1
|
He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. CHEMOSPHERE 2015; 140:12-17. [PMID: 25907762 DOI: 10.1016/j.chemosphere.2015.03.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/20/2014] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect.
Collapse
|
Review |
10 |
58 |
2
|
Zhu C, Zhang Y, Fan Z, Liu F, Li A. Carbonate-enhanced catalytic activity and stability of Co 3O 4 nanowires for 1O 2-driven bisphenol A degradation via peroxymonosulfate activation: Critical roles of electron and proton acceptors. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122395. [PMID: 32135366 DOI: 10.1016/j.jhazmat.2020.122395] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Transition-metal catalysts (TMCs) for peroxymonosulfate (PMS) activation suffer from low stability (i.e. severe metal leakage and poor reusability) when maintaining high activity in water decontamination. An innovative carbonate (CO32-)-mediated method to synchronously enhance the catalytic activity and stability of TMCs was developed herein. In a model PMS/Co3O4 nanowire system for bisphenol A (BPA) degradation, the first-order kinetic constant and total organic carbon removal ratio were increased by 202.27% and 71.32% upon adding CO32-, respectively. Meanwhile, the cobalt release amount was significantly reduced from 4.90 to 0.03 mg/L, and the number of reuse with high efficiency (>90% of BPA removal within 10 min) was augmented from 1 to 3 times. The CO32- buffered pH decline to repress metal leakage, and promoted Co(III) reduction into Co(II) to avoid the over-oxidation of catalyst. Under the driving of CO32-, the dominated reactive species were switched from •OH/SO4•- to 1O2 accompanying the migration of catalytic center from Co(II) to Co(III). The Co(III) and CO32-/OH- acted as electron and proton acceptors, respectively, to accelerate PMS decomposition into SO5•- and subsequent generation of vast 1O2. This work proposes a green way to construct novel 1O2-based catalytic systems with excellent activity and stability for pollution remediation.
Collapse
|
|
5 |
29 |
3
|
Su R, Zhao Y, Yang F, Duan L, Lan J, Bin Z, You J. Triazolotriazine-based thermally activated delayed fluorescence materials for highly efficient fluorescent organic light-emitting diodes (TSF-OLEDs). Sci Bull (Beijing) 2021; 66:441-448. [PMID: 36654181 DOI: 10.1016/j.scib.2020.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Thermally activated delayed fluorescence (TADF) sensitized fluorescent organic light-emitting diodes (TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency roll-off and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now. Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving high-performance TSF-OLEDs via the construction of a new type of triazolotriazine (TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine (TRZ) and triazole (TAZ) together, enables TADF luminogens with small singlet-triplet energy gap (ΔEST) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage (6:6 system) to the TAZ-phenyl linkage (5:6 system) can compensate the decrease of oscillator strength (f) while lowing ΔEST, thus achieving a trade-off between small ΔEST and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency (EQEmax) of 23.7% with small efficiency roll-off (EQE1000 of 23.2%; EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W-1, which represents the state-of-the-art performance for yellow TSF-OLEDs.
Collapse
|
|
4 |
25 |
4
|
Gu L, Huang B, Xu Z, Ma X, Pan X. Dissolved organic matter as a terminal electron acceptor in the microbial oxidation of steroid estrogen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:26-33. [PMID: 27543904 DOI: 10.1016/j.envpol.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/13/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Steroid estrogen in natural waters may be biodegraded by quinone-reducing bacteria, dissolved organic matter (DOM) may serve as a terminal electron acceptor in this process. The influence of temperature, pH, dissolved oxygen and light illumination on the reduction efficiency of anthraquinone-2-disulfonate (AQS) was investigated using 17β-estradiol (E2) as the target species. The optimum reduction conditions were found to be in the dark under anaerobic conditions at pH 8.0 and 30 °C. Quinone-reducing bacteria can use the quinone structure of DOM components as a terminal electron acceptor coupling with microbial growth to promote biodegradation. Compared with other DOM models, AQS best stimulated E2 biodegradation and the mediating effect was improved as the AQS concentration increased from 0 to 0.5 mM. However, further increase had an inhibiting effect. Natural DOM containing lake humic acid (LHA) and lake fulvic acid (LFA) had a very important accelerating effect on the degradation of E2, the action mechanism of which was consistent with that defined using DOM models. The natural DOM contained more aromatic compounds, demonstrating their greater electron-accepting capacity and generally more effective support for microorganism growth and E2 oxidation than Aldrich humic acid (HA). These results provide a more comprehensive understanding of microbial degradation of steroid estrogens in anaerobic environments and confirm DOM as an important terminal electron acceptor in pollutant transformation.
