1
|
Jain A, Bahuguna R. Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J Oral Biol Craniofac Res 2015; 5:212-8. [PMID: 26605147 PMCID: PMC4623218 DOI: 10.1016/j.jobcr.2015.06.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of more than 25 secreted and membrane bound enzymes that represent class of enzymes responsible for degradation of pericellular substrates. They have been isolated from dentine, odontoblasts, pulp and periapical tissue. They play an important role in dentine matrix formation, modulating caries progression and secondary dentine formation. Earlier microbial proteolytic enzymes were believed to be responsible for degradation of dentine organic matrix, but lately the accumulated body of evidence suggests that MMPs have an important role in the process. During normal tissue modelling, differentiation during development, in modulating the cell behaviour, maintaining homeostasis and in numerous extracellular pathologic conditions, MMPs tends to be an equally important participant. Odontoblasts secrete some of the essential MMPs for both physiologic and pathologic conditions. MMPs also appear to be a participant in the process of reversible and irreversible pulpitis. Although they tend to have low expression and activity in adult tissues but at the onset of any destructive pathologic process, their production shoots up. They appear to have a significant presence during times of inflammation in the periapical region as well. We take a look at the various factors and evidence pointing towards the role of MMPs in the progression of caries, pulpal and periapical inflammation.
Collapse
|
Review |
10 |
83 |
2
|
Abstract
Liver extracellular matrix (ECM) composition, topography and biomechanical properties influence cell-matrix interactions. The ECM presents guiding cues for hepatocyte phenotype maintenance, differentiation and proliferation both in vitro and in vivo. Current understanding of such cell-guiding cues along with advancement of techniques for scaffold fabrication has led to evolution of matrices for liver tissue culture from simple porous scaffolds to more complex 3D matrices with microarchitecture similar to in vivo. Natural and synthetic polymeric biomaterials fabricated in different topographies and porous matrices have been used for hepatocyte culture. Heterotypic and homotypic cell interactions are necessary for developing an adult liver as well as an artificial liver. A high oxygen demand of hepatocytes as well as graded oxygen distribution in liver is another challenging attribute of the normal liver architecture that further adds to the complexity of engineered substrate design. A balanced interplay of cell-matrix interactions along with cell-cell interactions and adequate supply of oxygen and nutrient determines the success of an engineered substrate for liver cells. Techniques devised to incorporate these features of hepatic function and mimic liver architecture range from maintaining liver cells in mm-sized tailor-made scaffolds to a more bottoms up approach that starts from building the microscopic subunit of the whole tissue. In this review, we discuss briefly various biomaterials used for liver tissue engineering with respect to design parameters such as scaffold composition and chemistry, biomechanical properties, topography, cell-cell interactions and oxygenation.
Collapse
|
Journal Article |
12 |
42 |
3
|
Pathological changes in the COPD lung mesenchyme--novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther 2014; 29:121-8. [PMID: 24747433 DOI: 10.1016/j.pupt.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the fourth leading cause of death worldwide and, in contrast to the trend for cardiovascular diseases, mortality rates still continue to climb. This increase is in part due to an aging population, being expanded by the "Baby boomer" generation who grew up when smoking rates were at their peak and by people in developing countries living longer. Sadly, there has been a disheartening lack of new therapeutic approaches to counteract the progressive decline in lung function associated with the disease that leads to disability and death. COPD is characterized by irreversible chronic airflow limitation that is caused by emphysematous destruction of lung elastic tissue and/or obstruction in the small airways due to occlusion of their lumen by inflammatory mucus exudates, narrowing and obliteration. These lesions are mainly produced by the response of the tissue to the repetitive inhalational injury inflicted by noxious gases, including cigarette smoke, which involves interaction between infiltrating inflammatory immune cells, resident cells (e.g. epithelial cells and fibroblasts) and the extra cellular matrix. This interaction leads to tissue destruction and airway remodeling with changes in elastin and collagen, such that the epithelial-mesenchymal trophic unit is dysregulated in both the disease pathologies. This review focuses on: 1--novel inflammatory and remodeling factors that are altered in COPD; 2--in vitro and in vivo models to understand the mechanism whereby the extra cellular matrix environment in altered in COPD; and 3--COPD in the context of wound-repair tissue responses, with a focus on the regulation of mesenchymal cell fate and phenotype.
