1
|
Tian P, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J Nutr Biochem 2019; 66:43-51. [PMID: 30743155 DOI: 10.1016/j.jnutbio.2019.01.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
Depression disorder is rapidly advancing worldwide, and therapeutic strategy through gut-brain axis has been proven to be effective in the treatment. Here we studied the effect of lactic acid bacteria (LAB) treatment on depression. C57BL/6J mice were administered with LAB during a 5-week chronic unpredictable mild stress. Bifidobacterium longum subsp. infantis E41 and Bifidobacterium breve M2CF22M7, which improved the expression of Tph1 and secretion of 5-hydroxytryptophan (5-HTP) in RIN14B cells, significantly reduced depressive behaviors of mice in the forced swim test, sucrose preference test and step-down test, as well as increased the level of 5-hydroxytryptamine and brain-derived neurotrophic factor concentration in brain. Besides, M2CF22M7 reduced the serum corticosterone level. E41 increased cecal butyrate level, which significantly and positively correlated with some depression-related indexes. Using 16S rRNA-amplicon sequencing of faces, E41 and M2CF22M7 were found to improve the chronic-stress-induced microbial dysbiosis. They also normalized the host's pathways involving metabolism and gene information processing. These results indicate that Bifidobacterium E41 and M2CF22M7 have an antidepressant effect in mice partly in a 5-HTP dependent and microbiota-regulating manner. Nurturing the gut microbiota with these strains may become an emerging therapeutic way for mood disorder.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
180 |
2
|
Alcaino C, Farrugia G, Beyder A. Mechanosensitive Piezo Channels in the Gastrointestinal Tract. CURRENT TOPICS IN MEMBRANES 2017; 79:219-244. [PMID: 28728818 PMCID: PMC5606247 DOI: 10.1016/bs.ctm.2016.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels.
Collapse
|
Review |
8 |
61 |
3
|
Lavoie B, Lian JB, Mawe GM. Regulation of Bone Metabolism by Serotonin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:35-46. [PMID: 29101650 DOI: 10.1007/978-3-319-66653-2_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
47 |
4
|
Takahashi T. Mechanism of interdigestive migrating motor complex. J Neurogastroenterol Motil 2012; 18:246-57. [PMID: 22837872 PMCID: PMC3400812 DOI: 10.5056/jnm.2012.18.3.246] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/13/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022] Open
Abstract
Migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal contractions in the interdigestive state. This review article discussed the mechanism of gastrointestinal MMC. Luminal administration of 5-hydroxytryptamine (5-HT) initiates duodenal phase II followed by gastrointestinal phase III with a concomitant increase of plasma motilin release in conscious dogs. Duodenal 5-HT concentration is increased during gastric phase II and phase III. Intravenous infusion of motilin increases luminal 5-HT content and induces gastrointestinal phase III. 5-HT(4) antagonists significantly inhibits both of gastric and intestinal phase III, while 5-HT(3) antagonists inhibited only gastric phase III. These suggest that gastrointestinal MMC cycle is mediated via the interaction between motilin and 5-HT by the positive feedback mechanism. Gastric MMC is regulated via vagus, 5-HT(3/4) receptors and motilin, while intestinal MMC is regulated via intrinsic primary afferent neurons and 5-HT(4) receptors. Stress is highly associated with the pathogenesis of functional dyspepsia. Acoustic stress attenuates gastric phase III without affecting intestinal phase III in conscious dogs, via reduced vagal activity and increased sympathetic activity. It has been shown that subset of functional dyspepsia patients show reduced vagal activity and impaired gastric phase III. The physiological importance of gastric MMC is a mechanical and chemical cleansing of the empty stomach in preparation for the next meal. The impaired gastric MMC may aggravate dyspeptic symptoms following a food ingestion. Thus, maintaining gastric MMC in the interdigestive state is an important factor to prevent the postprandial dyspeptic symptoms.
