1
|
Ranjan S, Todd ZR, Sutherland JD, Sasselov DD. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. ASTROBIOLOGY 2018; 18:1023-1040. [PMID: 29627997 PMCID: PMC6225604 DOI: 10.1089/ast.2017.1770] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/19/2018] [Indexed: 05/16/2023]
Abstract
A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS-, HSO3-, SO32-) available in surficial aquatic reservoirs on early Earth due to outgassing of SO2 and H2S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO2-derived anions, but not H2S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species.
Collapse
|
research-article |
7 |
45 |
2
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
|
Review |
4 |
29 |
3
|
Van Etten J, Cho CH, Yoon HS, Bhattacharya D. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth. Semin Cell Dev Biol 2023; 134:4-13. [PMID: 35339358 DOI: 10.1016/j.semcdb.2022.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023]
Abstract
Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.
Collapse
|
Review |
2 |
13 |
4
|
Holm NG. Glasses as sources of condensed phosphates on the early earth. GEOCHEMICAL TRANSACTIONS 2014; 15:8. [PMID: 24959099 PMCID: PMC4057523 DOI: 10.1186/1467-4866-15-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 05/30/2023]
Abstract
Procedures for the analysis of phosphorus in geological material normally aims for the determination of the total amount of P expressed as orthophosphate [Formula: see text] or the differentiation between inorganic and organic P. This is probably due to analytical difficulties but also to the prevalent opinion that the chemistry of phosphorus in geological environments is almost entirely restricted to the mineral apatite. Because of the low solubility of apatite it is, therefore, commonly argued that little P was around for prebiotic chemistry and that pre-biological processes would essentially have had to do without this indispensable element unless it was provided by alternative sources or mechanisms (such as reduction and activation by lightning or delivery to Earth by celestial bodies). It is a paradox that the potential existence of reactive phosphorus compounds, such as the mineral schreibersite - iron phosphide, in geological material on Earth is seldom considered although we are aware of the existence of such compounds in meteorite material. The content of Al2O3 in rocks appears to be important for the speciation of phosphorus and for how strongly it binds to silicates. In general, low alumina seems to promote the existence of isolated charge-balanced phosphorus complexes.
Collapse
|
Review |
11 |
10 |
5
|
Schad M, Konhauser KO, Sánchez-Baracaldo P, Kappler A, Bryce C. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth? Free Radic Biol Med 2019; 140:154-166. [PMID: 31323314 DOI: 10.1016/j.freeradbiomed.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
Iron is the most abundant redox active metal on Earth and thus provides one of the most important records of the redox state of Earth's ancient atmosphere, oceans and landmasses over geological time. The most dramatic shifts in the Earth's iron cycle occurred during the oxidation of Earth's atmosphere. However, tracking the spatial and temporal development of the iron cycle is complicated by uncertainties about both the timing and location of the evolution of oxygenic photosynthesis, and by the myriad of microbial processes that act to cycle iron between redox states. In this review, we piece together the geological evidence to assess where and when oxygenic photosynthesis likely evolved, and attempt to evaluate the influence of this innovation on the microbial iron cycle.
Collapse
|
Review |
6 |
9 |
6
|
Mishima S, Ohtomo Y, Kakegawa T. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments. ORIGINS LIFE EVOL B 2016; 46:247-71. [PMID: 26631409 DOI: 10.1007/s11084-015-9474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been possible during the Hadean, providing a stabilization agent for ribose.