Collapse
|
|
9 |
23 |
5
|
Wang Z, Fernández-Blanco C, Chen J, Veiga MC, Kennes C. Effect of electron acceptors on product selectivity and carbon flux in carbon chain elongation with Megasphaera hexanoica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169509. [PMID: 38141983 DOI: 10.1016/j.scitotenv.2023.169509] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Megasphaera hexanoica is a bacterial strain following the reverse β-oxidation pathway to synthesize caproate (CA) using lactate (LA) as an electron donor (ED) and acetate (AA) or butyrate (BA) as electron acceptors (EA). Differences in the type and concentration of EA lead to distinctions in product distribution and energy bifurcation of carbon fluxes in ED pathways, thereby affecting CA production. In this study, the effect of various ratios of AA, BA, and AA+BA as EA on carbon flux and CA specific titer during the carbon chain elongation in M. hexanoica was explored. The results indicated that the maximum levels of CA were 18.81 mM and 31.48 mM when the molar ratios of LA/AA and LA/BA were 10:1 and 3:1, respectively. Meanwhile, when AA and BA were used as combined EA (LA, AA, and BA molar amounts of 100, 23, and 77 mM), a maximum CA production of 39.45 mM was obtained. Further analysis revealed that the combined EA exhibited a CA production carbon flux of 49 % (4.3 % and 19.5 % higher compared to AA or BA, respectively) and a CA production specific titer of 45.24 mol (80.89 % and 58.51 % higher compared to AA or BA, respectively), indicating that the effective carbon utilization rate and CA production efficiency were greatly improved. Finally, a scaled-up experiment was conducted in a 1.2 L (working volume) automated bioreactor, implying high biomass (optical density at 600 nm or OD600 = 1.809) and a slight decrease in CA production (28.45 mM). A decrease in H2 production (4.11 g/m3) and an increase in CO2 production (0.632 g/m3) demonstrated the appropriate metabolic adaptation of M. hexanoica to environmental changes such as stirring shear.
Collapse
|
|
1 |
23 |
6
|
Qian J, Zhang M, Jing R, Bai L, Zhou B, Zhao M, Pei X, Wei L, Chen GH. Thiosulfate as the electron acceptor in Sulfur Bioconversion-Associated Process (SBAP) for sewage treatment. WATER RESEARCH 2019; 163:114850. [PMID: 31326695 DOI: 10.1016/j.watres.2019.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The sulfur bioconversion-associated processes (SBAP) for sewage treatment have been extensively reported so far. In this study, biological thiosulfate reduction (BTR)-driven biotechnology for high rate sulfidogenesis and organic removal was explored to further close the gap of our knowledge on the sulfur cycle-based sewage treatment bioprocess. With thiosulfate as the electron acceptor, the sulfidogenic rate in the UASB rector is 105.6 mg S/L/h with the sludge yield of only 0.044 g MLVSS/g CODsubstrate. Thus providing sufficient electron donors or chemical sources (i.e. HS-) for the downstream autotrophic denitrification or for the cost-effective heavy metal precipitation. Thiosulfate disproportionation was not observed in BTR reactor. High-throughput pyrosequencing analysis reveals that Desulfobulbus and Desulfomicrobium are the predominant thiosulfate-reducing genera and the thiosulfate disproportionation-bacteria were at much lower genus level. The specific thiosulfate-reducer i.e. Dethiosulfatibacter which could utilize thiosulfate but not sulfate as the electron acceptor was also identified. Batch testing results indicate that the sulfidogenic activity on thiosulfate was 1.5 times that on sulfate. The optimal pH for BTR activity was between 7.0 and 8.0, a typical pH range of the municipal sewage. Thiosulfate can be efficiently recovered in the sulfide-driven denitritation reactor enriched with abundant sulfide-oxidizing genera (mainly including Thiobacillus and Sulfurimonas). Finally, a conceptual model of the sulfur cycle based on the biotransformation between thiosulfate and sulfide was established, offering new insights into the sustainable SBAP with sludge minimization.
