1
|
Arnold AE, Malek-Adamian E, Le PU, Meng A, Martínez-Montero S, Petrecca K, Damha MJ, Shoichet MS. Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:518-527. [PMID: 29858087 PMCID: PMC5992475 DOI: 10.1016/j.omtn.2018.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
Glioblastoma stem cells (GSCs) are invasive, treatment-resistant brain cancer cells that express downregulated in renal cell carcinoma (DRR), also called FAM107A, a genetic driver of GSC invasion. We developed antibody-antisense oligonucleotide (AON) conjugates to target and reduce DRR/FAM107A expression. Specifically, we used antibodies against antigens expressed on the GSCs, such as CD44 and EphA2, conjugated to chemically modified AONs against DRR/FAM107A, which were designed as chimeras of DNA and 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (FANA) for increased nuclease stability and mRNA affinity. We demonstrate that these therapeutic conjugates successfully internalize, accumulate, and reduce DRR/FAM107A expression in patient-derived GSCs. This is the first example of an antibody-antisense strategy against cancer stem cells.
Collapse
|
research-article |
7 |
54 |
2
|
Wang D, Feng M, Ma X, Tao K, Wang G. Transcription factor SP1-induced microRNA-146b-3p facilitates the progression and metastasis of colorectal cancer via regulating FAM107A. Life Sci 2021; 277:119398. [PMID: 33831429 DOI: 10.1016/j.lfs.2021.119398] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent studies have provided compelling evidence regarding the association of microRNAs (miRNAs) with the progression and development of tumors. Among the miRNAs, the dysregulation of miR-146b-3p expression has been reported in several cancers, however, its effect on colorectal cancer (CRC) remains unexplored. Many studies have suggested a close correlation between the transcription factor (TF)-miRNA signal and cancer. The present study explored the effects of TF-miR-146b-3p axis on CRC and elucidated its downstream regulatory molecule. MATERIALS AND METHODS The expression levels of miR-146b-3p in CRC tissues and cell lines were assessed via quantitative real-time polymerase chain reaction (qRT-PCR). The impact of miR-146b-3p on CRC cell proliferation, migration, and invasion were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay and transwell migration and invasion assay. Additionally, the impact of miR-146b-3p on CRC cell cycle and apoptosis was investigated using flow cytometry. The targets of miR-146b-3p, predicted by miRWalk database, were verified using a dual-luciferase reporter system. The expression levels of TFs were detected using qRT-PCR. The effects of miR-146b-3p and SP1 on FAM107A expression were assessed by performing qRT-PCR and western blotting. Chromatin Immunoprecipitation (ChIP) Assay was performed and JASPAR database was utilized to explore the regulatory relationship between the SP1 and miR-146b-3p. RESULTS Increased expression of miR-146b-3p in CRC tissues and cell lines correlated with poor overall survival (OS). Upregulation of miR-146b-3p expression remarkably promoted the proliferation, migration, and invasion of CRC cells and suppressed their apoptosis. Furthermore, SP1 overexpression significantly elevated the miR-146b-3p expression, decreased the FAM107A expression, and promoted the G1/S transition. The miR-146b-3p overexpression also enhanced the effects of SP1 overexpression on CRC cell proliferation, migration, and invasion, whereas miR-146b-3p knockdown led to the opposite results. CONCLUSION Mechanistically, miR-146b-3p functions as an oncogene by directly targeting FAM107A. Our results highlight the critical regulatory role played by SP1-induced miR-146b-3p expression in CRC development. Our results suggest that SP1/miR-146b-3p/FAM107A axis may be a potential therapeutic target for CRC.
