1
|
Borhani TNG, Saniedanesh M, Bagheri M, Lim JS. QSPR prediction of the hydroxyl radical rate constant of water contaminants. WATER RESEARCH 2016; 98:344-53. [PMID: 27124124 DOI: 10.1016/j.watres.2016.04.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/09/2016] [Accepted: 04/15/2016] [Indexed: 05/24/2023]
Abstract
In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed.
Collapse
|
|
9 |
59 |
2
|
Khalid A, Senan EM, Al-Wagih K, Al-Azzam MMA, Alkhraisha ZM. Automatic Analysis of MRI Images for Early Prediction of Alzheimer's Disease Stages Based on Hybrid Features of CNN and Handcrafted Features. Diagnostics (Basel) 2023; 13:diagnostics13091654. [PMID: 37175045 PMCID: PMC10178535 DOI: 10.3390/diagnostics13091654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is considered one of the challenges facing health care in the modern century; until now, there has been no effective treatment to cure it, but there are drugs to slow its progression. Therefore, early detection of Alzheimer's is vital to take needful measures before it develops into brain damage which cannot be treated. Magnetic resonance imaging (MRI) techniques have contributed to the diagnosis and prediction of its progression. MRI images require highly experienced doctors and radiologists, and the analysis of MRI images takes time to analyze each slice. Thus, deep learning techniques play a vital role in analyzing a huge amount of MRI images with high accuracy to detect Alzheimer's and predict its progression. Because of the similarities in the characteristics of the early stages of Alzheimer's, this study aimed to extract the features in several methods and integrate the features extracted from more than one method into the same features matrix. This study contributed to the development of three methodologies, each with two systems, with all systems aimed at achieving satisfactory accuracy for the detection of AD and predicting the stages of its progression. The first methodology is by Feed Forward Neural Network (FFNN) with the features of GoogLeNet and DenseNet-121 models separately. The second methodology is by FFNN network with combined features between GoogLeNet and Dense-121 models before and after high-dimensionality reduction of features using the Principal Component Analysis (PCA) algorithm. The third methodology is by FFNN network with combined features between GoogLeNet and Dense-121 models separately and features extracted by Discrete Wavelet Transform (DWT), Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) methods called handcrafted features. All systems yielded super results in detecting AD and predicting the stages of its progression. With the combined features of the DenseNet-121 and handcrafted, the FFNN achieved an accuracy of 99.7%, sensitivity of 99.64%, AUC of 99.56%, precision of 99.63%, and a specificity of 99.67%.
Collapse
|
|
2 |
5 |
3
|
Gap Reconstruction in Optical Motion Capture Sequences Using Neural Networks. SENSORS 2021; 21:s21186115. [PMID: 34577321 PMCID: PMC8472986 DOI: 10.3390/s21186115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Optical motion capture is a mature contemporary technique for the acquisition of motion data; alas, it is non-error-free. Due to technical limitations and occlusions of markers, gaps might occur in such recordings. The article reviews various neural network architectures applied to the gap-filling problem in motion capture sequences within the FBM framework providing a representation of body kinematic structure. The results are compared with interpolation and matrix completion methods. We found out that, for longer sequences, simple linear feedforward neural networks can outperform the other, sophisticated architectures, but these outcomes might be affected by the small amount of data availabe for training. We were also able to identify that the acceleration and monotonicity of input sequence are the parameters that have a notable impact on the obtained results.
