1
|
Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J Genet Genomics 2015; 42:195-205. [PMID: 26059768 DOI: 10.1016/j.jgg.2015.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/21/2022]
Abstract
The importance of pyrimidines lies in the fact that they are structural components of a broad spectrum of key molecules that participate in diverse cellular functions, such as synthesis of DNA, RNA, lipids, and carbohydrates. Pyrimidine metabolism encompasses all enzymes involved in the synthesis, degradation, salvage, interconversion and transport of these molecules. In this review, we summarize recent publications that document how pyrimidine metabolism changes under a variety of conditions, including, when possible, those studies based on techniques of genomics, transcriptomics, proteomics, and metabolomics. First, we briefly look at the dynamics of pyrimidine metabolism during nonpathogenic cellular events. We then focus on changes that pathogen infections cause in the pyrimidine metabolism of their host. Next, we discuss the effects of antimetabolites and inhibitors, and finally we consider the consequences of genetic manipulations, such as knock-downs, knock-outs, and knock-ins, of pyrimidine enzymes on pyrimidine metabolism in the cell.
Collapse
|
Review |
10 |
111 |
2
|
Peng WF, Huang CY. Allantoinase and dihydroorotase binding and inhibition by flavonols and the substrates of cyclic amidohydrolases. Biochimie 2014; 101:113-22. [PMID: 24418229 DOI: 10.1016/j.biochi.2014.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/02/2014] [Indexed: 01/10/2023]
Abstract
Allantoinase and dihydroorotase are members of the cyclic amidohydrolases family. Allantoinase and dihydroorotase possess very similar binuclear metal centers in the active site and may use a similar mechanism for catalysis. However, whether the substrate specificities of allantoinase and dihydroorotase overlap and whether the substrates of other cyclic amidohydrolases inhibit allantoinase and dihydroorotase remain unknown. In this study, the binding and inhibition of allantoinase (Salmonella enterica serovar Typhimurium LT2) and dihydroorotase (Klebsiella pneumoniae) by flavonols and the substrates of other cyclic amidohydrolases were investigated. Hydantoin and phthalimide, substrates of hydantoinase and imidase, were not hydrolyzed by allantoinase and dihydroorotase. Hydantoin and dihydroorotate competitively inhibited allantoinase, whereas hydantoin and allantoin bind to dihydroorotase, but do not affect its activity. We further investigated the effects of the flavonols myricetin, quercetin, kaempferol, and galangin, on the inhibition of allantoinase and dihydroorotase. Allantoinase and dihydroorotase were both significantly inhibited by kaempferol, with IC50 values of 35 ± 3 μM and 31 ± 2 μM, respectively. Myricetin strongly inhibited dihydroorotase, with an IC50 of 40 ± 1 μM. The double reciprocal of the Lineweaver-Burk plot indicated that kaempferol was a competitive inhibitor for allantoinase but an uncompetitive inhibitor for dihydroorotase. A structural study using PatchDock showed that kaempferol was docked in the active site pocket of allantoinase but outside the active site pocket of dihydroorotase. These results constituted a first study that naturally occurring product flavonols inhibit the cyclic amidohydrolases, allantoinase, and dihydroorotase, even more than the substrate analogs (>3 orders of magnitude). Thus, flavonols may serve as drug leads for designing compounds that target several cyclic amidohydrolases.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
31 |
3
|
Del Caño-Ochoa F, Moreno-Morcillo M, Ramón-Maiques S. CAD, A Multienzymatic Protein at the Head of de Novo Pyrimidine Biosynthesis. Subcell Biochem 2020; 93:505-538. [PMID: 31939163 DOI: 10.1007/978-3-030-28151-9_17] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein that carries the enzymatic activities for the first three steps in the de novo biosynthesis of pyrimidine nucleotides: glutamine-dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase and Dihydroorotase. This metabolic pathway is essential for cell growth and proliferation and is conserved in all living organisms. However, the fusion of the first three enzymatic activities of the pathway into a single multienzymatic protein only occurs in animals. In prokaryotes, by contrast, these activities are encoded as distinct monofunctional enzymes that function independently or by forming more or less transient complexes. Whereas the structural information about these enzymes in bacteria is abundant, the large size and instability of CAD has only allowed a fragmented characterization of its structure. Here we retrace some of the most significant efforts to decipher the architecture of CAD and to understand its catalytic and regulatory mechanisms.