Collapse
|
Review |
11 |
28 |
4
|
Zambon JP, Magalhaes RS, Ko I, Ross CL, Orlando G, Peloso A, Atala A, Yoo JJ. Kidney regeneration: Where we are and future perspectives. World J Nephrol 2014; 3:24-30. [PMID: 25332894 PMCID: PMC4202490 DOI: 10.5527/wjn.v3.i3.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted.
Collapse
|
Review |
11 |
18 |
5
|
Coletti D, Teodori L, Lin Z, Beranudin JF, Adamo S. Restoration versus reconstruction: cellular mechanisms of skin, nerve and muscle regeneration compared. Regen Med Res 2013; 1:4. [PMID: 25984323 PMCID: PMC4375925 DOI: 10.1186/2050-490x-1-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/20/2013] [Indexed: 01/24/2023] Open
Abstract
In tissues characterized by a high turnover or following acute injury, regeneration replaces damaged cells and is involved in adaptation to external cues, leading to homeostasis of many tissues during adult life. An understanding of the mechanics underlying tissue regeneration is highly relevant to regenerative medicine-based interventions. In order to investigate the existence a leitmotif of tissue regeneration, we compared the cellular aspects of regeneration of skin, nerve and skeletal muscle, three organs characterized by different types of anatomical and functional organization. Epidermis is a stratified squamous epithelium that migrates from the edge of the wound on the underlying dermis to rebuild lost tissue. Peripheral neurons are elongated cells whose neurites are organized in bundles, within an endoneurium of connective tissue; they either die upon injury or undergo remodeling and axon regrowth. Skeletal muscle is characterized by elongated syncytial cells, i.e. muscle fibers, that can temporarily survive in broken pieces; satellite cells residing along the fibers form new fibers, which ultimately fuse with the old ones as well as with each other to restore the previous organization. Satellite cell asymmetrical division grants a reservoir of undifferentiated cells, while other stem cell populations of muscle and non-muscle origin participate in muscle renewal. Following damage, all the tissues analyzed here go through three phases: inflammation, regeneration and maturation. Another common feature is the occurrence of cellular de-differentiation and/or differentiation events, including gene transcription, which are typical of embryonic development. Nonetheless, various strategies are used by different tissues to replace their lost parts. The epidermis regenerates ex novo, whereas neurons restore their missing parts; muscle fibers use a mixed strategy, based on the regrowth of missing parts through reconstruction by means of newborn fibers. The choice of either strategy is influenced by the anatomical, physical and chemical features of the cells as well as by the extracellular matrix typical of a given tissue, which points to the existence of differential, evolutionary-based mechanisms for specific tissue regeneration. The shared, ordered sequence of steps that characterize the regeneration processes examined suggests it may be possible to model this extremely important phenomenon to reproduce multicellular organisms.
Collapse
|
Review |
12 |
14 |
6
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
|
Review |
2 |
13 |
7
|
Soriani O, Rapetti-Mauss R. Sigma 1 Receptor and Ion Channel Dynamics in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:63-77. [PMID: 28315265 DOI: 10.1007/978-3-319-50174-1_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SigmaR1 is a multitasking chaperone protein which has mainly been studied in CNS physiological and pathophysiological processes such as pain, memory, neurodegenerative diseases (amyotrophic lateral sclerosis , Parkinson's and Alzheimer's diseases, retinal neurodegeneration ), stroke and addiction . Strikingly, G-protein and ion channels are the main client protein fami lies of this atypical chaperone and the recent advances that have been performed for the last 10 years demonstrate that SigmaR1 is principally activated following tissue injury and disease development to promote cell survival. In this chapter, we synthesize the data enhancing our comprehension of the interaction between SigmaR1 and ion channels and the unexpected consequences of such functional coupling in cancer development. We also describe a model in which the pro-survival functions of SigmaR1 observed in CNS pathologies are hijacked by cancer cells to shape their electrical signature and behavior in response to the tumor microenvironment .