Collapse
|
|
4 |
18 |
3
|
FAM107A Inactivation Associated with Promoter Methylation Affects Prostate Cancer Progression through the FAK/PI3K/AKT Pathway. Cancers (Basel) 2022; 14:cancers14163915. [PMID: 36010909 PMCID: PMC9405870 DOI: 10.3390/cancers14163915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is a common male malignancy. FAM107A, or actin-associated protein, is commonly downregulated in PCa and is associated with a poor patient prognosis. We investigated the role of FAM107A in PCa and found that downregulation of FAM107A expression was caused by hypermethylation of CpG islands, and DNA methyltransferase 1 (DNMT1) was involved in maintaining hypermethylation. Mechanistically, FAM107A regulated PCa cell growth through the FAK/PI3K/AKT signaling pathway. Therefore, FAM107A overexpression may represent a potential treatment for PCa, while therapies targeting epigenetic events that regulate FAM107A expression may also be an effective strategy for PCa treatment. Abstract Prostate cancer (PCa) is one of the most common cancers and is the second leading cause of mortality in men. Studies exploring novel therapeutic methods are urgently needed. FAM107A, a coding gene located in the short arm of chromosome3, is generally downregulated in PCa and is associated with a poor prognosis. However, the downregulation of FAM107A in PCa and the mechanism of its action remain challenging to determine. This investigation found that downregulation of FAM107A expression in PCa was caused by hypermethylation of CpG islands. Furthermore, DNA methyltransferase 1 (DNMT1) was involved in maintaining hypermethylation. Mechanistically, overexpression of FAM107A inhibits tumor cell proliferation, migration, invasion and promotes apoptosis through the FAK/PI3K/AKT signaling pathway, indicating that FAM107A may be a molecular brake of FAK/PI3K/AKT signaling, thus limiting the active state of the FAK/PI3K/AKT pathway. These findings will contribute to a better understanding of the effect of FAM107A in PCa, and FAM107A may represent a new therapeutic target for PCa.
Collapse
|
|
3 |
9 |
4
|
Manigandan S, Mukherjee S, Yun JW. Loss of family with sequence similarity 107, member A ( FAM107A) induces browning in 3T3-L1 adipocytes. Arch Biochem Biophys 2021; 704:108885. [PMID: 33878327 DOI: 10.1016/j.abb.2021.108885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Induction of white fat browning (beiging) and activation of brown fat has been considered a promising strategy to treat obesity and associated metabolic complications. However, the molecular mechanisms regulating brown and beige fat-mediated thermogenesis remains unclear. Our study aimed to identify genes with a hitherto unknown mechanism in the metabolic functions of adipocytes and identified family with sequence similarity 107, member A (FAM107A) as a factor that interferes with fat browning in white adipocytes. We explored physiological roles of FAM107A in cultured 3T3-L1 white adipocytes and HIB1B brown adipocytes by using FAM107A-deficient adipocytes. Significant loss in FAM107A gene functionality induced fat browning was evidenced by evaluating the gene and protein expression level of brown fat-associated markers through real-time qRT-PCR and immunoblot analysis, respectively. Deficiency of FAM107A promoted mitochondrial biogenesis and significantly upregulated core fat-browning marker proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cited1, Tbx1, and Tmem26). Furthermore, FAM107A increased adipogenesis and negatively regulated lipid metabolism in 3T3-L1 adipocytes. In addition, in-silico analysis revealed a strong interaction between FAM107A and β3-AR based on their energy binding score. Next, mechanistic study revealed that specific knockdown of FAM107A induces browning in white adipocytes via activation of β3-AR, AMPK and p38 MAPK-dependent signaling pathways. Our data unveiled a previously unknown mechanism of FAM107A in the regulation of lipid metabolism and identified its significant role in metabolic homeostasis. This highlighted the potential of FAM107A as a pharmacotherapeutic target in treating obesity and related metabolic disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
7 |
5
|
Kretzschmar A, Schülke JP, Masana M, Dürre K, Müller MB, Bausch AR, Rein T. The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics. Int J Mol Sci 2018; 19:ijms19123993. [PMID: 30545002 PMCID: PMC6321462 DOI: 10.3390/ijms19123993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in transfected HeLa cells with fluorescence recovery after photobleaching (FRAP) and confocal microscopy. Results: DRR1 features an actin binding site at each terminus, separated by a coiled coil domain. DRR1 enhances actin bundling, the cellular F-actin content, and serum response factor (SRF)-dependent transcription, while it diminishes actin filament elongation, cell spreading, and actin treadmilling. We also provide evidence for a nucleation effect of DRR1. Blocking of pointed end elongation by addition of profilin indicates DRR1 as a novel barbed end capping factor. Conclusions: DRR1 impacts actin dynamics in several ways with implications for cytoskeletal dynamics in stress physiology and pathophysiology.