Collapse
|
|
6 |
19 |
7
|
Li W, Siddique MS, Liu M, Graham N, Yu W. The migration and microbiological degradation of dissolved organic matter in riparian soils. WATER RESEARCH 2022; 224:119080. [PMID: 36113239 DOI: 10.1016/j.watres.2022.119080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Riparian zones are important natural means of water purification, by decreasing the aqueous concentration of terrestrial organic matter (OM) through adsorption and microbial degradation of the organic matter within the aquatic ecosystem. Limited studies have been reported so far concerning the migration of dissolved organic matter (DOM) in the horizontal and vertical planes of riparian zones. In this study, the migration of DOM in riparian zones, from forest soil to wetland soil, and with soil depth, were explored, based on a case study reservoir. Results showed that riparian wetlands can absorb the OM from the forest soils and adjacent reservoir, and act as a major OM sink through microbial action. Methylomirabilota and GAL15 bacteria increased with soil depth for the two soil systems, and the wetland soil system also contained microbial sulfates, nitrates and carbonates. These microorganisms successfully utilize the Fe3+, SO4-, and CO3- as electron acceptors in the wetland system, resulting in enhanced OM removal. Although the variation of soil DOM in the vertical direction was the same for both forest and wetland soils, the Chemical structure of the DOM was found to be significantly different. Furthermore, the soil was found to be the main source of DOM in the forest ecosystem, with lignin as the main ingredient. The lignin structure was gradually oxidized and decomposed, with an increase in carboxyl groups, as the lignin diffused down into the soil and the adjacent reservoir. PLS-PM analysis showed that the soil physicochemical properties were the main factors affecting DOM transformation. However, microbial metabolism was still the goes deeper affecting factor. This study will contribute to the analysis that migration and transform of soil organic matter in riparian zone.
Collapse
|
|
3 |
18 |
8
|
Xu Y, Gregory KB, VanBriesen JM. Reduction in sulfate inhibition of microbial dechlorination of polychlorinated biphenyls in Hudson and Grasse River sediments through fatty acid supplementation. CHEMOSPHERE 2019; 233:81-91. [PMID: 31170587 DOI: 10.1016/j.chemosphere.2019.05.211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Microbial dechlorination of polychlorinated biphenyls (PCBs) in aquatic sediments may reduce the need for dredging for remediation. To better understand this biotransformation route under different geochemical conditions, the influence of sulfate on dechlorination in sediments from the Hudson River and the Grasse River spiked with two PCB mixtures (PCB 5/12, 64/71, 105/114 and 149/153/170 in Mixture 1 and PCB 5/12, 64/71, 82/97/99, 144/170 in Mixture 2) was investigated. The results showed that PCB dechlorination was partially inhibited in the sulfate-amended sediment microcosms. The rate, extent and preference of dechlorination were mainly controlled by the indigenous differences (sulfate, carbon content etc.) in sediment, but also affected by the PCB mixture composition. An increase of Dehalococcoides 16S rRNA genes coincided with the resumption of dechlorination. Dechlorination preferences were identified using a modified dechlorination pathway analysis approach. The low carbon content and high background sulfate Hudson sediment exhibited more para dechlorination targeting flanked para chlorines. The high carbon content and low background sulfate Grasse sediment preferentially removed more para-flanked meta chlorines than flanked para chlorines. The supplementation of fatty acids (acetate or a mixture of acetate, propionate and butyrate) dramatically increased PCB dechlorination in the Grasse sediment by resuming ortho-flanked meta dechlorination. Rare ortho removals were found in the Grasse sediment after adding fatty acids. This study suggests that supplementary fatty acids might be used to stimulate PCB dechlorination under sulfate reducing conditions, but the effectiveness largely depends on sediment geochemistry.