Collapse
|
Review |
8 |
10 |
8
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
|
Review |
5 |
9 |
9
|
Synthesis and skin gene analysis of 4'-acetoxy-resveratrol (4AR), therapeutic potential for dermal applications. Bioorg Med Chem Lett 2016; 26:3258-3262. [PMID: 27265258 DOI: 10.1016/j.bmcl.2016.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022]
Abstract
Resveratrol (RV) 1, a plant polyphenol, has proven effective in commercial products yet drawbacks include low bioavailability due to rapid metabolism. Structural modifications have led to a 4'-acetoxy analog 2 (4AR) now produced using a selective one-step esterification reaction. The one-step synthesis is shown together with expression of skin genes using human dermal models to establish 4AR 2 benefits to skin health. 4AR 2 at 1% in qPCR experiments using a human skin model significantly increased gene expression of the anti-aging factor, SIRT 1 by over 3.3-fold, extracellular matrix proteins collagen III, IV, elastin and tissue inhibitors of metalloproteinases (TIMP 1, 2), anti-oxidants CAT, LOX, superoxide dismutase (SOD 1, 2), metallothioneins (MT1H, MT1H), skin aging biomarkers fibrillin (FBN1), laminin (LAMB1), proliferating cell nuclear antigen (PCNA), skin growth factors (HBEGF, IGF1, NGF and TGF). 4AR 2 also decreased gene expression of inflammatory and skin-aging molecules (IL-1, IL-6, IL-8, COX-2, TNGRSF) and S100 calcium binding proteins A8, A9. These findings suggest that 4AR 2 has potential for topically treatment and prevention of skin aging.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
8 |
10
|
Priyadarsini S, Nicholas SE, Karamichos D. 3D Stacked Construct: A Novel Substitute for Corneal Tissue Engineering. Methods Mol Biol 2017; 1697:173-180. [PMID: 28451994 DOI: 10.1007/7651_2017_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Corneal trauma/injury often results in serious complications including permanent vision loss or loss of visual acuity which demands corneal transplantations or treatment with allogenic graft tissues. There is currently a huge shortage of donor tissue worldwide and the need for human corneal equivalents increases annually. In order to meet such demand the current clinical approach of treating corneal injuries is limited and involves synthetic and allogenic materials which have various shortcomings when it comes to actual transplantations. In this study we introduce the newly developed, next generation of our previously established 3D self-assembled constructs, where multiple constructs are grown and stacked on top of each other without any other artificial product. This new technology brings our 3D in vitro model closer to what is seen in vivo and provides a solid foundation for future studies on corneal biology.Lipids are known for playing a vital role during metabolism and diseased state of various tissues and Sphingolipids are one such class of lipids which are involved in various cellular mechanisms and signaling processes. The impacts of Sphingolipids that have been documented in several human diseases often involve inflammation, neovascularization, tumorigenesis, and diabetes, but these conditions are not yet thoroughly studied. There is very little information about the exact role of Sphingolipids in the human cornea and future studies aiming at dissecting the mechanisms and pathways involved in order to develop novel therapies. We believe that our novel 3D stacked model can be used to delineate the role of Sphingolipids in the human cornea and provide new insights for understanding and treating various human corneal diseases.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
6 |
11
|
Wei YF, Peng Y, Xie HY, Zhao TJ. Advances in anti-fibrosis at the molecular level based on hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2009; 17:1745-1748. [DOI: 10.11569/wcjd.v17.i17.1745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extra cellular matrix (ECM), which plays a key role in the formation of liver fibrosis, mainly comes from the hepatic stellate cells (HSCs). The major components of ECM, includes collagens, glycoproteins, polysaccharides, etc. HSCs can influence or accelarate the process of liver fibrosis through secretion of many cytokines. Recently, many scientists home and abroad focus on HSCs apoptosis and degradation of collagen as a target, in order to find a breakthrough for the prevention and treatment of liver fibrosis.
