Xu L, Su J, Ali A, Huang T, Yang Y, Shi J, Liang E. Magnetite-loaded rice husk biochar promoted the denitrification performance of Aquabacterium sp. XL4 under low carbon to nitrogen ratio: Optimization and mechanism.
BIORESOURCE TECHNOLOGY 2022;
348:126802. [PMID:
35131457 DOI:
10.1016/j.biortech.2022.126802]
[Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The removal of nitrate (NO3--N) under the low carbon to nitrogen (C/N) ratio is a widespread issue. Here in, a modified biochar (MRHB) was prepared by combining rice husk and magnetite to promote the denitrification performance of Aquabacterium sp. XL4 under low C/N ratio. In addition, when the modified H2O2 concentration was 0.6 mM, the dosage was 5.0 g L-1, the C/N ratio was 1.5, and the pH was neutral, the nitrate removal efficiency is 97.9%. Fluorescence excitation-emission matrix spectra (3D-EEM) showed that the metabolism of strain XL4 was stable under optimal conditions. Furthermore, the results of flow cytometry (FC) showed that the amounts of intact cells with MRHB was excellent. The measurement of cytochrome c concentration, total membrane permeability (Tmp), electron transport system activity (ETSA), and cyclic voltammetry curve (CV) confirmed that the MRHB improved the electron transfer and membrane activity of strain XL4.
Collapse