Collapse
|
|
6 |
17 |
9
|
Mu J, Chen Y, Song Z, Liu M, Zhu B, Tao H, Bao M, Chen Q. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129569. [PMID: 35999753 DOI: 10.1016/j.jhazmat.2022.129569] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The existing polycyclic aromatic hydrocarbons (PAHs) in marine sediment has become a critical threat to biological security. Terminal electron acceptor (TEA) amendment has been applied as a potential strategy to accelerate bioremediation in sediment. HCO3-, NO3-, and SO42- were separately added to anaerobic sediment system containing five kinds of PAH, namely, phenanthrene, anthracene, fluoranthene, pyrene and benzo(a)pyrene. PAH concentration, PAH metabolites, TEA concentration, and electron transport system (ETS) activity were investigated. The HCO3- amendment group achieved the max PAH degradation efficiency of 84.98 %. SO42- group led to the highest benzo(a)pyrene removal rate of 69.26 %. NO3- had the lowest PAH degradation rate of 76.16 %. ETS activity test showed that NO3- significantly inhibited electron transport activity in the sediment. The identified PAH metabolites were the same in each group, including 4,5-dimethylphenanthrene, 3-acetylphenanthrene, 9,10-anthracenedione, pyrene-7-hydroxy-8-carboxylic acid, anthrone, and dibenzothiophene. After 126 d's anaerobic degradation at 25 °C, the utilization of HCO3- and SO42- as selected TEAs promoted the PAH biodegradation performance better than the utilization of NO3-.
Collapse
|
|
3 |
17 |
10
|
Song B, Tang J, Zhen M, Liu X. Effect of rhamnolipids on enhanced anaerobic degradation of petroleum hydrocarbons in nitrate and sulfate sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:438-447. [PMID: 31077922 DOI: 10.1016/j.scitotenv.2019.04.383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic degradation of petroleum hydrocarbons (PH) is an important process in contaminated environment. The application of rhamnolipids in anaerobic degradation of PH was not extensively studied and inconclusive. This study explored the combined effect of rhamnolipids and electron acceptors on the anaerobic degradation process of total petroleum hydrocarbons (TPH) in sediment from an oil field. The results indicated that rhamnolipids decreased the surface tension of the medium and increased the desorption of TPH from the sediment. After 10-wk culture, the maximum degradation rate of TPH in nitrate and sulfate condition was found to be 32.2% and 24.0%, respectively, with rhamnolipids concentration of 150 mg/L. The addition of 45 and 150 mg/L rhamnolipids increased the degradation rate of TPH but the promotion effect was weakened in the treatment with 450 mg/L rhamnolipids. The copy number of two degradation genes (1-methylalkyl) succinate synthase gene (masD) and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase gene (bamA) increased with incubation time and showed higher copy numbers in treatments with 45 and 150 mg/L rhamnolipids. In the first week, with the increase of rhamnolipids concentration, the copy number of 16S rDNA increased rapidly and the concentration of electron receptors decreased correspondingly. Moreover, no nitrate was detected in treatments of nitrate with 450 mg/L rhamnolipids after the first week. Microbial community structure analysis result showed that Thiobacillus was the dominant bacteria in all treatments with nitrate as electron acceptor and its proportion gradually decreased with the increase of rhamnolipids concentration. The addition of rhamnolipids changed the subdominant bacteria in the treatments with nitrate as electron acceptor. Methanothrix was the dominant archaea in all treatments with rhamnolipids content of lower than 45 mg/L. When the rhamnolipids concentration increased, the dominant archaea changed to Methanogenium or Methanobacterium. In conclusion, suitable concentrations of rhamnolipids could promote the anaerobic degradation of PH in the sediment.