Collapse
|
review-article |
13 |
40 |
5
|
Tsuruta T, Saito S, Osaki Y, Hamada A, Aoki-Yoshida A, Sonoyama K. Organoids as an ex vivo model for studying the serotonin system in the murine small intestine and colon epithelium. Biochem Biophys Res Commun 2016; 474:161-167. [PMID: 27105910 DOI: 10.1016/j.bbrc.2016.03.165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 10/21/2022]
Abstract
Intestinal organoids were recently established as an ex vivo model of the intestinal epithelium. The present study investigated the serotonin (5-hydroxytryptamine, 5-HT) system using organoids. Organoids from murine small intestinal and colonic crypts were successfully cultured. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that small intestinal and colonic organoids express mRNAs encoding tryptophan hydroxylase-1 (TPH1) (the rate-limiting enzyme of 5-HT synthesis), serotonin reuptake transporter (SERT), 5-HT receptor (HTR)2A, HTR2B, and HTR4. SERT mRNA levels were significantly higher in the small intestine than in the colon in both the mucosal tissues and organoids, as estimated by quantitative real-time RT-PCR. Although the 5-HT concentration and levels of chromogranin A (CgA) (an enteroendocrine cell marker), TPH1, and HTR4 mRNAs were significantly higher in the colonic mucosa than the small intestinal mucosa, they were the same in small intestinal and colonic organoids. There were no significant differences in HTR2A and HTR2B mRNA levels between the small intestine and colon in either the mucosal tissues or organoids. Immunofluorescence staining showed that the number of CgA-positive cells in the colonic organoids appeared to increase upon culturing with acetate. Acetate supplementation significantly increased CgA, TPH1, and HTR4 mRNA levels in the colonic organoids. We propose that organoids are useful for investigating the 5-HT system in the intestinal epithelium, even though colonic organoids may require gut microbiota-derived factors such as short-chain fatty acids.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
37 |
6
|
Jung K, Miyazaki A, Saif LJ. Immunohistochemical detection of the vomiting-inducing monoamine neurotransmitter serotonin and enterochromaffin cells in the intestines of conventional or gnotobiotic (Gn) pigs infected with porcine epidemic diarrhea virus (PEDV) and serum cytokine responses of Gn pigs to acute PEDV infection. Res Vet Sci 2018; 119:99-108. [PMID: 29909130 PMCID: PMC7111759 DOI: 10.1016/j.rvsc.2018.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/16/2018] [Accepted: 06/10/2018] [Indexed: 12/18/2022]
Abstract
Serotonin is a critical monoamine neurotransmitter molecule stored and released from enterochromaffin (EC) cells into the gut submucosa, transmitting the vomiting signal to the brain. We studied one mechanism by which vomiting is induced in pigs infected with porcine epidemic diarrhea virus (PEDV) by characterization of swine EC cells by immunohistochemistry. Conventional or gnotobiotic (Gn) 9-day-old pigs [PEDV-inoculated (n = 12); Mock (n = 14)] were inoculated orally (8.9-9.2 log10 genomic equivalents/pig) with PEDV PC21A strain or mock. This is the first identification of serotonin-positive EC cells in swine by immunohistochemistry and mainly in intestinal crypts, regardless of infection status. They were morphologically triangular-shaped or round cells with or without apical cytoplasmic extensions, respectively. At post-inoculation hour (PIH) 16 or 24, when vomiting was first or frequently observed, respectively, PEDV infection resulted in significantly reduced numbers of serotonin-positive EC cells in duodenum, mid-jejunum, ileum, or colon. However, two of three PEDV-inoculated Gn pigs that did not yet show vomiting at PIH 16 had numbers of serotonin-positive EC cells in duodenum, ileum and colon similar to those in the negative controls. These findings suggest that serotonin release from EC cells (increased serotonin levels) into the gut submucosa might occur early PEDV post-infection to stimulate the vagal afferent neurons, followed by vomiting. Serotonin might be involved in the mechanisms related to vomiting in PEDV-infected piglets. We also found that mid-jejunum was the primary site of acute PEDV infection, and that systemic innate and pro-inflammatory cytokine responses were induced during the acute stage of PEDV infection.
Collapse
|
Journal Article |
7 |
36 |
7
|
Qin HY, Xavier Wong HL, Zang KH, Li X, Bian ZX. Enterochromaffin cell hyperplasia in the gut: Factors, mechanism and therapeutic clues. Life Sci 2019; 239:116886. [PMID: 31678286 DOI: 10.1016/j.lfs.2019.116886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023]
Abstract
Enterochromaffin (EC) cell is the main cell type that responsible for 5-hydroxytryptamine (5-HT) synthesis, storage and release of the gut. Intestinal 5-HT play a key role in visceral sensation, intestinal motility and permeability, EC cell hyperplasia and increased 5-HT bioavailability in the gut have been found to be involved in the symptoms generation of irritable bowel syndrome and inflammatory bowel disease. EC cells originate from intestinal stem cells, the interaction between proliferation and differentiation signals on intestinal stem cells enable EC cell number to be regulated in a normal level. This review focuses on the impact factors, pathogenesis mechanisms, and therapeutic clues for intestinal EC cells hyperplasia, and showed that EC cell hyperplasia was observed under the condition of physiological stress, intestinal infection or intestinal inflammation, the disordered proliferation and/or differentiation of intestinal stem cells as well as their progenitor cells all contribute to the pathogenesis of intestinal EC cell hyperplasia. The altered intestinal niche, i.e. increased corticotrophin releasing factor (CRF) signal, elevated nerve growth factor (NGF) signal, and Th2-dominant cytokines production, has been found to have close correlation with intestinal EC cell hyperplasia. Currently, CRF receptor antagonist, nuclear factor-κB inhibitor, and NGF receptor neutralizing antibody have been proved useful to attenuate intestinal EC cell hyperplasia, which may provide a promising clue for the therapeutic strategy in EC cell hyperplasia related diseases.
