1
|
Grayfer L, Andino FDJ, Chen G, Chinchar GV, Robert J. Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. Viruses 2012; 4:1075-92. [PMID: 22852041 PMCID: PMC3407895 DOI: 10.3390/v4071075] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/29/2022] Open
Abstract
Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95–100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections.
Collapse
|
Review |
13 |
47 |
2
|
Grayfer L, Robert J. Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34. J Leukoc Biol 2014; 96:1143-53. [PMID: 25190077 DOI: 10.1189/jlb.4a0614-295r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophages are integral to amphibian immunity against RVs, as well as to the infection strategies of these pathogens. Although CSF-1 was considered to be the principal mediator of macrophage development, the IL-34 cytokine, which shares no sequence identity with CSF-1, is now believed to contribute to vertebrate monopoiesis. However, the respective roles of CSF-1- and IL-34-derived macrophages are still poorly understood. To delineate the contribution of these macrophage populations to amphibian immunity against the RV FV3, we identified the Xenopus laevis IL-34 and transcriptionally and functionally compared this cytokine with the previously identified X. laevis CSF-1. The X. laevis CSF-1 and IL-34 displayed strikingly nonoverlapping developmental and tissue-specific gene-expression patterns. Furthermore, only CSF-1 but not IL-34 was up-regulated in the kidneys of FV3-challenged tadpoles. Intriguingly, recombinant forms of these cytokines (rXlCSF-1, rXlIL-34) elicited morphologically distinct tadpole macrophages, and whereas rXlCSF-1 pretreatment decreased the survival of FV3-infected tadpoles, rXlIL-34 administration significantly prolonged FV3-challenged animal survival. Compared with rXlIL-34-elicited macrophages, macrophages derived by rXlCSF-1 were more phagocytic but also significantly more susceptible to in vitro FV3 infections. By contrast, rXlIL-34-derived macrophages exhibited significantly greater in vitro antiranaviral activity and displayed substantially more robust gene expression of the NADPH oxidase components (p67(phox), gp91(phox)) and type I IFN. Moreover, FV3-challenged, rXlIL-34-derived macrophages exhibited several orders of magnitude greater up-regulation of the type I IFN gene expression. This marks the first report of the disparate roles of CSF-1 and IL-34 in vertebrate antiviral immunity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
44 |
3
|
Wendel ES, Yaparla A, Koubourli DV, Grayfer L. Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. Virology 2017; 503:12-20. [PMID: 28081430 DOI: 10.1016/j.virol.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022]
Abstract
Infections of amphibians by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to the amphibian declines, yet much remains unknown regarding amphibian antiviral immunity. Notably, amphibians represent an important step in the evolution of antiviral interferon (IFN) cytokines as they are amongst the first vertebrates to possess both type I and type III IFNs. Accordingly, we examined the roles of type I and III IFNs in the skin of FV3-challenged amphibian Xenopus laevis) tadpoles and adult frogs. Interestingly, FV3-infected tadpoles mounted type III IFN responses, whereas adult frogs relied on type I IFN immunity. Subcutaneous administration of type I or type III IFNs offered short-term protection of tadpoles against FV3 and these type I and type III IFNs induced the expression of distinct antiviral genes in the tadpole skin. Moreover, subcutaneous injection of tadpoles with type III IFN significantly extended their survival and reduced FV3 dissemination.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
24 |
4
|
Amphibian ( Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Use of Expanded Repertoires of Type I and Type III Interferon Cytokines. Viruses 2018; 10:v10070372. [PMID: 30018186 PMCID: PMC6070924 DOI: 10.3390/v10070372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/30/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022] Open
Abstract
While amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian Xenopus laevis may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable. Accordingly, we examined the FV3-elicited expression of a panel of type I and type III IFN genes in the skin (site of FV3 infection) and kidney (principal FV3 target) tissues and isolated cells of X. laevis tadpoles and adult frogs. We also examined the consequence of tadpole and adult frog skin and kidney cell stimulation with hallmark pathogen-associated molecular patterns (PAMPs) on the IFN responses of these cells. Together, our findings indicate that tadpoles and adult frogs mount drastically distinct IFN responses to FV3 as well as to viral and non-viral PAMPs, while these expression differences do not appear to be the result of a distinct pattern recognition receptor expression by tadpoles and adults.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
