.20 g/L) could efficiently activate PMS to achieve 97.56% removal of target organic pollutants Acid Orange 7 (AO7). The AO7 degradation process followed the pseudo-first-order kinetic well with an activation energy of 21.32 kJ/mol. The intrinsic influencing mechanism was also investigated. The quenching experiment and electron spin resonance (ESR) indicated that sulfate and hydroxyl radicals were produced by the effective activation of PMS by MnFe-LDH, resulting in a high rate of decolorization. The possible AO7 removal pathway in the constructed MnFe-LDH/PMS system was presented on the basis of UV-vis spectrum analysis and GC-MS, which suggested that the AO7 degradation was firstly initiated by breaking azo linkages, then generated phenyl and naphthalene intermediates and finally presented as ring-opening products. This effective MnFe-LDH/PMS system showed great application potential in the purification of wastewater contaminated by refractory organic pollutants.
Collapse
|
|
6 |
81 |
16
|
Zhang Y, Zhou J, Chen J, Feng X, Cai W. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122315. [PMID: 32097853 DOI: 10.1016/j.jhazmat.2020.122315] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/04/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
This work demonstrates a facile route to assemble MIL-53(Fe) by solvothermal method. Sulfate radical-based advanced oxidation processes (SR-AOPs) coupling with photocatalysis based on MIL-53(Fe) were investigated under visible light. The catalytic effect of MIL-53(Fe) for the degradation of tetracycline hydrochloride (TC-HCl) was systematically studied, as well as the reusability of the catalyst and the effect of operating parameters. The results indicated that 99.7 % of TC (300 mg/L) could be degraded within 80 min in the SR-AOPs coupling with photocatalysis processes, as compared to 71.4 % for the SR-AOPs and only 17.1 % for the photocatalysis. The trapping experiments and electron spin-resonance spectroscopy (ESR) showed the photogenerated electrons of MIL-53(Fe) under visible light irritation were trapped by persulfate to generated sulfate radicals which effectively suppressed the recombination of photogenerated carriers. And also, the SO4- could be formed by the conversion between Fe (Ⅲ) and Fe (Ⅱ) in MIL-53(Fe). Moreover, OH and O2- generated by the reaction increased significantly due to the increase of SO4- which generated more OH and reduced photogenerated carrier recombination respectively. Thus, the degradation efficiency of TC-HCl was improved. Furthermore, the degradation pathway for TC-HCl was proposed using the theoretical calculations and liquid chromatography coupled with mass spectrometry.
Collapse
|
|
5 |
76 |
17
|
He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4563-4601. [PMID: 34483792 PMCID: PMC8403697 DOI: 10.1007/s10311-021-01295-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/28/2021] [Indexed: 05/20/2023]
Abstract
Antibiotic pollution is a major health issue inducing antibiotic resistance and the inefficiency of actual drugs, thus calling for improved methods to clean water and wastewater. Here we review the recent development of heterojunction photocatalysis and application in degrading tetracycline. We discuss mechanisms for separating photogenerated electron-hole pairs in different heterojunction systems such as traditional, p-n, direct Z-scheme, step-scheme, Schottky, and surface heterojunction. Degradation pathways of tetracycline during photocatalysis are presented. We compare the efficiency of tetracycline removal by various heterojunctions using quantum efficiency, space time yield, and figures of merit. Implications for the treatment of antibiotic-contaminated wastewater are discussed.