Collapse
|
Review |
6 |
17 |
8
|
Nan N, Gong MX, Wang Q, Li MJ, Xu R, Ma Z, Wang SH, Zhao H, Xu YS. Wuzhuyu Decoction relieves hyperalgesia by regulating central and peripheral 5-HT in chronic migraine model rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153905. [PMID: 35026523 DOI: 10.1016/j.phymed.2021.153905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic migraine (CM) is a highly disabling and burdensome disease. Wuzhuyu decoction (WZYD), a clinical used formula to treat and prevent episodic migraine and CM, has been reported to relieve the hyperalgesia of CM and increase brainstem and blood serotonin (5-hydroxytryptamine, 5-HT) in migraine model rats in previous studies; yet the mechanism is unclear. PURPOSE This study aimed to observe the hyperalgesia relief effect of WZYD and investigate the mechanistic association with the regulation on central and peripheral 5-HT. METHODS WZYD with different doses (3.372, 1.686 and 0.843 g/kg∙d) and the positive drug - sumatriptan (5.83 mg/kg∙3 d) were intragastrically administered in inflammatory soup (IS)-induced CM model rats, respectively. Hyperalgesia was assessed by facial mechanical withdrawal threshold and tail-flick latency. 5-HT was determined by ELISA. Western blot analysis, immunohistochemistry and immunofluorescence determination, and 16S rRNA gene sequencing were performed. RESULTS WZYD significantly relieved the hyperalgesia by elevating the facial mechanical withdrawal threshold and tail-flick latency. In WZYD groups, increased 5-HT and decreased calcitonin gene-related peptide in both the brainstem and plasma, downregulated TNF-α, IL-1β, and c-fos expression in the brainstem were observed in dose-dependent manner. Interestingly, 5-HT in colon tissues were also observed, which is associated with upregulating tryptophan hydroxylase, serotonin transporter and Piezo1 expression and increasing 5-HT and chromogranin A in enterochromaffin cells. Disorder of the microbiota, function and metabolism was correlated with 5-HT synthesis. WZYD could regulate the abundance of Anaerostipes and Acidifaciens. CONCLUSION WZYD has the pharmacological effect on relieving hyperalgesia in CM model rats, possibly by affecting central and peripheral 5-HT.
Collapse
|
|
3 |
12 |
9
|
Yang J, Wang P, Liu T, Lin L, Li L, Kou G, Zhou R, Li P, Li Y. Involvement of mucosal flora and enterochromaffin cells of the caecum and descending colon in diarrhoea-predominant irritable bowel syndrome. BMC Microbiol 2021; 21:316. [PMID: 34773967 PMCID: PMC8590216 DOI: 10.1186/s12866-021-02380-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating evidence supports the pivotal role of intestinal flora in irritable bowel syndrome (IBS). Serotonin synthesis by enterochromaffin (EC) cells is influenced by the gut microbiota and has been reported to have an interaction with IBS. The comparison between the microbiota of the caecal and colonic mucosa in IBS has rarely been studied. The aim of this study was to investigate the relationship between the gut microbiota, EC cells in caecum and descending colon, and diarrhoea-predominant IBS (IBS-D) symptoms. Results A total of 22 IBS-D patients and 22 healthy controls (HCs) were enrolled in our study. Hamilton anxiety (HAM-A) and Hamilton depression (HAM-D) grades increased significantly in IBS-D patients. In addition, the frequency of defecation in IBS-D patients was higher than that in HCs. Among the preponderant bacterial genera, the relative abundance of the Ruminococcus_torques_ group increased in IBS-D patients in caecum samples while Raoultella and Fusobacterium were less abundant. In the descending colon, the abundance of the Ruminococcus_torques_group and Dorea increased in IBS-D patients and Fusobacterium decreased. No difference was observed between the descending colon and caecum in regards to the mucosal-associated microbiota. The number of EC cells in the caecum of IBS-D patients was higher than in HCs and the expression of TPH1 was higher in IBS-D patients both in the caecum and in the descending colon both at the mRNA and protein level. Correlation analysis showed that the Ruminococcus_torques_group was positively associated with HAM-A, HAM-D, EC cell number, IBS-SSS, degree of abdominal pain, frequency of abdominal pain and frequency of defecation. The abundance of Dorea was positively associated with EC cell number, IBS-SSS, HAM-A, HAM-D and frequency of abdominal pain. Conclusions EC cell numbers increased in IBS-D patients and the expression of TPH1 was higher than in HCs. The Ruminococcus torques group and Dorea furthermore seem like promising targets for future research into the treatment of IBS-D patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02380-2.