Collapse
|
Review |
4 |
3 |
4
|
Abegaz KH, Etikan İ. Artificial Intelligence-Driven Ensemble Model for Predicting Mortality Due to COVID-19 in East Africa. Diagnostics (Basel) 2022; 12:2861. [PMID: 36428921 PMCID: PMC9689547 DOI: 10.3390/diagnostics12112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
East Africa was not exempt from the devastating effects of COVID-19, which led to the nearly complete cessation of social and economic activities worldwide. The objective of this study was to predict mortality due to COVID-19 using an artificial intelligence-driven ensemble model in East Africa. The dataset, which spans two years, was divided into training and verification datasets. To predict the mortality, three steps were conducted, which included a sensitivity analysis, the modelling of four single AI-driven models, and development of four ensemble models. Four dominant input variables were selected to conduct the single models. Hence, the coefficients of determination of ANFIS, FFNN, SVM, and MLR were 0.9273, 0.8586, 0.8490, and 0.7956, respectively. The non-linear ensemble approaches performed better than the linear approaches, and the ANFIS ensemble was the best-performing ensemble approach that boosted the predicting performance of the single AI-driven models. This fact revealed the promising capability of ensemble models for predicting the daily mortality due to COVID-19 in other parts of the globe.
Collapse
|
research-article |
3 |
3 |
5
|
Olayah F, Senan EM, Ahmed IA, Awaji B. Blood Slide Image Analysis to Classify WBC Types for Prediction Haematology Based on a Hybrid Model of CNN and Handcrafted Features. Diagnostics (Basel) 2023; 13:diagnostics13111899. [PMID: 37296753 DOI: 10.3390/diagnostics13111899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
White blood cells (WBCs) are one of the main components of blood produced by the bone marrow. WBCs are part of the immune system that protects the body from infectious diseases and an increase or decrease in the amount of any type that causes a particular disease. Thus, recognizing the WBC types is essential for diagnosing the patient's health and identifying the disease. Analyzing blood samples to determine the amount and WBC types requires experienced doctors. Artificial intelligence techniques were applied to analyze blood samples and classify their types to help doctors distinguish between types of infectious diseases due to increased or decreased WBC amounts. This study developed strategies for analyzing blood slide images to classify WBC types. The first strategy is to classify WBC types by the SVM-CNN technique. The second strategy for classifying WBC types is by SVM based on hybrid CNN features, which are called VGG19-ResNet101-SVM, ResNet101-MobileNet-SVM, and VGG19-ResNet101-MobileNet-SVM techniques. The third strategy for classifying WBC types by FFNN is based on a hybrid model of CNN and handcrafted features. With MobileNet and handcrafted features, FFNN achieved an AUC of 99.43%, accuracy of 99.80%, precision of 99.75%, specificity of 99.75%, and sensitivity of 99.68%.
Collapse
|
|
2 |
1 |
6
|
Chakraborty S, Choudhary AK, Sarma M, Hazarika MK. Reaction order and neural network approaches for the simulation of COVID-19 spreading kinetic in India. Infect Dis Model 2020; 5:737-747. [PMID: 32989426 PMCID: PMC7511200 DOI: 10.1016/j.idm.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 11/29/2022] Open
Abstract
COVID-19 has created a pandemic situation in the whole world. Controlling of COVID-19 spreading rate in the social environment is a challenge for all individuals. In the present study, simulation of the lockdown effect on the COVID-19 spreading rate in India and mapping of its recovery percentage (until May 2020) were investigated. Investigation of the lockdown impact dependent on first order reaction kinetics demonstrated higher effect of lockdown 1 on controlling the COVID-19 spreading rate when contrasted with lockdown 2 and 3. Although decreasing trend was followed for the reaction rate constant of different lockdown stages, the distinction between the lockdown 2 and 3 was minimal. Mathematical and feed forward neural network (FFNN) approaches were applied for the simulation of COVID-19 spreading rate. In case of mathematical approach, exponential model indicated adequate performance for the prediction of the spreading rate behavior. For the FFNN based modeling, 1-5-1 was selected as the best architecture so as to predict adequate spreading rate for all the cases. The architecture also showed effective performance in order to forecast number of cases for next 14 days. The recovery percentage was modeled as a function of number of days with the assistance of polynomial fitting. Therefore, the investigation recommends proper social distancing and efficient management of corona virus in order to achieve higher decreasing trend of reaction rate constant and required recovery percentage for the stabilization of India.