Collapse
|
|
6 |
17 |
11
|
Shi H, Jiang X, Chen D, Li Y, Hou C, Wang L, Shen J. BiVO 4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of pyridine. WATER RESEARCH 2020; 187:116464. [PMID: 33011569 DOI: 10.1016/j.watres.2020.116464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Pyridine, a highly toxic nitrogen-containing heterocyclic compound, is recalcitrant in the conventional biodegradation process. In this study, BiVO4/FeOOH semiconductor-microbe interface was developed for enhanced visible-light-driven biodegradation of pyridine, where the efficiencies of pyridine removal (100%), total organic carbon (TOC) removal (88.06±3.76%) and NH4+-N formation (84.51±8.95%) were remarkably improved, compared to the biodegradation system and photodegradation system. The electron transport system activity and photoelectrochemical analysis implied the significant improvement of photogenerated carriers transfer between microbes and semiconductors. High-throughput sequencing analysis suggested functional species related to pyridine biodegradation (Shewanella, Bacillus and Lysinibacillus) and electron transfer (Shewanella and Tissierella) were enriched at the semiconductor-microbe interface. The light-excited holes played a crucial role in promoting pyridine mineralization. This study demonstrated that this bio-photodegradation system would be a potential alternative for the efficient treatment of wastewater containing recalcitrant pollutant such as pyridine.
Collapse
|
|
5 |
14 |
12
|
Xie T, Zeng Z, Li L. Achieving partial denitrification using organic matter in brewery wastewater as carbon source. BIORESOURCE TECHNOLOGY 2022; 349:126849. [PMID: 35158032 DOI: 10.1016/j.biortech.2022.126849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
To find a cost-effective carbon source for partial denitrification (PD), brewery wastewater was utilized to test the viability of initiating PD. The Sbre (sludge from the biological treatment tank of Tsingtao Brewery Plant sewage treatment station) and Slab (sludge from laboratory) were fed with brewery wastewater at CODCr/NO3--N (C/N) ratios of 8.0-10.0 and 5.0 for 95 days at 25 ± 1 °C, respectively. The mean NO3--N to NO2--N transformation ratio (NTR) in long-term operation was 40.0% in the Sbre system and 83.2% in the Slab system. Batch tests with C/N ratio of 2.2-4.4 were conducted after 95 days incubation and the result suggested that C/N ratio of 4.3 ± 0.1 contributed more to NO2--N accumulation in both systems. Thauera bacteria, known to be beneficial for NO2--N accumulation, became the dominant community. The relative abundances of Thauera on day 95 in the Sbre and Slab system were 83.36% and 79.11%, respectively.
Collapse
|
|
3 |
13 |
13
|
Petrova A, Mamedov M, Ivanov B, Semenov A, Kozuleva M. Effect of artificial redox mediators on the photoinduced oxygen reduction by photosystem I complexes. PHOTOSYNTHESIS RESEARCH 2018; 137:421-429. [PMID: 29767343 DOI: 10.1007/s11120-018-0514-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The peculiarities of interaction of cyanobacterial photosystem I with redox mediators 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) were investigated. The higher donor efficiency of the reduced DCPIP form was demonstrated. The oxidized form of DCPIP was shown to be an efficient electron acceptor for terminal iron-sulfur cluster of photosystem I. Likewise methyl viologen, after one-electron reduction, DCPIP transfers an electron to the molecular oxygen. These results were discussed in terms of influence of these interactions on photosystem I reactions with the molecular oxygen and natural electron acceptors.
Collapse
|
|
7 |
11 |
14
|
Xu X, Gao B, Jin B, Zhen H, Wang X, Dai M. Study of microbial perchlorate reduction: considering of multiple pH, electron acceptors and donors. JOURNAL OF HAZARDOUS MATERIALS 2015; 285:228-235. [PMID: 25497314 DOI: 10.1016/j.jhazmat.2014.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO4(-)-ClO3(-), ClO4(-)-ClO3(-)-NO3(-),and ClO4(-)-NO3(-) acceptor systems, while being completely inhibited by the additional O2 in the ClO4(-)-O2 acceptor system. The reduction proceeded as an order of ClO3(-), ClO4(-), and NO3(-) in the ClO4(-)-ClO3(-)-NO3(-) system. K(S), v(max), and q(max) obtained at different e(-) acceptor and donor conditions are calculated as 140.5-190.6 mg/L, 8.7-13.2 mg-perchlorate/L-h, and 0.094-0.16 mg-perchlorate/mg-DW-h, respectively.