Collapse
|
Review |
5 |
30 |
4
|
Huang YH, Lien Y, Chen JH, Lin ES, Huang CY. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract. Biochimie 2020; 171-172:124-135. [PMID: 32147511 DOI: 10.1016/j.biochi.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. This enzyme is important in pyrimidine metabolism, and blocking its activity would be detrimental to cell survival. This study investigated the dihydropyrimidinase inhibition by plumbagin isolated from the extract of carnivorous plant Nepenthes miranda (Nm). Plumbagin inhibited dihydropyrimidinase with IC50 value of 58 ± 3 μM. Double reciprocal results of Lineweaver-Burk plot indicated that this compound is a competitive inhibitor of dihydropyrimidinase. Fluorescence quenching analysis revealed that plumbagin could form a stable complex with dihydropyrimidinase with the Kd value of 37.7 ± 1.4 μM. Docking experiments revealed that the dynamic loop crucial for stabilization of the intermediate state in dihydropyrimidinase might be involved in the inhibition effect of plumbagin. Mutation at either Y155 or K156 within the dynamic loop of dihydropyrimidinase caused low plumbagin binding affinity. In addition to their dihydropyrimidinase inhibition, plumbagin and Nm extracts also exhibited cytotoxicity on melanoma cell survival, migration, and proliferation. Further research can directly focus on designing compounds that target the dynamic loop in dihydropyrimidinase during catalysis.
Collapse
|
Journal Article |
5 |
23 |
5
|
Huang YH, Ning ZJ, Huang CY. Crystal structure of dihydropyrimidinase in complex with anticancer drug 5-fluorouracil. Biochem Biophys Res Commun 2019; 519:160-165. [PMID: 31481233 DOI: 10.1016/j.bbrc.2019.08.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Dihydropyrimidinase (DHPase) catalyzes the reversible cyclization of dihydrouracil to N-carbamoyl-β-alanine in the second step of the pyrimidine degradation pathway. Whether 5-fluorouracil (5-FU), the best-known fluoropyrimidine that is used to target the enzyme thymidylate synthase for anticancer therapy, can bind to DHPase remains unknown. In this study, we found that 5-FU can form a stable complex with Pseudomonas aeruginosa DHPase (PaDHPase). The crystal structure of PaDHPase complexed with 5-FU was determined at 1.76 Å resolution (PDB entry 6KLK). Various interactions between 5-FU and PaDHPase were examined. Six residues, namely, His61, Tyr155, Asp316, Cys318, Ser289 and Asn337, of PaDHPase were involved in 5-FU binding. Except for Cys318, these residues are also known as the substrate-binding sites of DHPase. 5-FU interacts with the main chains of residues Ser289 (3.0 Å) and Asn337 (3.2 Å) and the side chains of residues Tyr155 (2.8 Å) and Cys318 (2.9 Å). Mutation at either Tyr155 or Cys318 of PaDHPase caused a low 5-FU binding activity of PaDHPase. This structure and the binding mode provided molecular insights into how the dimetal center in DHPase undergoes a conformational change during 5-FU binding. Further research can directly focus on revisiting the role of DHPase in anticancer therapy.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
20 |
6
|
Tzeng CT, Huang YH, Huang CY. Crystal structure of dihydropyrimidinase from Pseudomonas aeruginosa PAO1: Insights into the molecular basis of formation of a dimer. Biochem Biophys Res Commun 2016; 478:1449-55. [PMID: 27576201 DOI: 10.1016/j.bbrc.2016.08.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 01/31/2023]
Abstract
Dihydropyrimidinase, a tetrameric metalloenzyme, is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. In this paper, we report the crystal structure of dihydropyrimidinase from Pseudomonas aeruginosa PAO1 at 2.1 Å resolution. The structure of P. aeruginosa dihydropyrimidinase reveals a classic (β/α)8-barrel structure core embedding the catalytic dimetal center and a β-sandwich domain, which is commonly found in the architecture of dihydropyrimidinases. In contrast to all dihydropyrimidinases, P. aeruginosa dihydropyrimidinase forms a dimer, rather than a tetramer, both in the crystalline state and in the solution. Basing on sequence analysis and structural comparison of the C-terminal region and the dimer-dimer interface between P. aeruginosa dihydropyrimidinase and Thermus sp. dihydropyrimidinase, we propose a working model to explain why this enzyme cannot be a tetramer.