20 |
5
|
Koubourli DV, Yaparla A, Popovic M, Grayfer L. Amphibian ( Xenopus laevis) Interleukin-8 (CXCL8): A Perspective on the Evolutionary Divergence of Granulocyte Chemotaxis. Front Immunol 2018; 9:2058. [PMID: 30258441 PMCID: PMC6145007 DOI: 10.3389/fimmu.2018.02058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
The glutamic acid-leucine-arginine (ELR) motif is a hallmark feature shared by mammalian inflammatory CXC chemokines such the granulocyte chemo-attractant CXCL8 (interleukin-8, IL-8). By contrast, most teleost fish inflammatory chemokines lack this motif. Interestingly, the amphibian Xenopus laevis encodes multiple isoforms of CXCL8, one of which (CXCL8a) possesses an ELR motif, while another (CXCL8b) does not. These CXCL8 isoforms exhibit distinct expression patterns during frog development and following immune challenge of animals and primary myeloid cultures. To define potential functional differences between these X. laevis CXCL8 chemokines, we produced them in recombinant form (rCXCL8a and rCXCL8b) and performed dose-response chemotaxis assays. Our results indicate that compared to rCXCL8b, rCXCL8a is a significantly more potent chemo-attractant of in vivo-derived tadpole granulocytes and of in vitro-differentiated frog bone marrow granulocytes. The mammalian CXCL8 mediates its effects through two distinct chemokine receptors, CXCR1 and CXCR2 and our pharmacological inhibition of these receptors in frog granulocytes indicates that the X. laevis CXCL8a and CXCL8b both chemoattract tadpole and adult frog granulocytes by engaging CXCR1 and CXCR2. To delineate which frog cells are recruited by CXCL8a and CXCL8b in vivo, we injected tadpoles and adult frogs intraperitoneally with rCXCL8a or rCXCL8b and recovered the accumulated cells by lavage. Our transcriptional and cytological analyses of these tadpole and adult frog peritoneal exudates indicate that they are comprised predominantly of granulocytes. Interestingly, the granulocytes recruited into the tadpole, but not adult frog peritonea by rCXCL8b, express significantly greater levels of several pan immunosuppressive genes.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
14 |
6
|
McKenzie CM, Piczak ML, Snyman HN, Joseph T, Theijin C, Chow-Fraser P, Jardine CM. First report of ranavirus mortality in a common snapping turtle Chelydra serpentina. DISEASES OF AQUATIC ORGANISMS 2019; 132:221-227. [PMID: 31188138 DOI: 10.3354/dao03324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An adult male snapping turtle with marked palpebral edema and multifocal skin ulceration was found alive in a marsh in southern Ontario in summer 2017. The turtle was transported to a rehabilitation facility and died 4 d after arrival. The carcass was submitted to the Canadian Wildlife Health Cooperative for post-mortem examination. Gross lesions included ulcerative conjunctivitis, necrotizing stomatitis, and splenomegaly. Microscopically, this corresponded to multisystemic fibrinonecrotizing vasculitis and severe fibrinous splenic necrosis. Liver tissue tested positive for frog virus 3-like ranavirus and negative for herpesvirus via polymerase chain reaction. The gross and microscopic lesions were consistent with previous reports of ranavirus infection in turtles and were severe enough to have been the cause of death in this case. This is the first report of morbidity and mortality in a common snapping turtle with a ranavirus infection, and the first reported case of ranavirus infection in a reptile in Canada. Ranaviruses are considered to be an emerging infectious disease in chelonians as they are increasing in distribution, prevalence, and host range.
Collapse
|
|
6 |
10 |
7
|
Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L. Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:112-118. [PMID: 28238879 DOI: 10.1016/j.dci.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Infections by Frog Virus 3 (FV3) and other ranaviruses (RVs) are contributing to the amphibian declines, while the mechanisms controlling anuran tadpole susceptibility and adult frog resistance to RVs, including the roles of polymorphonuclear granulocytes (PMNs) during anti-FV3 responses, remain largely unknown. Since amphibian kidneys represent an important FV3 target, the inability of amphibian (Xenopus laevis) tadpoles to mount effective kidney inflammatory responses to FV3 is thought to contribute to their susceptibility. Here we demonstrate that a recombinant X. laevis granulocyte colony-stimulating factor (G-CSF) generates PMNs with hallmark granulocyte morphology. Tadpole pretreatment with G-CSF prior to FV3 infection reduces animal kidney FV3 loads and extends their survival. Moreover, G-CSF-derived PMNs are resistant to FV3 infection and express high levels of TNFα in response to this virus. Notably, FV3-infected tadpoles fail to recruit G-CSFR expressing granulocytes into their kidneys, suggesting that they lack an integral inflammatory effector population at this site.