Collapse
|
文献综述 |
16 |
5 |
12
|
Yasui Y, Yoshizaki H, Kuwahara T, Nishida S, Kohno M, Okajima H. Transplanted neural crest cells migrate toward Auerbach's plexus layer instead of the colon surface in recipient colon pretreated with collagenase and fibronectin. Biochem Biophys Res Commun 2022; 601:116-122. [PMID: 35245740 DOI: 10.1016/j.bbrc.2022.02.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
The enteric nervous system (ENS) regulates gastrointestinal motility, secretion, and absorption. Developmental ENS dysplasia causes intestinal ganglion dysfunction, including Hirschsprung's disease. Given their potential ability to replenish insufficient neurons, transplantation of enteric neural cells provides the prospect of a cure. In this study, we used an ex vivo mouse colon transplant model to demonstrate that treatment with collagenase and fibronectin altered the migration of transplanted cells from the direction of the colon surface toward the lumen. Collagenase-treated colons exhibited enhanced expression of type III and VI collagens, which inhibited fibronectin-induced enteric neural crest cell (ENCC) migration. Invasion of neurospheres into colon was dependent on preoperative treatment of recipient colon with collagenase and fibronectin, which enhanced neurosphere motility towards the direction of colon lumen. Infiltration of transplanted ENCCs into the colon increased proportionally to the degree of dedifferentiation of surrounding smooth muscle cells, which was induced in a neurosphere-dependent manner in collagenase-treated colon. Furthermore, induction of GDNF expression, a Ret ligand that promotes enteric neural cell migration, was observed in treated colons. Our results suggest that the environment provided by the extracellular matrix of the colon surface affects the direction of transplanted ENCC migration. Moreover, these findings demonstrating that ENCCs can be accepted by the recipient colon will help to refine current strategies for cell therapy.
Collapse
|
|
3 |
5 |
13
|
Nurul Alam AMM, Kim CJ, Kim SH, Kumari S, Lee EY, Hwang YH, Joo ST. Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development. Food Res Int 2024; 189:114549. [PMID: 38876607 DOI: 10.1016/j.foodres.2024.114549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.
Collapse
|
Review |
1 |
5 |
14
|
Liu B, Yang H, Song YS, Sorenson CM, Sheibani N. Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin Cell Dev Biol 2024; 155:32-44. [PMID: 37507331 PMCID: PMC10811293 DOI: 10.1016/j.semcdb.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.