Collapse
|
research-article |
5 |
1 |
7
|
Chen J, Gao Y. A Machine Learning-Based Tropospheric Prediction Approach for High-Precision Real-Time GNSS Positioning. SENSORS (BASEL, SWITZERLAND) 2024; 24:2957. [PMID: 38793812 PMCID: PMC11125231 DOI: 10.3390/s24102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
For high-precision positioning applications, various GNSS errors need to be mitigated, including the tropospheric error, which remains a significant error source as it can reach up to a few meters. Although some commercial GNSS correction data providers, such as the Quasi-Zenith Satellite System (QZSS) Centimeter Level Augmentation Service (CLAS), have developed real-time precise regional troposphere products, the service is available only in limited regional areas. The International GNSS Service (IGS) has provided precise troposphere correction data in TRO format post-mission, but its long latency of 1 to 2 weeks makes it unable to support real-time applications. In this work, a real-time troposphere prediction method based on the IGS post-processing products was developed using machine learning techniques to eliminate the long latency problem. The test results from tropospheric predictions over a year using the proposed method indicate that the new method can achieve a prediction accuracy (RMSE) of 2 cm, making it suitable for real-time applications.
Collapse
|
research-article |
1 |
|
8
|
Ahmed IA, Senan EM, Shatnawi HSA. Hybrid Models for Endoscopy Image Analysis for Early Detection of Gastrointestinal Diseases Based on Fused Features. Diagnostics (Basel) 2023; 13:diagnostics13101758. [PMID: 37238241 DOI: 10.3390/diagnostics13101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The gastrointestinal system contains the upper and lower gastrointestinal tracts. The main tasks of the gastrointestinal system are to break down food and convert it into essential elements that the body can benefit from and expel waste in the form of feces. If any organ is affected, it does not work well, which affects the body. Many gastrointestinal diseases, such as infections, ulcers, and benign and malignant tumors, threaten human life. Endoscopy techniques are the gold standard for detecting infected parts within the organs of the gastrointestinal tract. Endoscopy techniques produce videos that are converted into thousands of frames that show the disease's characteristics in only some frames. Therefore, this represents a challenge for doctors because it is a tedious task that requires time, effort, and experience. Computer-assisted automated diagnostic techniques help achieve effective diagnosis to help doctors identify the disease and give the patient the appropriate treatment. In this study, many efficient methodologies for analyzing endoscopy images for diagnosing gastrointestinal diseases were developed for the Kvasir dataset. The Kvasir dataset was classified by three pre-trained models: GoogLeNet, MobileNet, and DenseNet121. The images were optimized, and the gradient vector flow (GVF) algorithm was applied to segment the regions of interest (ROIs), isolating them from healthy regions and saving the endoscopy images as Kvasir-ROI. The Kvasir-ROI dataset was classified by the three pre-trained GoogLeNet, MobileNet, and DenseNet121 models. Hybrid methodologies (CNN-FFNN and CNN-XGBoost) were developed based on the GVF algorithm and achieved promising results for diagnosing disease based on endoscopy images of gastroenterology. The last methodology is based on fused CNN models and their classification by FFNN and XGBoost networks. The hybrid methodology based on the fused CNN features, called GoogLeNet-MobileNet-DenseNet121-XGBoost, achieved an AUC of 97.54%, accuracy of 97.25%, sensitivity of 96.86%, precision of 97.25%, and specificity of 99.48%.