Collapse
|
Journal Article |
9 |
20 |
7
|
Guan HH, Huang YH, Lin ES, Chen CJ, Huang CY. Structural basis for the interaction modes of dihydroorotase with the anticancer drugs 5-fluorouracil and 5-aminouracil. Biochem Biophys Res Commun 2021; 551:33-37. [PMID: 33714757 DOI: 10.1016/j.bbrc.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway of pyrimidine nucleotides and considered an attractive target for potential antimalarial, anticancer, and antipathogen chemotherapy. Whether the FDA-approved clinical drug 5-fluorouracil (5-FU) that is used to target the enzyme thymidylate synthase for anticancer therapy can also bind to DHOase remains unknown. Here, we report the crystal structures of DHOase from Saccharomyces cerevisiae (ScDHOase) complexed with malate, 5-FU, and 5-aminouracil (5-AU). ScDHOase shares structural similarity with Escherichia coli DHOase. We also characterized the binding of 5-FU and 5-AU to ScDHOase by using the fluorescence quenching method. These complexed structures revealed that residues Arg18, Asn43, Thr106, and Ala275 of ScDHOase were involved in the 5-FU (PDB entry 6L0B) and 5-AU binding (PDB entry 6L0F). Overall, these results provide structural insights that may facilitate the development of new inhibitors targeting DHOase and constitute the 5-FU and 5-AU interactomes for further clinical chemotherapies.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
18 |
8
|
Huang CY. Structure, catalytic mechanism, posttranslational lysine carbamylation, and inhibition of dihydropyrimidinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:63-96. [PMID: 32951816 DOI: 10.1016/bs.apcsb.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dihydropyrimidinase catalyzes the reversible hydrolytic ring opening of dihydrouracil and dihydrothymine to N-carbamoyl-β-alanine and N-carbamyl-β-aminoisobutyrate, respectively. Dihydropyrimidinase from microorganisms is normally known as hydantoinase because of its role as a biocatalyst in the synthesis of d- and l-amino acids for the industrial production of antibiotic precursors and its broad substrate specificity. Dihydropyrimidinase belongs to the cyclic amidohydrolase family, which also includes imidase, allantoinase, and dihydroorotase. Although these metal-dependent enzymes share low levels of amino acid sequence homology, they possess similar active site architectures and may use a similar mechanism for catalysis. By contrast, the five human dihydropyrimidinase-related proteins possess high amino acid sequence identity and are structurally homologous to dihydropyrimidinase, but they are neuronal proteins with no dihydropyrimidinase activity. In this chapter, we summarize and discuss current knowledge and the recent advances on the structure, catalytic mechanism, and inhibition of dihydropyrimidinase.
Collapse
|
|
5 |
17 |
9
|
Lipowska J, Miks CD, Kwon K, Shuvalova L, Zheng H, Lewiński K, Cooper DR, Shabalin IG, Minor W. Pyrimidine biosynthesis in pathogens - Structures and analysis of dihydroorotases from Yersinia pestis and Vibrio cholerae. Int J Biol Macromol 2019; 136:1176-1187. [PMID: 31207330 PMCID: PMC6686667 DOI: 10.1016/j.ijbiomac.2019.05.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The de novo pyrimidine biosynthesis pathway is essential for the proliferation of many pathogens. One of the pathway enzymes, dihydroorotase (DHO), catalyzes the reversible interconversion of N-carbamoyl-l-aspartate to 4,5-dihydroorotate. The substantial difference between bacterial and mammalian DHOs makes it a promising drug target for disrupting bacterial growth and thus an important candidate to evaluate as a response to antimicrobial resistance on a molecular level. Here, we present two novel three-dimensional structures of DHOs from Yersinia pestis (YpDHO), the plague-causing pathogen, and Vibrio cholerae (VcDHO), the causative agent of cholera. The evaluations of these two structures led to an analysis of all available DHO structures and their classification into known DHO types. Comparison of all the DHO active sites containing ligands that are listed in DrugBank was facilitated by a new interactive, structure-comparison and presentation platform. In addition, we examined the genetic context of characterized DHOs, which revealed characteristic patterns for different types of DHOs. We also generated a homology model for DHO from Plasmodium falciparum.