Collapse
|
Journal Article |
7 |
7 |
6
|
Divari S, Berio E, Biolatti B, Cannizzo FT. Reference Gene Selection and Prednisolone Target Gene Expression in Adipose Tissues of Friesian Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11140-11145. [PMID: 29179546 DOI: 10.1021/acs.jafc.7b04795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Corticosteroids are frequently used in livestock production, and their use is permitted by the European Union for therapeutic purposes only. However, small doses of corticosteroids are often administered in meat-producing animals to improve zootechnical performance. Prednisolone is one of the most commonly used corticosteroids with a growth-promoting purpose in animal husbandry. This study proposes to identify a gene whose expression is significantly regulated by prednisolone in visceral and subcutaneous adipose tissues. The analysis was conducted on Friesian cattle treated with prednisolone (30 mg day-1). The reference gene expression stability and optimal number for gene expression normalization were calculated. Family with sequence similarity 107 member A (FAM107A) and pyruvate dehydrogenase kinase 4 are the prednisolone target genes identified in adipose tissue. FAM107A was downregulated by ∼2.9-fold by prednisolone in subcutaneous adipose tissue. This result suggests that FAM107A could be a possible indirect biomarker of prednisolone treatment in cattle and encourages a deeper investigation in this direction.
Collapse
|
|
8 |
3 |
7
|
Ou D, Zhang Z, Wu Z, Shen P, Huang Y, She S, She S, Lin ME. Identification of the Putative Tumor Suppressor Characteristics of FAM107A via Pan-Cancer Analysis. Front Oncol 2022; 12:861281. [PMID: 35669436 PMCID: PMC9163664 DOI: 10.3389/fonc.2022.861281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Family with sequence similarity 107, member A(FAM107A) was supposed as a tumor suppressor for various types of tumors. However, no pan-cancer analysis of FAM107A is available. Therefore, we conducted a FAM107A-related pan-cancer analysis across thirty-three tumors based on TCGA database to explore the molecular characteristics of FAM107A. The FAM107A expression is reduced in most cancers, and its down-regulated expression was linked to poor overall survival and progression-free survival of tumor patients. Analysis of DNA methylation of the FAM107A gene showed a negative correlation between FAM107A expression and promoter methylation in numerous cancers. Furthermore, FAM107A expression was noted to be involved in myeloid-derived suppressor cell infiltration in multiple cancers. To explore the mechanism of FAM107A in cancers, KEGG, and GO enrichment analysis was performed and the result showed "cell adhesion" and "cAMP signaling pathway" terms as the potential impact of FAM107A on cancers. An experiment in vitro showed FAM107A knockdown promoted the proliferation, migration, and invasion of bladder cancer and renal cancer cells. Our study indicates that FAM107A may be a putative tumor suppressor in bladder cancer and other tumors.
Collapse
|
research-article |
3 |
3 |
8
|
Zhang J, Di S, Li M, Dong Y, Xie S, Gong T, Hu P, Jia Q, Fan B. FAM107A as a tumor suppressor in esophageal squamous carcinoma inhibits growth and metastasis. Pathol Res Pract 2023; 252:154945. [PMID: 37977035 DOI: 10.1016/j.prp.2023.154945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Sequence similarity Family 107 member A (FAM107A) has been recognized as a tumor suppressor of various malignancies, which suppresses tumor proliferation and metastasis. Its specific role in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS Public datasets including Gene Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Omnibus (GEO), quantitative real-time PCR (qRT-PCR), and Western blot were utilized for comparative analysis of FAM107A expression between ESCC and normal tissues. The link between FAM107A and clinicopathological features, as well as prognosis determined through χ2-test, log-rank analysis, and univariate and multivariate analyses, respectively. The impact of FAM107A on ESCC cell malignant behavior was confirmed through in vitro assays, including cell counting using the Cell Counting Kit-8 (CCK-8), clonal formation, wound healing, and transwell assays. Western blot analysis was employed to assess the effects of FAM107A on tumor epithelial-mesenchymal transition (EMT) and cell cycle-related proteins. Finally, xenograft tumors were developed to investigate the influence of FAM107A on ESCC growth in vivo. RESULTS FAM107A exhibited low expression in ESCC tissues. Reduced FAM107A expression was associated with a poorer prognosis and unfavorable clinicopathological characteristics, such as degree of differentiation, T-stage, and N-stage. Overexpression of FAM107A suppressed ESCC cell proliferation, invasion, migration, the EMT process, and cell cycle progression. Finally, FAM107A overexpression inhibited tumor development in vivo. CONCLUSION The decreased expression of FAM107A is indicative of a worse prognosis for ESCC patients. FAM107A exerts inhibitory impacts on malignant behavior and may hold promise as a therapeutic target for ESCC.