Collapse
|
|
9 |
7 |
7
|
Rimmer PB, Thompson SJ, Xu J, Russell DA, Green NJ, Ritson DJ, Sutherland JD, Queloz DP. Timescales for Prebiotic Photochemistry Under Realistic Surface Ultraviolet Conditions. ASTROBIOLOGY 2021; 21:1099-1120. [PMID: 34152196 PMCID: PMC8570677 DOI: 10.1089/ast.2020.2335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet (UV) light has long been invoked as a source of energy for prebiotic chemical synthesis, but experimental support does not involve sources of UV light that look like the young Sun. Here we experimentally investigate whether the UV flux available on the surface of early Earth, given a favorable atmosphere, can facilitate a variety of prebiotic chemical syntheses. We construct a solar simulator for the UV light of the faint young Sun on the surface of early Earth, called StarLab. We then attempt a series of reactions testing different aspects of a prebiotic chemical scenario involving hydrogen cyanide (HCN), sulfites, and sulfides under the UV light of StarLab, including hypophosphite oxidation by UV light and hydrogen sulfide, photoreduction of HCN with bisulfite, the photoanomerization of α-thiocytidine, the production of a chemical precursor of a potentially prebiotic activating agent (nitroprusside), the photoreduction of thioanhydrouridine and thioanhydroadenosine, and the oxidation of ethanol (EtOH) by photochemically generated hydroxyl radicals. We compare the output of StarLab to the light of the faint young Sun to constrain the timescales over which these reactions would occur on the surface of early Earth. We predict that hypophosphite oxidation, HCN reduction, and photoproduction of nitroprusside would all operate on the surface of early Earth in a matter of days to weeks. The photoanomerization of α-thiocytidine would take months to complete, and the production of oxidation products from hydroxyl radicals would take years. The photoreduction of thioanhydrouridine with hydrogen sulfide did not succeed even after a long period of irradiation, providing a lower limit on the timescale of several years. The photoreduction of thioanhydroadenosine with bisulfite produced 2'-deoxyriboadenosine (dA) on the timescale of days. This suggests the plausibility of the photoproduction of purine deoxyribonucleotides, such as the photoproduction of simple sugars, proceeds more efficiently in the presence of bisulfite.
Collapse
|
research-article |
4 |
5 |
8
|
Masuda S, Furukawa Y, Kobayashi T, Sekine T, Kakegawa T. Experimental Investigation of the Formation of Formaldehyde by Hadean and Noachian Impacts. ASTROBIOLOGY 2021; 21:413-420. [PMID: 33784199 DOI: 10.1089/ast.2020.2320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formaldehyde (FA) is an important precursor in the abiotic synthesis of major biomolecules including amino acids, sugars, and nucleobases. Thus, spontaneous formation of prebiotic FA must have been crucial for the chemical origin of life. The frequent impacts of meteorites and asteroids on Hadean Earth have been considered one of the abiotic synthetic processes of organic compounds. However, the impact-induced formation of FA from CO2 as the major atmospheric constituent has not been confirmed yet. This study investigated the formation of FA in impact-induced reactions among meteoritic minerals, bicarbonate, gaseous nitrogen, and water to simulate the abiotic process experimentally. Products were analyzed with ultra-high-performance liquid chromatography/tandem mass spectrometry and powder X-ray diffraction techniques. The results show the formation of FA and oxidation of metallic iron to siderite in the impact shock experiments. This indicates that this important prebiotic molecule was also synthesized by impacts of iron-bearing meteorites/asteroids on the Hadean oceans. The impact events might have generated spatially and temporally FA-enriched localized environments. Moreover, the impact-induced synthesis of FA may have also occurred on Noachian Mars given the presence of liquid water and a CO2-N2-rich atmosphere on the planet.
Collapse
|
|
4 |
4 |
9
|
Waajen AC, Prescott R, Cockell CS. Meteorites as Food Source on Early Earth: Growth, Selection, and Inhibition of a Microbial Community on a Carbonaceous Chondrite. ASTROBIOLOGY 2022; 22:495-508. [PMID: 35319269 DOI: 10.1089/ast.2021.0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Meteoritic material accumulated on the surface of the anoxic early Earth during the Late Heavy Bombardment around 4.0 Gya and may have provided Earth's surface with extraterrestrial nutrients and energy sources. This research investigates the growth of an anaerobic microbial community from pond sediment on native and pyrolyzed (heat-treated) carbonaceous chondrite Cold Bokkeveld. The community was grown anaerobically in liquid media. Native Cold Bokkeveld supported the growth of a phylogenetically clustered subset of the original pond community by habitat filtering. The anaerobic community on meteorite was dominated by the Deltaproteobacteria Geobacteraceae and Desulfuromonadaceae. Members of these taxa are known to use elemental sulfur and ferric iron as electron acceptors, and organic compounds as electron donors. Pyrolyzed Cold Bokkeveld, however, was inhibitory to the growth of the microbial community. These results show that carbonaceous chondrites can support and select for a specific anaerobic microbial community, but that pyrolysis, for example by geothermal activity, could inhibit microbial growth and toxify the material. This research shows that extraterrestrial meteoritic material can shape the abundance and composition of anaerobic microbial ecosystems with implications for early Earth. These results also provide a basis to design anaerobic material processing of asteroidal material for future human settlement.