Collapse
|
Review |
1 |
4 |
15
|
Torsello B, De Marco S, Bombelli S, Chisci E, Cassina V, Corti R, Bernasconi D, Giovannoni R, Bianchi C, Perego RA. The 1ALCTL and 1BLCTL isoforms of Arg/Abl2 induce fibroblast activation and extra cellular matrix remodelling differently. Biol Open 2019; 8:bio.038554. [PMID: 30837227 PMCID: PMC6451347 DOI: 10.1242/bio.038554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fibrotic tissue and the stroma adjacent to cancer cells are characterised by the presence of activated fibroblasts (myofibroblasts) which play a role in creating a supportive tissue characterised by abundant extracellular matrix (ECM) secretion. The myofibroblasts remodel this tissue through secreted molecules and modulation of their cytoskeleton and specialized contractile structures. The non-receptor protein tyrosine kinase Arg (also called Abl2) has the unique ability to bind directly to the actin cytoskeleton, transducing diverse extracellular signals into cytoskeletal rearrangements. In this study we analysed the 1ALCTL and 1BLCTL Arg isoforms in Arg−/− murine embryonal fibroblasts (MEF) cell line, focusing on their capacity to activate fibroblasts and to remodel ECM. The results obtained showed that Arg isoform 1BLCTL has a major role in proliferation, migration/invasion of MEF and in inducing a milieu able to modulate tumour cell morphology, while 1ALCTL isoform has a role in MEF adhesion maintaining active focal adhesions. On the whole, the presence of Arg in MEF supports the proliferation, activation, adhesion, ECM contraction and stiffness, while the absence of Arg affected these myofibroblast features. This article has an associated First Person interview with the first author of the paper. Summary: The non-receptor tyrosine kinase Arg and its isoforms modulate the extra cellular matrix production that is relevant in fibrosis and tumour growth, this may open future novel therapeutic approaches.
Collapse
|
Journal Article |
6 |
4 |
16
|
Cesanelli L, Minderis P, Degens H, Satkunskiene D. Passive mechanical properties of adipose tissue and skeletal muscle from C57BL/6J mice. J Mech Behav Biomed Mater 2024; 155:106576. [PMID: 38744119 DOI: 10.1016/j.jmbbm.2024.106576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Skeletal muscle and adipose tissue are characterized by unique structural features finely tuned to meet specific functional demands. In this study, we investigated the passive mechanical properties of soleus (SOL), extensor digitorum longus (EDL) and diaphragm (DIA) muscles, as well as subcutaneous (SAT), visceral (VAT) and brown (BAT) adipose tissues from 13 C57BL/6J mice. Thereto, alongside stress-relaxation assessments we subjected isolated muscles and adipose tissues (ATs) to force-extension tests up to 10% and 30% of their optimal length, respectively. Peak passive stress was highest in the DIA, followed by the SOL and lowest in the EDL (p < 0.05). SOL displayed also the highest Young's modulus and hysteresis among muscles (p < 0.05). BAT demonstrated highest peak passive stress and Young's modulus followed by VAT (p < 0.05), while SAT showed the highest hysteresis (p < 0.05). When comparing data across all six biological specimens at fixed passive force intervals (i.e., 20-40 and 50-70 mN), skeletal muscles exhibited significantly higher peak stresses and strains than ATs (p < 0.05). Young's modulus was higher in skeletal muscles than in ATs (p < 0.05). Muscle specimens exhibited slower force relaxation in the first phase compared to ATs (p < 0.05), while there was no significant difference in behavior between muscles and AT in the second phase of relaxation. The study revealed distinctive mechanical behaviors specific to different tissues, and even between different muscles and ATs. These variations in mechanical properties are likely such to optimize the specific functions performed by each biological tissue.