Collapse
|
|
10 |
11 |
15
|
Zheng L, Wang X, Ren M, Yuan D, Tan Q, Xing Y, Xia X, Xie E, Ding A. Comparing with oxygen, nitrate simplifies microbial community assembly and improves function as an electron acceptor in wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120243. [PMID: 36155228 DOI: 10.1016/j.envpol.2022.120243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biochemical oxidation and reduction are key processes in treating biological wastewater and they require the presence of electron acceptors. The functional impact of electron acceptors on microbiomes provides strategies for improving the treatment efficiency. This research focused on two of the most important electron acceptors, nitrate and oxygen. Molecule ecological network, null model, and functional prediction based on high-throughput sequencing were used to analyze the microbiomes features and assembly mechanism. The results revealed nitrate via the homogeneous selection (74.0%) decreased species diversity, while oxygen via the homogeneous selection (51.1%) and dispersal limitation (29.6%) increased the complexity of community structure. Microbes that were more strongly homogeneously selected for assembly included polyphosphate accumulating organisms (PAOs), such as Pseudomonas and variovorax in the nitrate impacted community; Pseudomonas, Candidatus_Accumulibacter, Thermomonas and Dechloromonas, in the oxygen impacted community. Nitrate simplified species interaction and increased the abundance of functional genes involving in tricarboxylic acid cycle (TCA cycle), electron transfer, nitrogen metabolism, and membrane transport. These findings contribute to our knowledge of assembly process and interactions among microorganisms and lay a theoretical basis for future microbial regulation strategies in wastewater treatment.
Collapse
|
|
3 |
9 |
16
|
Zhao L, Chen H, Yuan Z, Guo J. Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. WATER RESEARCH 2021; 199:117184. [PMID: 33984586 DOI: 10.1016/j.watres.2021.117184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Methane bioconversion to value-added liquid chemicals has been proposed as a promising solution to augment the petroleum-dominated chemical market. Recent investigations have reported that various electron acceptors (e.g., nitrite and nitrate) are available to drive methane bioconversion to short-chain fatty acids (SCFAs). However, little is known about effects of the rate electron acceptor supplied on liquid chemical production from methane. Herein, three independent membrane biofilm reactors (MBfRs) feeding with respective nitrate, nitrite, combined nitrate and nitrite were operated under high and low rate condition in succession, to study whether feeding rate of electron acceptors could impact the methane bioconversion to SCFAs and the associated microbiological features. Long-term operation showed that all tested electron acceptors with a high supply rate were favorable for methane bioconversion to SCFAs (990.9 mg L-1d-1, 1695.7 mg L-1d-1, and 2425.7 mg L-1d-1), while under a low electron acceptor feeding rate, the SCFA production rate decreased to 8.9 mg L-1d-1, 16.8 mg L-1d-1, and 260.1 mg L-1d-1, respectively. Microbial community characterization showed that the biofilm was predominated by Methanosarcina, Methanobacterium, Propionispora and Clostridium. On the basis of the known metabolism characteristics of these microorganisms, it was assumed that these methanogens and fermenters contributed jointly to methane bioconversion to SCFAs. The findings could be helpful to understand the role of electron acceptor rate in methane bioconversion to liquid chemicals.
Collapse
|
|
4 |
9 |
17
|
Lv X, Ma B, Lee K, Ulrich A. Potential syntrophic associations in anaerobic naphthenic acids biodegrading consortia inferred with microbial interactome networks. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122678. [PMID: 32497975 DOI: 10.1016/j.jhazmat.2020.122678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Naphthenic acids (NAs) can be syntrophically metabolized by indigenous microbial communities in pristine sediments beneath oil sands tailings ponds. Syntrophy is an essential determinant of the microbial interactome, however, the interactome network in anaerobic NAs-degrading consortia has not been previously addressed due to complexity and resistance of NAs. To evaluate the impact of electron acceptors on topology of interactome networks, we inferred two microbial interactome networks for anaerobic NAs-degrading consortia under nitrate- and sulfate-reducing conditions. The complexity of the network was higher under sulfate-reducing conditions than nitrate-reducing conditions. Differences in the taxonomic composition between the two modules implies that different potential syntrophic interactions exist in each network. We inferred the presence of the same syntrophic microorganisms, from genera Bellilinea, Longilinea, and Litorilinea, initiating the metabolism in both networks, but within each network, we predicted unique syntrophic associations that have not been reported. Electron acceptor has a large effect on the interactome networks for anaerobic NAs-degrading consortia, offers insight into an unrecognized dimension of these consortia. These results provide a novel approach for exploring potential syntrophic relationships in biodegrading processes to help cost-effectively remove NAs in oil sands tailings ponds.