Collapse
|
Review |
4 |
76 |
18
|
Bu L, Zhou S, Zhu S, Wu Y, Duan X, Shi Z, Dionysiou DD. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation. WATER RESEARCH 2018; 146:288-297. [PMID: 30292129 DOI: 10.1016/j.watres.2018.09.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
UV/monochloramine (NH2Cl) process has attracted some attention for the elimination of contaminants of emerging concern as a novel advanced oxidation process. However, there is still much uncertainty on the performance and mechanisms of UV/NH2Cl process because of its complexity and generation of various species of radicals, including NH2•, HO•, Cl• and other reactive chlorine species (RCS). The mechanism and influence factors of degradation of carbamazepine (CBZ) in the UV/NH2Cl process were investigated, and a synergistic effect was observed. Degradation of CBZ under all investigated conditions followed pseudo-first order kinetics. The corresponding rate constant increased along with the dosage of NH2Cl, and was affected significantly by the presence of bicarbonate and natural organic matter. The process has little pH-dependency, while the specific contribution of RCS and HO• changed with solution pH, and RCS always act as a major contributor to the degradation of CBZ. Eleven byproducts of CBZ were identified and their respective evolution profiles were determined. The participation of UV in chloramination can reduce the formation of nitrogenous DBPs, but promote the formation of carbonaceous DBPs. Furthermore, when influent, sand filtered, and granular activated carbon filtered water was respectively used as background, degradation of CBZ was inhibited to different degree and more disinfection byproducts (DBPs) were generated, compared to deionized water. The electrical energy per order for degradation of CBZ in the UV/NH2Cl process was also calculated to obtain some preliminary cost information.
Collapse
|
|
7 |
74 |
19
|
Zhang C, Tian S, Qin F, Yu Y, Huang D, Duan A, Zhou C, Yang Y, Wang W, Zhou Y, Luo H. Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation: Experiments and theoretical calculation. WATER RESEARCH 2021; 194:116915. [PMID: 33607387 DOI: 10.1016/j.watres.2021.116915] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
In this study, visible light (VL) was adopted for permanganate (PM) activation without additional catalyst, where sulfamethazine (SMT) was selected as the probe compound. Experiment results showed that the VL/PM system can effectively degrade SMT through pseudo-first-order reaction kinetics. Influencing factors including PM dosage, solution pH, humid acid (HA) and coexisting anions (CO32-, SO42-, Cl- and NO3-) which affect SMT photo-degradation were also examined. Pyrophosphate (PP) had an inhibitory effect on SMT degradation due to the complexation of PP with Mn (III). Electron spin resonance (ESR) spectrometry and UV-Vis spectrophotometer proved that VL can activate PM to generate ·O2- and Mn (III) reactive species. Furthermore, based on the active site prediction, intermediates identification and Density Functional Theory (DFT) calculation, two main degradation pathways involving SMT molecular rearrangement and cleavage of S-N bond were proposed. Moreover, the energy barriers of the two degradation pathways were also calculated. This study offers a novel approach for aqueous SMT removal and deepens our understanding of the degradation mechanism of SMT through DFT calculation, which hopes to shed light on the future development of VL/PM treatment.
Collapse
|
|
4 |
71 |
20
|
Liang Q, Liu X, Wang J, Liu Y, Liu Z, Tang L, Shao B, Zhang W, Gong S, Cheng M, He Q, Feng C. In-situ self-assembly construction of hollow tubular g-C 3N 4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123355. [PMID: 32659580 DOI: 10.1016/j.jhazmat.2020.123355] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 05/15/2023]
Abstract
A highly reactive hollow tubular g-C3N4 isotype heterojunction (SCN-CN) was designed to enhance visible light absorption and manipulate the directed transfer of electrons and holes. The results of UV-vis DRS, XPS valence band and DFT theoretical calculations indicated S doping increases the visible-light absorption capacity and changed the ba nd gap structure of g-C3N4 (CN), resulting in the transfer of electrons from the CN to the SCN and holes from the SCN to the CN under visible light. In addition, the tubular structure of the SCN-CN facilitated the transfer of electrons in the longitudinal direction, which reduced charge carrier recombination. Furthermore, the optical properties, electronic structure, and electron transfer of SCN-CN were also studied by experiments and theoretical calculations. The antibiotic tetracycline hydrochloride (TCH) and dye Rhodamine B (RHB) were subjected to evaluate the photocatalytic performance of SCN-CN. The scavenger tests and ESR data showed that the h+, ·O2- and ·OH worked together in the photocatalytic process. Moreover, the photocatalytic degradation pathway was analyzed by LC-MS. This study synthesized a hollow tubular CN isotype heterojunction with high visible-light photocatalytic performance and provided a theoretical basis for CN isotype heterojunction.