Collapse
|
|
8 |
9 |
8
|
Penny E, Brunetti CR. Localization of Frog Virus 3 Conserved Viral Proteins 88R, 91R, and 94L. Viruses 2019; 11:v11030276. [PMID: 30893834 PMCID: PMC6466111 DOI: 10.3390/v11030276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
The characterization of the function of conserved viral genes is central to developing a greater understanding of important aspects of viral replication or pathogenesis. A comparative genomic analysis of the iridoviral genomes identified 26 core genes conserved across the family Iridoviridae. Three of those conserved genes have no defined function; these include the homologs of frog virus 3 (FV3) open reading frames (ORFs) 88R, 91R, and 94L. Conserved viral genes that have been previously identified are known to participate in a number of viral activities including: transcriptional regulation, DNA replication/repair/modification/processing, protein modification, and viral structural proteins. To begin to characterize the conserved FV3 ORFs 88R, 91R, and 94L, we cloned the genes and determined their intracellular localization. We demonstrated that 88R localizes to the cytoplasm of the cell while 91R localizes to the nucleus and 94L localizes to the endoplasmic reticulum (ER).
Collapse
|
|
6 |
2 |
9
|
Apakupakul K, Duncan M, Subramaniam K, Brenn-White M, Palmer JL, Viadanna PHO, Vann JA, Adamovicz L, Waltzek TB, Deem SL. Ranavirus (Frog Virus 3) Infection in Free-Living Three-Toed Box Turtles (Terrapene mexicana triunguis) in Missouri, USA. J Wildl Dis 2024; 60:151-163. [PMID: 37921651 DOI: 10.7589/jwd-d-23-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 11/04/2023]
Abstract
Frog virus 3 (FV3) and related ranaviruses are emerging infectious disease threats to ectothermic vertebrate species globally. Although the impact of these viruses on amphibian health is relatively well studied, less is understood about their effects on reptile health. We report two cases of FV3 infection, 11 mo apart, in three-toed box turtles (Terrapene mexicana triunguis) from a wildlife rehabilitation center. Case 1 had upper respiratory signs upon intake but had no clinical signs at the time of euthanasia 1 mo later. Case 2 presented for vehicular trauma, had ulcerative pharyngitis and glossitis, and died overnight. In case 1, we detected FV3 nucleic acid with qPCR in oral swabs, kidney, liver, spleen, and tongue. In case 2, we detected FV3 in an oral swab, an oral plaque, heart, kidney, lung, liver, spleen, and tongue. We also detected FV3 nucleic acid with in situ hybridization for case 2. For both cases, FV3 was isolated in cell culture and identified with DNA sequencing. Histopathologic examination of postmortem tissue from case 1 was unremarkable, whereas acute hemorrhagic pneumonia and splenic necrosis were noted in case 2. The difference in clinical signs between the two cases may have been due to differences in the temporal course of FV3 disease at the time of necropsy. Failure to detect this infection previously in Missouri reptiles may be due to lack of surveillance, although cases may also represent a novel spillover to box turtles in Missouri. Our findings reiterate previous suggestions that the range of FV3 infection may be greater than previously documented and that infection may occur in host species yet to be tested.
