1
|
Su LY, Yao M, Xu W, Zhong M, Cao Y, Zhou H. Cascade encapsulation of antimicrobial peptides, exosomes and antibiotics in fibrin-gel for first-aid hemostasis and infected wound healing. Int J Biol Macromol 2024; 269:132140. [PMID: 38719006 DOI: 10.1016/j.ijbiomac.2024.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Wounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties. In this study, we first prepared edible rose-derived exosome-like nanoparticles (ELNs) and used them to encapsulate antimicrobial peptides (AMP), abbreviated as ELNs(AMP). ELNs(AMP) showed superior intracellular antibacterial activity, 2.5 times greater than AMP, in in vitro cell infection assays. We then prepared and tested an FDA-approved fibrin-gel of fibrinogen and thrombin encapsulating ELNs(AMP) and novobiocin sodium salt (NB) (ELNs(AMP)/NB-fibrin-gels). The fibrin gel showed a sustained release of ELNs(AMP) and NB over the eight days of testing. After spraying onto the skin, the formulation underwent in situ gelation and developed a stable patch with excellent hemostatic performance in a mouse liver injury model with hemostasis in 31 s, only 35.6 % of the PBS group. The fibrin gel exhibited pro-wound healing properties in the mouse-infected skin defect model. The thickness of granulation tissue and collagen of the ELNs(AMP)/NB-fibrin-gels group was 4.00, 6.32 times greater than that of the PBS group. In addition, the ELNs(AMP)/NB-fibrin-gels reduced inflammation (decreased mRNA levels of TNF-α, IL-1β, IL6, MCP1, and CXCL1) at the wound sites and demonstrated a biocompatible and biosafe profile. Thus, we have developed a hydrogel system with excellent hemostatic, antibacterial, and pro-wound healing properties, which may be a candidate for next-generation tissue regeneration with a wide clinical application for first-aid hemostasis and infected wound healing.
Collapse
|
2
|
Chen S, Wang H, Du J, Ding Z, Wang T, Zhang L, Yang J, Guan Y, Chen C, Li M, Hei Z, Tao Y, Yao W. Near-infrared light-activatable, analgesic nanocomposite delivery system for comprehensive therapy of diabetic wounds in rats. Biomaterials 2024; 305:122467. [PMID: 38224643 DOI: 10.1016/j.biomaterials.2024.122467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.
Collapse
|
3
|
Shang Y, Zeng J, Matsusaki M. Construction of enzyme digested holes on hydrogel surface inspired by cell migration processes. Biochem Biophys Res Commun 2023; 674:69-74. [PMID: 37413707 DOI: 10.1016/j.bbrc.2023.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
The construction of in vitro capillary network models for drug testing and toxicity evaluation has become a major challenge in the field of tissue engineering. Previously, we discovered a novel phenomenon of hole formation by endothelial cell migration on the surface of fibrin gels. Interestingly, the hole characteristics, such as depth and number, were strongly influenced by the gel stiffness, but the details of hole formation are not to be clarified. In this study, we tried to understand the effect of hydrogel stiffness on the hole formation by dropping collagenase solution onto the surface of the hydrogels because the endothelial cell migration was made possible by the metalloproteinases' digestion. We found that smaller hole structures were formed on stiffer fibrin gels, but larger ones were formed on softer fibrin gels after the hydrogel digestion of the collagenase. This is consistent with our previous results in experiments on hole structures formed by endothelial cells. Furthermore, deep and small hole structures were successfully obtained by optimizing the volume of collagenase solution and incubation time. This unique approach inspired by endothelial cell hole formation may provide new methods of fabricating hydrogels with opening hole structures.