Collapse
|
|
1 |
3 |
17
|
Russo B, Borowczyk J, Cacialli P, Moguelet P, Truchetet ME, Modarressi A, Brembilla NC, Bertrand J, Boehncke WH, Chizzolini C. IL-25 participates in keratinocyte-driven dermal matrix turnover and is reduced in Systemic Sclerosis epidermis. Rheumatology (Oxford) 2022; 61:4558-4569. [PMID: 35171244 DOI: 10.1093/rheumatology/keac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/03/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Evidence shows that dysfunctional SSc keratinocytes contribute to fibrosis by altering dermal homeostasis. Whether interleukin-25 (IL-25), an IL-17 family member regulating many epidermal functions, takes part in skin fibrosis is unknown. Here we address the role of IL-25 in skin fibrosis. METHODS The expression of IL-25 was evaluated by immunofluorescence and in situ hybridization in 10 SSc and 7 healthy donors (HD) skin biopsies. Epidermal equivalents (EE) reconstituted by primary HD keratinocytes were used as a model to study transcriptomic changes induced by IL-25 in the epidermis. RNA expression profile in EE was characterized by RNAseq. The conditioned medium (CM) from primary SSc and HD keratinocytes primed with IL-25 was used to stimulate fibroblasts. IL-6, IL-8, MMP-1, type-I collagen (col-I), and fibronectin production by fibroblasts was assessed by ELISA. RESULTS SSc epidermis expressed lower levels of IL-25 compared with HD. In EE, IL-25 regulated several molecular pathways related to wound healing and ECM remodeling. Compared with control CM, the CM from IL-25-primed keratinocytes enhanced the fibroblast production of MMP-1, IL-6, IL-8, but not of Col-I nor fibronectin. However, IL-25 significantly reduced the production of Col-I when applied directly to fibroblasts. The activation of keratinocytes by IL-25 was receptor-dependent and evident after a very short incubation time (10 min), largely mediated by IL-1, suggesting enhanced and specific release of preformed mediators. CONCLUSIONS These results show that IL-25 participates to skin homeostasis and its decreased expression in SSc may contribute to skin fibrosis by favoring ECM deposition over degradation.
Collapse
|
|
3 |
2 |
18
|
Chugh N, Koul A. Altered presence of extra cellular matrix components in murine skin cancer: Modulation by Azadirachta indica leaf extract. J Tradit Complement Med 2021; 11:197-208. [PMID: 34012866 PMCID: PMC8116721 DOI: 10.1016/j.jtcme.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIM Although, the anticancer potential of Aqueous Azadirachta indica leaf extract (AAILE) has been robustly established against cutaneous squamous cell carcinoma (SCC) in mice, however, its ability in modulating tumor associated extra cellular matrix (ECM) is largely unknown. Therefore, the present study was conceived to explore changes in ECM during murine skin cancer and its chemoprevention by AAILE. EXPERIMENTAL PROCEDURE Skin tumors were induced using a two-stage model of carcinogenesis employing topical application of 7,12-Dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoyl phorbol-13-acetate (TPA) as carcinogen and promoter respectively. AAILE was administered orally to the animals. Male Laca mice were divided into four groups: control, AAILE, DMBA/TPA and AAILE + DMBA/TPA. RESULTS The tumors obtained in DMBA/TPA and AAILE + DMBA/TPA groups were histologically identified as SCC. Tumor induction in these groups was accompanied by raised serum carcinoembryonic antigen (CEA) levels when compared to control counterparts. Assessment of hydroxyproline levels and histochemical staining with sirius red and trichrome stain revealed an increase in collagen in tumors of DMBA/TPA group. An increase in glycosaminoglycans (GAGs) levels was also observed in DMBA/TPA group as made evident by biochemical studies and histochemical staining using mucicarmine and alcian blue-periodic acid schiff's stain. Administration of AAILE to DMBA/TPA treated animals caused a decrease in collagen and GAG levels along with a decrease in serum CEA levels. CONCLUSION Skin tumors exhibited altered presence of ECM components which is indicative of a modified ECM. AAILE administration antagonised tumor associated ECM alterations which may be contributing to its chemopreventive activity as reported previously.