Collapse
|
|
5 |
8 |
18
|
Zhang C, Zhao L, Bao M, Lu J. Potential of hydrolyzed polyacrylamide biodegradation to final products through regulating its own nitrogen transformation in different dissolved oxygen systems. BIORESOURCE TECHNOLOGY 2018; 256:61-68. [PMID: 29428615 DOI: 10.1016/j.biortech.2018.01.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Potential of hydrolyzed polyacrylamide (HPAM) biodegradation to final products was studied through regulating its own nitrogen transformation. Under the conditions of 2, 3 and 4 mg/L of DO, HPAM removal ratio reached 16.92%, 24.51% and 30.78% and the corresponding removal ratio reached 49.15%, 60.25% and 76.44% after anaerobic biodegradation. NO3--N concentration was 9.43, 14.10 and 17.99 mg/L in aerobic stages and the corresponding concentration was 0.17, 0.07 and 0.008 mg/L after anaerobic biodegradation. Oxygen as electron acceptors stimulated the activities of nitrification bacteria and other functional bacteria, thus further enhanced nitrification and HPAM biodegradation. NO3- (from HPAM oxidation) as electron acceptors stimulated the activities of nitrate-reducing, acetate-producing and methanogenic microorganisms and they could form a synergistic effect on denitrification and methanogenesis. Thermodynamic opportunity window revealed that NOx- could accelerate anaerobic HPAM bioconversion to methane. Aerobic and anaerobic growth-process equations of cells verified that the metabolism on HPAM was feasible.
Collapse
|
|
7 |
8 |
19
|
Ding A, Zheng P, Zhang M, Zhang Q. Impacts of electron donor and acceptor on the performance of electrotrophic denitrification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19693-19702. [PMID: 28685327 DOI: 10.1007/s11356-017-9455-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Electrotrophic denitrification is a novel nitrogen removal technique. In this study, the performance and the mechanism of electrotrophic denitrification were investigated at different nitrate concentrations and current intensities. The results showed that the performance of electrotrophic denitrification was good with a sludge loading of 0.39 kg N/kg VSS day. The half-saturation constant for nitrate-N was 1894.03 mg/L. The optimal nitrate-N concentration and current intensity were 1500 mg/L and 20 μA, respectively. Electrotrophic denitrification was defined as the process of direct use of electron for nitrate reduction, and electrotrophic denitrifier was proposed to be the microbe of using electricity as energy source directly. The present work will benefit the development and application of electrotrophic denitrification. Graphical abstract ᅟ.
Collapse
|
|
8 |
7 |
20
|
Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, He W, Chang IS, Ren N, Feng Y. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells. BIORESOURCE TECHNOLOGY 2014; 169:265-270. [PMID: 25062537 DOI: 10.1016/j.biortech.2014.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.
Collapse
|
|
11 |
6 |
21
|
Ning Z, Wang X, Zhong W, Yang T, Dou D, Huang Y, Kong Q, Xu X. Influence of acetate-to-butyrate ratio on carbon chain elongation in anaerobic fermentation. BIORESOURCE TECHNOLOGY 2024; 395:130326. [PMID: 38242242 DOI: 10.1016/j.biortech.2024.130326] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study investigated the effect of electron acceptor (EA) distribution (acetate to butyrate ratio) on the carbon chain elongation (CCE) process. The results showed that the higher content of butyrate in the initial material led to the higher production of caproate. The maximum production of caproate was 3.74 ± 0.30 g·L-1, which was obtained when only butyrate was added as EA. Little caproate but much butyrate was produced where only acetate was added as EA. This indicated that CCE bacteria preferentially selected acetate as the EA to produce butyrate, and butyrate could be selected as EA to produce caproate only when the acetate content was much lower than butyrate. Unclassified_f_Dysgonomonadaceae, Massilibacterium, and Seramator were the predominant bacteria. Functional enzyme analysis showed that high butyrate content strengthened the fatty acid biosynthesis pathway and reverse β-oxidization pathway. The findings showed the importance of butyrate in CCE for caproate production.