Collapse
|
research-article |
6 |
16 |
10
|
Crystal structures of monometallic dihydropyrimidinase and the human dihydroorotase domain K1556A mutant reveal no lysine carbamylation within the active site. Biochem Biophys Res Commun 2018; 505:439-444. [PMID: 30268498 DOI: 10.1016/j.bbrc.2018.09.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023]
Abstract
Dihydropyrimidinase (DHPase) is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase (DHOase), hydantoinase, and imidase. Almost all of these zinc metalloenzymes possess a binuclear metal center in which two metal ions are bridged by a post-translational carbamylated Lys. Crystal structure of Tetraodon nigroviridis DHPase reveals that one zinc ion is sufficient to stabilize Lys carbamylation. In this study, we found that one metal coordination was not sufficient to fix CO2 to the Lys in bacterial DHPase. We prepared and characterized mono-Zn DHPase from Pseudomonas aeruginosa (PaDHPase), and the catalytic activity of mono-Zn PaDHPase was not detected. The crystal structure of mono-Zn PaDHPase determined at 2.23 Å resolution (PDB entry 6AJD) revealed that Lys150 was no longer carbamylated. This finding indicated the decarbamylation of the Lys during the metal chelating process. To confirm the state of Lys carbamylation in mono-Zn PaDHPase in solution, mass spectrometric (MS) analysis was carried out. The MS result was in agreement with the theoretical value for uncarbamylated PaDHPase. Crystal structure of the human DHOase domain (huDHOase) K1556A mutant was also determined (PDB entry 5YNZ), and the structure revealed that the active site of huDHOase K1556A mutant contained one metal ion. Like mono-Zn PaDHPase, oxygen ligands of the carbamylated Lys were not required for Znα binding. Considering the collective data from X-ray crystal structure and MS analysis, mono-Zn PaDHPase in both crystalline state and solution was not carbamylated. In addition, structural evidences indicated that post-translational carbamylated Lys was not required for Znα binding in PaDHPase and in huDHOase.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
13 |
11
|
An in silico hierarchal approach for drug candidate mining and validation of natural product inhibitors against pyrimidine biosynthesis enzyme in the antibiotic-resistant Shigella flexneri. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105233. [PMID: 35104682 DOI: 10.1016/j.meegid.2022.105233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Shigella flexneri is the main causative agent of the communicable diarrheal disease, shigellosis. It is estimated that about 80-165 million cases and > 1 million deaths occur every year due to this disease. S. flexneri causes dysentery mostly in young children, elderly and immunocompromised patients, all over the globe. Recently, due to the emergence of S. flexneri antibiotic resistance strains, it is a dire need to predict novel therapeutic drug targets in the bacterium and screen natural products against it, which could eliminate the curse of antibiotic resistance. Therefore, in current study, available antibiotic-resistant genomes (n = 179) of S. flexneri were downloaded from PATRIC database and a pan-genome and resistome analysis was conducted. Around 5059 genes made up the accessory, 2469 genes made up the core, and 1558 genes made up the unique genome fraction, with 44, 34, and 13 antibiotic-resistant genes in each fraction, respectively. Core genome fraction (27% of the pan-genome), which was common to all strains, was used for subtractive genomics and resulted in 384 non-homologous, and 85 druggable targets. Dihydroorotase was chosen for further analysis and docked with natural product libraries (Ayurvedic and Streptomycin compounds), while the control was orotic acid or vitamin B13 (which is a natural binder of this protein). Dynamics simulation of 50 ns was carried out to validate findings for top-scored inhibitors. The current study proposed dihydroorotase as a significant drug target in S. flexneri and 4-tritriacontanone & patupilone compounds as potent drugs against shigellosis. Further experiments are required to ascertain validity of our findings.
