Cai TX, Benjamini D, Komlosh ME, Basser PJ, Williamson NH. Rapid detection of the presence of diffusion exchange.
JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018;
297:17-22. [PMID:
30340203 PMCID:
PMC6289744 DOI:
10.1016/j.jmr.2018.10.004]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 05/08/2023]
Abstract
Diffusion exchange spectroscopy (DEXSY) provides a detailed picture of how fluids in different microenvironments communicate with one another but requires a large amount of data. For DEXSY MRI, a simple measure of apparent exchanging fractions may suffice to characterize and differentiate materials and tissues. Reparameterizing signal intensity from a PGSE-storage-PGSE experiment as a function of the sum, bs=b1+b2, and difference bd=b2-b1 of the diffusion encodings separates diffusion weighting from exchange weighting. Exchange leads to upward curvature along a slice of constant bs. Exchanging fractions can be measured rapidly by a finite difference approximation of the curvature using four data points. The method is generalized for non-steady-state and multi-site exchange. We apply the method to image exchanging fractions and calculate exchange rates of water diffusing across the bulk water interface of a glass capillary array.
Collapse