Collapse
|
|
3 |
1 |
10
|
Harnett EM, Johns D, Gardner J, Finneran K, Davis H, Massarano B. An Integrated Approach for Delivering Current Astrobiology Research to the General Public. ASTROBIOLOGY 2019; 19:696-708. [PMID: 31046417 PMCID: PMC6486701 DOI: 10.1089/ast.2018.1872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/30/2018] [Indexed: 06/09/2023]
Abstract
This article describes a multifaceted approach to delivering results from current research in astrobiology to visitors at Pacific Science Center, along with the evaluated results of the impact of the work. Content was delivered by (1) training scientists to communicate effectively with the public, (2) providing the trained scientists with venues to engage with the public, and (3) creating two Science on Sphere shows that highlight key tenants scientists are investigating, a hands-on activity to facilitate interactive learning, and a temporary exhibit that highlights current research on the topic. Evaluation of visitors who engaged with each element demonstrates that the content had a large impact on both the increase in knowledge of the visitors and the increase of interest in the topic.
Collapse
|
research-article |
6 |
1 |
11
|
Paredes-Arriaga A, Negrón-Mendoza A, Frias D, Rivera A, Ramos-Bernal S. An experimental and numerical model of the behavior of cytosine in aqueous solution under gamma radiation. Relevance in prebiotic chemistry. Heliyon 2024; 10:e33288. [PMID: 39676821 PMCID: PMC11639739 DOI: 10.1016/j.heliyon.2024.e33288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 12/17/2024] Open
Abstract
Cytosine is an essential chemical molecule in living systems, such as DNA and RNA, it is essential in astrobiology to study how it behaves under probable primitive conditions. We looked at how cytosine broke down in aqueous solutions exposed to high radiation levels to learn more about how stable it might have been on the early Earth. We conducted various types of analysis, such as ultraviolet-visible spectroscopy and high-pressure liquid chromatography. We also developed a computer model to describe the kinetic processes and learn more about the molecules involved in the system. This model fits the results of experiments and lets us study cytosine's stability when it is exposed to gamma radiation. It enables researchers to theorize processes that are hard to test in the laboratory and is essential for studying how stable cytosine behaves in high-radiation settings.
Collapse
|
research-article |
1 |
1 |
12
|
Zhu K, Moynier F, Schiller M, Alexander CMO, Davidson J, Schrader DL, van Kooten E, Bizzarro M. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 301:158-186. [PMID: 34393262 PMCID: PMC7611480 DOI: 10.1016/j.gca.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from 53Mn-53Cr decay and variable nucleosynthetic contributions from the stable 54Cr nuclide. Here, we report high-precision measurements of the massindependent Cr isotope compositions (ε53Cr and ε54Cr) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing ε54Cr (per ten thousand deviation of the 54Cr/52Cr ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH ≥ CB ≥ CR ≥ CM ≈ CV ≈ CO ≥ CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group ε54Cr heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable ε54Cr (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common ε54Cr characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar ε53Cr values to the CI chondrites, invalidating them as anchors for a bulk 53Mn-53Cr isochron for carbonaceous chondrites. Bulk Earth has a ε53Cr value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites.
Collapse
|
research-article |
4 |
1 |
13
|
Deamer D, Cary F, Damer B. Urability: A Property of Planetary Bodies That Can Support an Origin of Life. ASTROBIOLOGY 2022; 22:889-900. [PMID: 35675644 DOI: 10.1089/ast.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The concept of habitability is now widely used to describe zones in a solar system in which planets with liquid water can sustain life. Because habitability does not explicitly incorporate the origin of life, this article proposes a new word-urability-which refers to the conditions that allow life to begin. The utility of the word is tested by applying it to combinations of multiple geophysical and geochemical factors that support plausible localized zones that are conducive to the chemical reactions and molecular assembly processes required for the origin of life. The concept of urable worlds, planetary bodies that can sustain an arising of life, is considered for bodies in our own solar system and exoplanets beyond.
Collapse
|
|
3 |
|