Collapse
|
|
2 |
|
9
|
Ming F, Zhang D. FAM107A Inhibits the Growth, Invasion and Aerobic Glycolysis of LUAD Cells by Regulating CRYAB/PI3K/AKT. Biochem Genet 2025:10.1007/s10528-024-11006-x. [PMID: 39751722 DOI: 10.1007/s10528-024-11006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms. Our findings revealed that FAM107A is significantly downregulated in LUAD, and its overexpression inhibited LUAD cell growth and invasion. Furthermore, FAM107A overexpression suppressed the anaerobic phase of carbohydrate metabolism in LUAD cells. Mechanistically, FAM107A regulated the CRYAB/PI3K/AKT signaling pathway, thereby inhibiting tumor progression, and similar findings were confirmed in our in vivo mouse model. In conclusion, FAM107A can suppress LUAD progression by regulating the CRYAB/PI3K/AKT pathway and aerobic glycolysis, indicating its potential as therapeutic target for LUAD.
Collapse
|
|
1 |
|
10
|
Ma YF, Li GD, Sun X, Li XX, Gao Y, Gao C, Cao KX, Yang GW, Yu MW, Wang XM. Identification of FAM107A as a potential biomarker and therapeutic target for prostate carcinoma. Am J Transl Res 2021; 13:10163-10177. [PMID: 34650688 PMCID: PMC8507028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
FAM107A may have a dual role in regulating the biological functions of tumors; however, its role in prostate adenocarcinoma (PRAD) remains unknown. We analyzed FAM107A expression by employing databases to clarify its potential prognostic value for PRAD, as well as its role in the pathogenesis of PRAD. We observed that the FAM107A expression level is decreased in PRAD, and the reduced expression is considerably associated with poor overall survival and progression-free survival (PFS). To explore the mechanism of FAN107A in PRAD, we performed an immune cell infiltration analysis and a gene set enrichment analysis. The results showed that FAM107A expression is positively related to mast cells and natural killer cells. The Wnt signaling pathway, the MAPK signaling pathway, and the immune responses are differentially enriched in the FAM107A high-expression phenotype. The FAM107A low-expression phenotype is linked to apoptosis-induced DNA fragmentation and DNA methylation in PRAD. To assess the relationship between the clinical features and the FAM107A expression, we performed a logistic regression analysis and observed that a decreased FAM107A expression is associated with poor prognostic features, including the T stage, the N stage, the Gleason score, residual tumors, and the TP53 status. Our multivariate Cox regression results showed that the Gleason score, the primary therapy outcome, and the FAM107A expression are independent prognostic factors in PFS. In summary, we consider FAM107A an independent risk factor for PFS in PRAD. Moreover, several pathways may reveal the role of FAM107A in triggering carcinogenesis. These discoveries provide novel perspectives for future research to elucidate the pathogenic mechanism underlying PRAD.
Collapse
|
research-article |
4 |
|
11
|
Ou L, Wei Z, Xu J, Li W, Zhou Y, Wang Y, Shi B. FAM107A as a Tumor Suppressor in Bladder Cancer Inhibits Cell Proliferation, Migration, and Invasion. ANNALS OF CLINICAL AND LABORATORY SCIENCE 2022; 52:260-268. [PMID: 35414505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Bladder cancer (BC) is the most common cancer in urinary system. Recently, the function of family with sequence similarity 107 member A (FAM107A) has been reported in several carcinomas. This study aimed to reveal the potential role of FAM107A in bladder cancer. METHODS Bioinformatics analysis was performed to assess the expression level of FAM107A in BC tissues and adjacent tumor-free bladder tissues. The results were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR), western blot and immunohistochemistry staining in BC tissues and adjacent tumor-free bladder tissues as well as BC cell lines. In addition, plasmid was constructed to increase FAM107A protein level in BC cell lines. The effect of FM107A on cell growth, cell migration and invasion were analyzed by CCK8 assay, wound healing assay and transwell-invasion assay. RESULTS The data showed that FAM107A was remarkably down-regulated in bladder cancer tissues and bladder cancer cell lines. Besides, low FAM107A expression was associated with high tumor grade of patients with bladder cancer. Moreover, the restoration of FAM107A remarkably suppressed the cell growth, migration, and invasion of BC cells. CONCLUSION In summary, FAM107A might serve as a tumor suppressor which inhibits BC cell proliferation, migration, and invasion. This study suggests that FAM107A can be a candidate new diagnostic marker and possible therapeutic target gene of bladder cancer.
Collapse
|
|
3 |
|