Collapse
|
4
|
Bao J, Gao W, Zhang W, Wang D, Pan H. Fibrin glue delivery system containing rhein ameliorates intervertebral disc degeneration by anti-inflammatory efficacy. J Orthop Surg Res 2023; 18:485. [PMID: 37415165 DOI: 10.1186/s13018-023-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
PURPOSE To construct an injectable, sustained-release fibrin gel containing rhein to solve the problem of low bioavailability of rhein, and observe its efficacy in the treatment of intervertebral disc degeneration. METHODS The fibrin gel containing rhein was first synthesized in advance. Subsequently, the materials were characterized by various experimental methods. Secondly, the degenerative cell model was constructed by stimulating nucleus pulposus cells with lipopolysaccharide (LPS), and the corresponding intervention treatment was carried out to observe the effect in vitro. Finally, the rat tail intervertebral disc was acupunctured by needles to establish the intervertebral disc degeneration model, and the effect of the material was observed through intradiscal injection. RESULTS The fibrin glue containing rhein (rhein@FG) showed good injectability, sustained release and biocompatibility. Rhein@FG can improve the LPS-induced inflammatory microenvironment, regulate ECM metabolic disorders of nucleus pulposus cells and aggregation of the NLRP3 inflammasome in vitro, and inhibit cell pyroptosis. Furthermore, in vivo experiments, rhein@FG effectively prevented needle puncture-induced intervertebral disc degeneration in rats. CONCLUSIONS Rhein@FG has better efficacy than rhein or FG alone due to its slow release and mechanical properties, which can be used as a potential replacement therapy for intervertebral disc degeneration.
Collapse
|
5
|
Coeyman SJ, Zhang Y, Baicu CF, Zile MR, Bradshaw AD, Richardson WJ. In vitro bioreactor for mechanical control and characterization of tissue constructs. J Biomech 2023; 147:111458. [PMID: 36682211 PMCID: PMC9946176 DOI: 10.1016/j.jbiomech.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Cardiac fibrosis is a key contributor to the onset and progression of heart failure and occurs from extracellular matrix accumulation via activated cardiac fibroblasts. Cardiac fibroblasts activate in response to mechanical stress and have been studied in the past by applying forces and deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be performed with an efficient throughput, thereby limiting the full potential of in vitro mechanobiology studies. We have developed a novel in vitro platform to study cell-populated tissue constructs under dynamic mechanical stimulation while also performing repeatable, non-destructive stress-strain tests in living constructs. Additionally, this platform can perform these tests across all constructs in a multi-well plate simultaneously, providing exciting potential for direct, functional readouts in future screening applications. In our pilot application, we showed that cyclically stretching cell-populated tissue constructs composed of murine cardiac fibroblasts within a 3D fibrin matrix leads to collagen accumulation and increased tissue stiffness over a three-day time course. Results of this study validate our platform's ability to apply mechanical loads to tissues while performing live mechanical analyses to observe cell-mediated tissue remodeling.
Collapse
|
6
|
He X, Yang L, Dong K, Zhang F, Liu Y, Ma B, Chen Y, Hai J, Zhu R, Cheng L. Biocompatible exosome-modified fibrin gel accelerates the recovery of spinal cord injury by VGF-mediated oligodendrogenesis. J Nanobiotechnology 2022; 20:360. [PMID: 35918769 PMCID: PMC9344707 DOI: 10.1186/s12951-022-01541-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 12/17/2022] Open
Abstract
Exosomes show potential for treating patients with spinal cord injury (SCI) in clinical practice, but the underlying repair mechanisms remain poorly understood, and biological scaffolds available for clinical transplantation of exosomes have yet to be explored. In the present study, we demonstrated the novel function of Gel-Exo (exosomes encapsulated in fibrin gel) in promoting behavioural and electrophysiological performance in mice with SCI, and the upregulated neural marker expression in the lesion site suggested enhanced neurogenesis by Gel-Exo. According to the RNA-seq results, Vgf (nerve growth factor inducible) was the key regulator through which Gel-Exo accelerated recovery from SCI. VGF is related to myelination and oligodendrocyte development according to previous reports. Furthermore, we found that VGF was abundant in exosomes, and Gel-Exo-treated mice with high VGF expression indeed showed increased oligodendrogenesis. VGF was also shown to promote oligodendrogenesis both in vitro and in vivo, and lentivirus-mediated VGF overexpression in the lesion site showed reparative effects equal to those of Gel-Exo treatment in vivo. These results suggest that Gel-Exo can thus be used as a biocompatible material for SCI repair, in which VGF-mediated oligodendrogenesis is the vital mechanism for functional recovery.