Collapse
|
|
3 |
7 |
12
|
Rice AJ, Truong L, Johnson ME, Lee H. A colorimetric assay optimization for high-throughput screening of dihydroorotase by detecting ureido groups. Anal Biochem 2013; 441:87-94. [PMID: 23769705 DOI: 10.1016/j.ab.2013.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
Dihydroorotase (DHOase) is the third enzyme in the de novo pyrimidine biosynthesis pathway and is a potential new antibacterial drug target. No target-based high-throughput screening (HTS) assay for this enzyme has been reported to date. Here, we optimized two colorimetric-based enzymatic assays that detect the ureido moiety of the DHOase substrate, carbamyl-aspartate (Ca-asp). Each assay was developed in a 40-μl assay volume using 384-well plates with a different color mix, diacetylmonoxime (DAMO)-thiosemicarbazide (TSC) or DAMO-antipyrine. The sensitivity and color interference of both color mixes were compared in the presence of common HTS buffer additives, including dimethyl sulfoxide, reducing agents, detergents, and bovine serum albumin. DAMO-TSC (Z'-factors 0.7-0.8) was determined to be superior to DAMO-antipyrine (Z'-factors 0.5-0.6) with significantly less variability within replicates. An HTS pilot screening with 29,552 compounds from four structurally diverse libraries confirmed the quality of our newly optimized colorimetric assay with DAMO-TSC. This robust method has no heating requirement, which was the main obstacle to applying previous assays to HTS. More important, this well-optimized HTS assay for DHOase, the first of its kind, should make it possible to screen large-scale compound libraries to develop new inhibitors against any enzymes that produce ureido functional groups.
Collapse
|
Journal Article |
12 |
5 |
13
|
Abstract
The gene that codes for the putative dihydroorotase in the hyperthermophilic archaeon Methanococcus jannaschii was subcloned in pET-21a and expressed in Escherichia coli. A purification protocol was devised. The purity of the protein was evaluated by SDS-PAGE and the protein was confirmed by sequencing using LC-MS. The calculated molecular mass is 48104 Da. SEC-LS suggested that the protein is a monomer in solution. ICP-MS showed that there are two Zn ions per monomer. Kinetic analysis of the recombinant protein gave hyperbolic kinetics with Vmax = 12.2 µmol/min/mg and Km = 0.14 mM at 25 °C. Furthermore the activity of the protein increased with temperature consistent with the hyperthermophilic nature of the organism. A homology model was constructed using the mesophilic Bacillus anthracis protein as the template. Residues known to be critical for Zn and substrate binding were conserved. The activity of the enzyme at 85 and 90 °C was found to be relatively constant over 160 min and this correlates with the temperature of optimal growth of the organism of 85 °C. The amino acid sequences and structures of the two proteins were compared and this gave insight into some of the factors that may confer thermostability-more Lys and Ile, fewer Ala, Thr, Gln and Gly residues, and shorter N- and C-termini. Additional and better insight into the thermostabilization strategies adopted by this enzyme will be provided when its crystal structure is determined.
Collapse
|
research-article |
8 |
2 |
14
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
|
research-article |
1 |
|
15
|
Huang YH, Huang CY. The complexed crystal structure of dihydropyrimidinase reveals a potential interactive link with the neurotransmitter γ-aminobutyric acid (GABA). Biochem Biophys Res Commun 2024; 692:149351. [PMID: 38056157 DOI: 10.1016/j.bbrc.2023.149351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Dihydropyrimidinase (DHPase) plays a crucial role in pyrimidine degradation, showcasing a broad substrate specificity that extends beyond pyrimidine catabolism, hinting at additional roles for this ancient enzyme. In this study, we solved the crystal structure of Pseudomonas aeruginosa DHPase (PaDHPase) complexed with the neurotransmitter γ-aminobutyric acid (GABA) at a resolution of 1.97 Å (PDB ID 8WQ9). Our structural analysis revealed two GABA binding sites in each monomer of PaDHPase. Interactions between PaDHPase and GABA molecules, involving residues within a contact distance of <4 Å, were examined. In silico analyses via PISA and PLIP software revealed hydrogen bonds formed between the side chain of Cys318 and GABA 1, as well as the main chains of Ser333, Ile335, and Asn337 with GABA 2. Comparative structural analysis between GABA-bound and unbound states unveiled significant conformational changes at the active site, particularly within dynamic loop I, supporting the conclusion that PaDHPase binds GABA through the loop-out mechanism. Building upon this molecular evidence, we discuss and propose a working model. The study expands the GABA interactome by identifying DHPase as a novel GABA-interacting protein and provides structural insight into the interaction between a dimetal center in the protein's active site and GABA. Further investigations are warranted to explore potential interactions of GABA with other DHPase-like proteins and to understand whether DHPase may have additional regulatory and physiological roles in the cell, extending beyond pyrimidine catabolism.
Collapse
|
|
1 |
|