Collapse
|
|
4 |
68 |
21
|
Bhatt P, Huang Y, Rene ER, Kumar AJ, Chen S. Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. BIORESOURCE TECHNOLOGY 2020; 305:123074. [PMID: 32146283 DOI: 10.1016/j.biortech.2020.123074] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The main aim of this study was to investigate and characterize the bacterial strain that has the potential to degrade allethrin. The isolated strain, Sphingomonas trueperi CW3, degraded allethrin (50 mg L-1) in batch experiments within seven days. The Box-Behnken design optimized allethrin degradation and had a confirmation of 93% degradation at pH 7.0, at a temperature of 30 °C and an inocula concentration of 100 mg L-1. The results from gas chromatography and mass spectrometry analysis confirmed the existence of nine metabolites from the degradation of allethrin with strain CW3. The cleavage of the ester bond, followed by the degradation of the five-carbon rings, was allethrin's primary degradation pathway. The strain CW3 also degraded other widely applied synthetic pyrethroids such as cyphenothrin, bifenthrin, permethrin, tetramethrin, β-cypermethrin and chlorempenthrin. Furthermore, in experiments performed with sterilized soil, strain CW3 based bioaugmentation effectively removed allethrin at a significantly reduced half-life.
Collapse
|
|
5 |
67 |
22
|
Cai M, Ma S, Hu R, Tomberlin JK, Yu C, Huang Y, Zhan S, Li W, Zheng L, Yu Z, Zhang J. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:634-642. [PMID: 30014941 DOI: 10.1016/j.envpol.2018.06.105] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics can effectively protect livestock from pathogen infection, but residual antibiotics in manure bring risks to ecosystems and public health. Here, we demonstrated that black soldier fly larvae (BSFL) could provide an environmentally friendly manure treatment based on their ability to effectively and rapidly degrade tetracycline (TC). Investigation of the biological mechanisms and degradation pathways of TC by BSFL indicated that nearly 97% of TC was degraded within 12 days in a non-sterile BSFL treatment system, which is up to 1.6-fold faster than that achieved by normal composting. Our results showed that rapid TC-degradation was largely carried out by the intestinal microbiota of the larvae, which doubled the TC-degradation rates compared to those achieved in sterile BSFL systems. This conclusion was further supported by highly-efficient TC-biodegradation both in vivo and in vitro by four larval intestinal isolates. Moreover, detailed microbiome analysis indicated that intestinal bacterial and fungal communities were modified along with significantly increased tet gene copy number in the gut, providing the means to tolerate and degrade TC. Through analysis of TC degradation in vitro, four possible biodegradation products, two hydrolysis products and three conceivable inactivation products were identified, which suggested TC degradation reactions including hydrolysis, oxygenation, deamination, demethylation, ring-cleavage, modification, etc. In conclusion, our studies suggested an estimation of the fate of TC antibiotics in manure treatment by BSFL colonized by gut microbes. These results may provide a strategy for accelerating the degradation of antibiotics by adjusting the intestinal microbiota of BSFL.
Collapse
|
|
7 |
66 |
23
|
Berkani M, Smaali A, Kadmi Y, Almomani F, Vasseghian Y, Lakhdari N, Alyane M. Photocatalytic degradation of Penicillin G in aqueous solutions: Kinetic, degradation pathway, and microbioassays assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126719. [PMID: 34364215 DOI: 10.1016/j.jhazmat.2021.126719] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 05/18/2023]
Abstract
The photocatalytic degradation of pharmaceutical micropollutants of Penicillin G (PG) was investigated in a photoreactor at a laboratory scale. The impact of type of catalyst, pH, and initial concentration of PG were studied. Maximum removal efficiency was obtained at pH = 6.8, [ZnO]0 = 0.8 g L-1, and [PG]0 = 5 mg L-1 and reaction time of 150 min. The addition of persulfate sodium (PPS) enhanced the efficiency of the photocatalytic reaction. The efficiency of photolysis process in the presence of PPS was significantly improved to 72.72% compared to the classical photocatalysis system (56.71%). Optimum concentration of PPS to completely degraded PG was found to be 500 mg L-1. The QuEChERS extraction, GC-MS/MS method, and concentration technique showed favorable performance identification of the possible mechanism of PG degradation pathway. Toxicity of PG and its by-products were evaluated using microbioassays assessment based on nine selected bacterial strains. Results confirmed the effectiveness of the implemented system and its safe use via the bacteria Bacillus subtilis, which has illustrated significant activity. Due to the high efficiency, facility benefits, and low-cost of the suggested process, the process can be considered for the degradation of various pharmaceutical contaminants in pharmaceutical industry treatment under the optimal conditions.