Collapse
|
|
2 |
|
9
|
Islam R, Tarique M. Artificial Intelligence (AI) and Nuclear Features from the Fine Needle Aspirated (FNA) Tissue Samples to Recognize Breast Cancer. J Imaging 2024; 10:201. [PMID: 39194990 DOI: 10.3390/jimaging10080201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Breast cancer is one of the paramount causes of new cancer cases worldwide annually. It is a malignant neoplasm that develops in the breast cells. The early screening of this disease is essential to prevent its metastasis. A mammogram X-ray image is the most common screening tool practiced currently when this disease is suspected; all the breast lesions identified are not malignant. The invasive fine needle aspiration (FNA) of a breast mass sample is the secondary screening tool to clinically examine cancerous lesions. The visual image analysis of the stained aspirated sample imposes a challenge for the cytologist to identify the malignant cells accurately. The formulation of an artificial intelligence-based objective technique on top of the introspective assessment is essential to avoid misdiagnosis. This paper addresses several artificial intelligence (AI)-based techniques to diagnose breast cancer from the nuclear features of FNA samples. The Wisconsin Breast Cancer dataset (WBCD) from the UCI machine learning repository is applied for this investigation. Significant statistical parameters are measured to evaluate the performance of the proposed techniques. The best detection accuracy of 98.10% is achieved with a two-layer feed-forward neural network (FFNN). Finally, the developed algorithm's performance is compared with some state-of-the-art works in the literature.
Collapse
|
|
1 |
|
10
|
Alshahrani M, Al-Jabbar M, Senan EM, Ahmed IA, Saif JAM. Hybrid Methods for Fundus Image Analysis for Diagnosis of Diabetic Retinopathy Development Stages Based on Fusion Features. Diagnostics (Basel) 2023; 13:2783. [PMID: 37685321 PMCID: PMC10486790 DOI: 10.3390/diagnostics13172783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes that damages the delicate blood vessels of the retina and leads to blindness. Ophthalmologists rely on diagnosing the retina by imaging the fundus. The process takes a long time and needs skilled doctors to diagnose and determine the stage of DR. Therefore, automatic techniques using artificial intelligence play an important role in analyzing fundus images for the detection of the stages of DR development. However, diagnosis using artificial intelligence techniques is a difficult task and passes through many stages, and the extraction of representative features is important in reaching satisfactory results. Convolutional Neural Network (CNN) models play an important and distinct role in extracting features with high accuracy. In this study, fundus images were used for the detection of the developmental stages of DR by two proposed methods, each with two systems. The first proposed method uses GoogLeNet with SVM and ResNet-18 with SVM. The second method uses Feed-Forward Neural Networks (FFNN) based on the hybrid features extracted by first using GoogLeNet, Fuzzy color histogram (FCH), Gray Level Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP); followed by ResNet-18, FCH, GLCM and LBP. All the proposed methods obtained superior results. The FFNN network with hybrid features of ResNet-18, FCH, GLCM, and LBP obtained 99.7% accuracy, 99.6% precision, 99.6% sensitivity, 100% specificity, and 99.86% AUC.
Collapse
|
research-article |
2 |
|
11
|
Khalid A, Senan EM, Al-Wagih K, Ali Al-Azzam MM, Alkhraisha ZM. Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted. Diagnostics (Basel) 2023; 13:diagnostics13091609. [PMID: 37175000 PMCID: PMC10178472 DOI: 10.3390/diagnostics13091609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features and keep the essential features. The first methodology for analyzing x-rays and diagnosing the degree of knee inflammation uses the VGG-19 -FFNN and ResNet-101 -FFNN systems. The second methodology of X-ray analysis and diagnosis of KOA grade by Feed Forward Neural Network (FFNN) is based on the combined features of VGG-19 and ResNet-101 before and after PCA. The third methodology for X-ray analysis and diagnosis of KOA grade by FFNN is based on the fusion features of VGG-19 and handcrafted features, and fusion features of ResNet-101 and handcrafted features. For an OAI dataset with fusion features of VGG-19 and handcrafted features, FFNN obtained an AUC of 99.25%, an accuracy of 99.1%, a sensitivity of 98.81%, a specificity of 100%, and a precision of 98.24%. For the RCU dataset with the fusion features of VGG-19 and the handcrafted features, FFNN obtained an AUC of 99.07%, an accuracy of 98.20%, a sensitivity of 98.16%, a specificity of 99.73%, and a precision of 98.08%.
Collapse
|
|
2 |
|