Rufino J, Ramírez JM, Aguilar J, Baquero C, Champati J, Frey D, Lillo RE, Fernández-Anta A. Consistent comparison of symptom-based methods for COVID-19 infection detection.
Int J Med Inform 2023;
177:105133. [PMID:
37393765 DOI:
10.1016/j.ijmedinf.2023.105133]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND
During the global pandemic crisis, various detection methods of COVID-19-positive cases based on self-reported information were introduced to provide quick diagnosis tools for effectively planning and managing healthcare resources. These methods typically identify positive cases based on a particular combination of symptoms, and they have been evaluated using different datasets.
PURPOSE
This paper presents a comprehensive comparison of various COVID-19 detection methods based on self-reported information using the University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), a large health surveillance platform, which was launched in partnership with Facebook.
METHODS
Detection methods were implemented to identify COVID-19-positive cases among UMD-CTIS participants reporting at least one symptom and a recent antigen test result (positive or negative) for six countries and two periods. Multiple detection methods were implemented for three different categories: rule-based approaches, logistic regression techniques, and tree-based machine-learning models. These methods were evaluated using different metrics including F1-score, sensitivity, specificity, and precision. An explainability analysis has also been conducted to compare methods.
RESULTS
Fifteen methods were evaluated for six countries and two periods. We identify the best method for each category: rule-based methods (F1-score: 51.48% - 71.11%), logistic regression techniques (F1-score: 39.91% - 71.13%), and tree-based machine learning models (F1-score: 45.07% - 73.72%). According to the explainability analysis, the relevance of the reported symptoms in COVID-19 detection varies between countries and years. However, there are two variables consistently relevant across approaches: stuffy or runny nose, and aches or muscle pain.
CONCLUSIONS
Regarding the categories of detection methods, evaluating detection methods using homogeneous data across countries and years provides a solid and consistent comparison. An explainability analysis of a tree-based machine-learning model can assist in identifying infected individuals specifically based on their relevant symptoms. This study is limited by the self-report nature of data, which cannot replace clinical diagnosis.
Collapse