Collapse
|
|
1 |
|
10
|
Logan SR, Vilaça ST, Bienentreu JF, Schock DM, Lesbarrères D, Brunetti CR. Isolation and Characterization of a Frog Virus 3 Strain from a Wood Frog ( Rana sylvatica) in Wood Buffalo National Park. Viruses 2024; 16:1411. [PMID: 39339887 PMCID: PMC11436234 DOI: 10.3390/v16091411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Members of the Iridoviridae family, genus Ranavirus, represent a group of globally emerging pathogens of ecological and economic importance. In 2017, an amphibian die-off of wood frogs (Rana sylvatica) and boreal chorus frogs (Pseudacris maculata) was reported in Wood Buffalo National Park, Canada. Isolation and complete genomic sequencing of the tissues of a wood frog revealed the presence of a frog virus 3 (FV3)-like isolate, Rana sylvatica ranavirus (RSR), with a genome size of 105,895 base pairs, 97 predicted open reading frames (ORFs) bearing sequence similarity to FV3 (99.98%) and a FV3-like isolate from a spotted salamander in Maine (SSME; 99.64%). Despite high sequence similarity, RSR had a unique genomic composition containing ORFs specific to either FV3 or SSME. In addition, RSR had a unique 13 amino acid insertion in ORF 49/50L. No differences were found in the in vitro growth kinetics of FV3, SSME, and RSR; however, genomic differences between these isolates were in non-core genes, implicated in nucleic acid metabolism and immune evasion. This study highlights the importance of viral isolation and complete genomic analysis as these not only provide information on ranavirus spatial distribution but may elucidate genomic factors contributing to host tropism and pathogenicity.
Collapse
|
|
1 |
|
11
|
Logan SR, Seegobin M, Emery RJN, Brunetti CR. Components of the Nucleotide Salvage Pathway Increase Frog Virus 3 ( FV3) Replication. Viruses 2023; 15:1716. [PMID: 37632058 PMCID: PMC10460048 DOI: 10.3390/v15081716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Viruses are obligate intracellular parasites that alter host metabolic machinery to obtain energy and macromolecules that are pivotal for replication. Ranavirus, including the type species of the genus frog virus 3 (FV3), represent an ecologically important group of viruses that infect fish, amphibians, and reptiles. It was established that fatty acid synthesis, glucose, and glutamine metabolism exert roles during iridovirus infections; however, no information exists regarding the role of purine metabolism. In this study, we assessed the impact of exogenously applied purines adenine, adenosine, adenosine 5'-monophosphate (AMP), inosine 5'-monophosphate (IMP), inosine, S-adenosyl-L-homocysteine (SAH), and S-adenosyl-L-methionine (SAM) on FV3 replication. We found that all compounds except for SAH increased FV3 replication in a dose-dependent manner. Of the purines investigated, adenine and adenosine produced the most robust response, increasing FV3 replication by 58% and 51%, respectively. While all compounds except SAH increased FV3 replication, only adenine increased plaque area. This suggests that the stimulatory effect of adenine on FV3 replication is mediated by a mechanism that is at least in part independent from the other compounds investigated. Our results are the first to report a response to exogenously applied purines and may provide insight into the importance of purine metabolism during iridoviral infection.
Collapse
|
brief-report |
2 |
|
12
|
Ford CE, Brookes LM, Skelly E, Sergeant C, Jordine T, Balloux F, Nichols RA, Garner TWJ. Non-Lethal Detection of Frog Virus 3-Like (RUK13) and Common Midwife Toad Virus-Like (PDE18) Ranaviruses in Two UK-Native Amphibian Species. Viruses 2022; 14:v14122635. [PMID: 36560639 PMCID: PMC9786228 DOI: 10.3390/v14122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ranaviruses have been involved in amphibian mass mortality events worldwide. Effective screening to control this pathogen is essential; however, current sampling methods are unsuitable for the detection of subclinical infections. Non-lethal screening is needed to prevent both further spread of ranavirus and losses of at-risk species. To assess non-lethal sampling methods, we conducted two experiments: bath exposing common frogs to RUK13 ranavirus at three concentrations, and exposing common toads to RUK13 or PDE18. Non-lethal sampling included buccal, digit, body and tank swabs, along with toe clips and stool taken across three time-points post-exposure. The presence/load of ranavirus was examined using quantitative PCR in 11 different tissues obtained from the same euthanised animals (incl. liver, gastro-intestinal tract and kidney). Buccal swab screening had the highest virus detection rate in both species (62% frogs; 71% toads) and produced consistently high virus levels compared to other non-lethal assays. The buccal swab was effective across multiple stages of infection and differing infection intensities, though low levels of infection were more difficult to detect. Buccal swab assays competed with, and even outperformed, lethal sampling in frogs and toads, respectively. Successful virus detection in the absence of clinical signs was observed (33% frogs; 50% toads); we found no difference in detectability for RUK13 and PDE18. Our results suggest that buccal swabbing could replace lethal sampling for screening and be introduced as standard practice for ranavirus surveillance.
Collapse
|
research-article |
3 |
|