Collapse
|
|
4 |
10 |
10
|
Yeoman MS, Fidalgo S, Marcelli G, Patel BA. Amperometry approach curve profiling to understand the regulatory mechanisms governing the concentration of intestinal extracellular serotonin. Sci Rep 2024; 14:10479. [PMID: 38714793 PMCID: PMC11076564 DOI: 10.1038/s41598-024-61296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.
Collapse
|
research-article |
1 |
|
11
|
Spencer NJ, Kyloh MA, Travis L, Hibberd TJ. Identification of vagal afferent nerve endings in the mouse colon and their spatial relationship with enterochromaffin cells. Cell Tissue Res 2024; 396:313-327. [PMID: 38383905 PMCID: PMC11144134 DOI: 10.1007/s00441-024-03879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Understanding how the gut communicates with the brain, via sensory nerves, is of significant interest to medical science. Enteroendocrine cells (EEC) that line the mucosa of the gastrointestinal tract release neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT). How the release of substances, like 5-HT, from enterochromaffin (EC) cells activates vagal afferent nerve endings is unresolved. We performed anterograde labelling from nodose ganglia in vivo and identified vagal afferent axons and nerve endings in the mucosa of whole-mount full-length preparations of mouse colon. We then determined the spatial relationship between mucosal-projecting vagal afferent nerve endings and EC cells in situ using 3D imaging. The mean distances between vagal afferent nerve endings in the mucosa, or nearest varicosities along vagal afferent axon branches, and the nearest EC cell were 29.6 ± 19.2 μm (n = 107, N = 6) and 25.7 ± 15.2 μm (n = 119, N = 6), respectively. No vagal afferent endings made close contacts with EC cells. The distances between EC cells and vagal afferent endings are many hundreds of times greater than known distances between pre- and post-synaptic membranes (typically 10-20 nm) that underlie synaptic transmission in vertebrates. The absence of any close physical contacts between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa leads to the inescapable conclusion that the mechanism by which 5-HT release from ECs in the colonic mucosa occurs in a paracrine fashion, to activate vagal afferents.
Collapse
|
research-article |
1 |
|
12
|
Kyodo R, Kudo T, Ito N, Tokita K, Arai N, Sato M, Ikuse T, Jimbo K, Ohtsuka Y, Shimizu T. Modulation of Intestinal Motility in an Adolescent Rat Model of Irritable Bowel Syndrome. Digestion 2023; 105:99-106. [PMID: 37963446 PMCID: PMC10994574 DOI: 10.1159/000534732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION The pathophysiology of irritable bowel syndrome (IBS) remains unknown. This study aimed to evaluate colonic motility and serotonin system response to restraint stress (RS) among adolescent rats who underwent neonatal maternal separation (NMS) to clarify the features of pathogenesis in adolescents with IBS. METHODS Male rats were exposed to NMS as chronic stress, and a normally handled (NH) group was used as control. Four groups were created by adding RS as acute stress treatment to the NMS and NH groups. To realize the RS treatment, the subjects were restrained for 1 h at the age of 5 weeks, and hourly fecal pellet discharge was determined. After euthanization and proximal colon intestinal tissue collection, 5-hydroxytryptamine (5-HT) and 5-hydroxytryptamine receptor 3 (5-HT3R) concentrations, enterochromaffin (EC) cell density, and the expression of mRNA-encoding slc6a4 were examined. RESULTS The amount of fecal pellet discharge during RS increased significantly in the RS and NMS+RS groups compared with that in the NH and NMS groups, respectively. The 5-HT concentration in the intestinal tissue of rats in the RS and NMS groups increased significantly compared with that of rats in the NH group. EC cell density also increased significantly in the NMS and NMS+RS groups compared with that in the NH and RS groups. However, combined stress did not result in any significant differences in the expression of 5-HT3R and mRNA-encoding slc6a4. CONCLUSIONS The combination of juvenile and acute stress effectively induced increased 5-HT concentration or EC cell density via the 5-HT pathway in the proximal colon of adolescent rats.
Collapse
|
research-article |
2 |
|