Collapse
|
research-article |
4 |
1 |
19
|
Kalmari A, Heydari M, Hosseinzadeh Colagar A, Arash V. In Silico Analysis of Collagens Missense SNPs and Human Abnormalities. Biochem Genet 2022; 60:1630-1656. [PMID: 35066702 DOI: 10.1007/s10528-021-10172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Collagens are the most abundant proteins in the extra cellular matrix/ECM of human tissues that are encoded by different genes. There are single nucleotide polymorphisms/SNPs which are considered as the most useful biomarkers for some disease diagnosis or prognosis. The aim of this study is screening and identifying the functional missense SNPs of human ECM-collagens and investigating their correlation with human abnormalities. All of the missense SNPs were retrieved from the NCBI SNP database and screened for a global frequency of more than 0.1. Seventy missense SNPs that met the screening criteria were characterized for functional and stability impact using six and three protein analysis tools, respectively. Next, HOPE and geneMANIA analysis tools were used to show the effect of SNPs on three-dimensional structure (3D) and physical interaction of proteins. Results showed that 13 missense SNPs (rs2070739, rs28381984, rs13424243, rs1800517, rs73868680, rs12488457, rs1353613, rs59021909, rs9830253, rs2228547, rs3753841, rs2855430, and rs970547), which are in nine different collagen genes, affect the structure and function of different collagen proteins. Among these polymorphisms, COL4A3-rs13424243 and COL6A6-rs59021909 were predicted as the most effective ones. On the other hand, designed mutated and native 3D of rs13424243 variant illustrated that it can disturb the protein motifs. Also, geneMANIA predicted that COL4A3 and COL6A6 are interacting with some proteins including: DDR1, COL6A1, COL11A2 and so on. Based on our findings, ECM-collagens functional SNPs are important and may be considered as a risk factor or molecular marker for human disorders in the future studies.
Collapse
|
|
3 |
|
20
|
Dave R, Pandey K, Patel R, Gour N, Bhatia D. Biological Scaffolds in 3D Cell Models: Driving Innovation in Drug Discovery. Stem Cell Rev Rep 2025; 21:147-166. [PMID: 39388081 DOI: 10.1007/s12015-024-10800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.
Collapse
|
Review |
1 |
|
21
|
Pillai S, Munguia-Lopez JG, Tran SD. Bioengineered Salivary Gland Microtissues─A Review of 3D Cellular Models and their Applications. ACS APPLIED BIO MATERIALS 2024; 7:2620-2636. [PMID: 38591955 DOI: 10.1021/acsabm.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.
Collapse
|
Review |
1 |
|
22
|
Yasmin IA, Mohana Sundaram S, Banerjee A, Varier L, Dharmarajan A, Warrier S. Netrin-like domain of sFRP4, a Wnt antagonist inhibits stemness, metastatic and invasive properties by specifically blocking MMP-2 in cancer stem cells from human glioma cell line U87MG. Exp Cell Res 2021; 409:112912. [PMID: 34762897 DOI: 10.1016/j.yexcr.2021.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Rapid proliferation, high stemness potential, high invasiveness and apoptotic evasion are the distinctive hallmarks of glioma malignancy. The dysregulation of the Wnt/β-catenin pathway is the key factor regulating glioma malignancy. Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), which has a prominent pro-apoptotic role in glioma stem cells, has two functional domains, the netrin-like domain (NLD), and cysteine-rich domain (CRD) both of which contribute to apoptotic properties of the whole protein. However, there are no reports elucidating the specific effects of individual domains of sFRP4 in inhibiting the invasive properties of glioma. This study explores the efficacy of the domains of sFRP4 in inhibiting the key hallmarks of glioblastoma such as invasion, metastasis, and stemness. We overexpressed sFRP4 and its domains in the glioblastoma cell line, U87MG cells and observed that both CRD and NLD domains played prominent roles in attenuating cancer stem cell properties. Significantly, we could demonstrate for the first time that both NLD and CRD domains negatively impacted the key driver of metastasis and migration, the matrix metalloproteinase-2 (MMP-2). Mechanistically, compared to CRD, NLD domain suppressed MMP-2 mediated invasion more effectively in glioma cells as observed in matrigel invasion assay and a function-blocking antibody assay. Fluorescent matrix degradation assay further revealed that NLD reduces matrix degradation. NLD also significantly disrupted fibronectin assembly and decreased cell adhesion in another glioma cell line LN229. In conclusion, the NLD peptide of sFRP4 could be a potent short peptide therapeutic candidate for targeting MMP-2-mediated invasion in the highly malignant glioblastoma multiforme.
Collapse
|
|
4 |
|