Collapse
|
|
1 |
6 |
22
|
Zhao L, Zhang C, Bao M, Lu J. Effects of different electron acceptors on the methanogenesis of hydrolyzed polyacrylamide biodegradation in anaerobic activated sludge systems. BIORESOURCE TECHNOLOGY 2018; 247:759-768. [PMID: 30060411 DOI: 10.1016/j.biortech.2017.09.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 06/08/2023]
Abstract
The type of electron acceptor was a crucial factor in regulating the methanogenic process of anaerobic hydrolyzed polyacrylamide (HPAM) degradation. The combined methods of biodegradation experiments and thermodynamic calculations were applied to explore the effects of different electron acceptors on methanogenic HPAM degradation. Under the conditions of without electron acceptor, SO42-, Fe3+, SO42- and Fe3+ as electron acceptors, HPAM biodegradation ratio reached 31.56%, 41.48%, 49.4% and 61.1%, acetate production reached 0.0532, 28.28, 112.7 and 141.95mg·L-1, CH4 production reached 0.024, 0.3015, 9.446 and 11.78mg·L-1, respectively. The synergistic effect of SO42- and Fe3+ further promoted methanogenic HPAM biotransformation. Archaeal community analysis revealed that Methanobacteriales, Methanomicrobiales and Methanosarcinales were dominant. Thermodynamic opportunity windows of methanogenesis with Fe3+ as electron acceptor are 35 times larger than that with SO42- as electron acceptor. It indicated that acetoclastic methanogenesis was dominant and hydrogenotrophic methanogenesis was inhibited in the methane-producing process of anaerobic HPAM degradation.
Collapse
|
|
7 |
6 |
23
|
Han X, Qu Y, Wu J, Li D, Ren N, Feng Y. Nitric oxide reduction by microbial fuel cell with carbon based gas diffusion cathode for power generation and gas purification. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122878. [PMID: 32937696 DOI: 10.1016/j.jhazmat.2020.122878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) from anthropogenic emission is one of the main air contaminants and induces many environmental problems. Microbial fuel cells (MFCs) with gas diffusion cathode provide an alternative technology for NO reduction. In this work, pure NO as the sole electron acceptor of MFCs with gas diffusion cathode (NO-MFCs) was verified. The NO-MFCs obtained a maximum power density of 489 ± 50 mW/m2. Compared with MFCs using O2 in air as electron acceptor (Air-MFCs), the columbic efficiency increased from 23.2% ± 4.3% (Air-MFCs) to 55.7% ± 4.6% (NO-MFCs). The NO removal rate was 12.33 ± 0.14 mg/L/h and N2 was the main reduction product. Cathode reduction was the dominant pathway of NO conversion in NO-MFCs, including abiotic electrochemical reduction and microbial denitrification process. The predominant genera in anodic microbial community changed from exoelectrogenic bacteria in Air-MFCs to denitrifying bacteria in NO-MFCs and effected the power generation.
Collapse
|
|
5 |
5 |
24
|
Wu Z, Liu G, Ji Y, Li P, Yu X, Qiao W, Wang B, Shi K, Liu W, Liang B, Wang D, Yanuka-Golub K, Freilich S, Jiang J. Electron acceptors determine the BTEX degradation capacity of anaerobic microbiota via regulating the microbial community. ENVIRONMENTAL RESEARCH 2022; 215:114420. [PMID: 36167116 DOI: 10.1016/j.envres.2022.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.
Collapse
|
|
3 |
4 |
25
|
Tansel B, Surita SC. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:2271-2277. [PMID: 25160660 DOI: 10.1016/j.wasman.2014.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 06/03/2023]
Abstract
The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si-O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si-O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.
Collapse
|
|
11 |
4 |