Collapse
|
|
3 |
66 |
24
|
Ma X, Cheng Y, Ge Y, Wu H, Li Q, Gao N, Deng J. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. ULTRASONICS SONOCHEMISTRY 2018; 40:763-772. [PMID: 28946483 DOI: 10.1016/j.ultsonch.2017.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 05/13/2023]
Abstract
Commercial nanosized zero-valent copper (nZVC) was used as hydrogen peroxide (H2O2) activator in conjunction with ultrasonic irradiation (US) for the oxidative degradation of norfloxacin (NOR) in this study. Compared with silent degradation system, a significantly enhanced NOR removal was obtained in sono-advanced Fenton process, which involved a synergistic effect between sonolysis and Fenton-like reaction. Almost complete removal of NOR was achieved at 30min when the operating conditions were 0.25g/L nZVC and 10mM H2O2 with ultrasound power of 240W at 20kHz. The released Cu+ during the nZVC dissolution was the predominant copper species to activate H2O2 and yield hydroxyl radicals (OH) in US/nZVC/H2O2 system. According to the radical quenching experiments and electron paramagnetic resonance technique, hydroxyl radicals in solution (OHfree) were verified as the primary reactive species, and superoxide anion radicals (O2-) were regarded as the mediator for the copper cycling by reduction of Cu2+ to Cu+. NOR removal efficiencies were improved in various degrees when increased nZVC dosage, ultrasound power, hydrogen-ion amount and H2O2 concentration. Moreover, the inhibitory effect of different inorganic salts on NOR degradation followed the sequence of Na2SO4>NaNO3≈no salt>NaCl>NaHCO3. Finally, eleven intermediates were identified and five oxidation pathways were proposed, the cleavage of piperazine ring and transformation of quinolone group seemed to be the major pathway.
Collapse
|
|
7 |
66 |
25
|
Zhao HM, Du H, Lin J, Chen XB, Li YW, Li H, Cai QY, Mo CH, Qin HM, Wong MH. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:170-178. [PMID: 27099998 DOI: 10.1016/j.scitotenv.2016.03.171] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
A newly isolated strain Agromyces sp. MT-O could utilize various phthalates and efficiently degraded di-(2-ethylhexyl) phthalate (DEHP). Response surface methodology was successfully employed for the optimization of culture conditions including pH (7.2), temperature (29.6), and inoculum size (OD600 of 0.2), resulting in almost complete degradation of DEHP (200mgL(-1)) within 7days. At different initial concentrations (50-1000mgL(-1)), DEHP degradation curves were fitted well with the first-order kinetic model, and the half-life of DEHP degradation ranged from 0.83 to 2.92days. Meanwhile, the substrate inhibition model was used to describe the special degradation rate with qmax, Ks, and Ki of 0.6298day(-1), 86.78mgL(-1), and 714.3mgL(-1), respectively. The GC-MS analysis indicated that DEHP was degraded into mono-ethylhexyl phthalate and phthalate acid before its complete mineralization. Bioaugmentation of DEHP-contaminated soils with strain MT-O has greatly enhanced DEHP disappearance rate in soils, providing great potential for efficiently remediating DEHP-contaminated environment.
Collapse
|
|
9 |
66 |