Collapse
|
7
|
Mahmoodi M, Ebrahimi-Barough S, Kamian S, Azami M, Mehri M, Abdi M, Ai J. Fabrication and Characterization of a Three-Dimensional Fibrin Gel Model to Evaluate Anti-Proliferative Effects of Astragalus hamosus Plant Extract on Breast Cancer Cells. Asian Pac J Cancer Prev 2022; 23:731-741. [PMID: 35225487 PMCID: PMC9272625 DOI: 10.31557/apjcp.2022.23.2.731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Breast Cancer (BC) is a malignancy with high mortality among women. Recently, scaffold-based three-dimensional (3D) models have been developed for anti-cancer drug research. The present study aimed to investigate the anti-proliferative effects of Astragalus hamosus (A. hamosus) in 3D fibrin gel against MCF-7 cell line. We have also evaluated anti-proliferative effect of A. hamosus differences between 3D and 2D cultures. Methods: The fibrin gel formulation was first optimized by testing the structural and mechanical properties. Then the cytotoxic effect of A. hamosus extract was assessed on MCF-7 cells by MTT assay. Cell apoptosis was evaluated using TUNEL method and flow cytometry. Cell cycle and proliferation were analyzed by flow cytometry. Apoptosis-related gene expression such as Bcl-2, caspase-3, -8 and -9 were quantified by real time-PCR. Results: TUNEL staining showed a significant damage accompanied with cell apoptosis. Flow cytometry analysis revealed that apoptosis increased after treatment with A. hamosus extract in 3D culture model compared to 2D culture. The A. hamosus extract arrested cell cycle in the S and G2/M phases in 3D model while in the 2D culture G0/G1 phase was affected. Treatment with A. hamosus extract led to upregulation of the caspase-3, -8 and -9 genes and downregulation of the Ki-67 in the 3D-culture compared with the 2D culture. Conclusion: These results indicated that A. hamosus extract could be used as a therapeutic candidate for BC due to its anti-proliferative effects. Furthermore, 3D fibrin gel could be better than 2D-cultured cells in simulating important tumor characteristics in vivo, namely, anti-proliferative and anti-apoptotic features.
Collapse
|
8
|
Viale M, Bertone V, Maric I, Cilli M, Emionite L, Bocchini V, Ponzoni M, Fontana V, De Luca F, Rocco M. Enhanced therapeutic index of liposomal doxorubicin Myocet locally delivered by fibrin gels in immunodeficient mice bearing human neuroblastoma. Pharmacol Res 2021; 163:105294. [PMID: 33217536 DOI: 10.1016/j.phrs.2020.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Caelyx and Myocet are clinically used liposomal forms of doxorubicin (Dox). To explore ways to improve their therapeutic index, we have studied their activity in vitro and in vivo when locally delivered by fibrin gels (FBGs). In vivo local toxic and anti-tumour activities of loaded FBGs were assessed in two immunodeficient mouse orthotopic human neuroblastoma (NB) models after application in the visceral space above the adrenal gland, either still tumour-bearing or after tumour removal. In parallel, in vitro assays were used to mimic the in vivo overlaying of FBGs on the tumour surface. FBGs were prepared with different concentrations of fibrinogen (FG) and clotted in the presence of Ca2+ and thrombin. The in vitro assays showed that FBGs loaded with Myocet possess a cytotoxic activity against NB cell lines generally greater than those loaded with free Dox or Caelyx. In vivo FBGs loaded with Myocet showed lower general and local toxicities as compared to gels loaded with Caelyx or free Dox, and also to free Dox administered i.v. (all treatments with Dox at 2.5 mg/Kg). The anti-tumour activity, evaluated in the two mouse orthotopic NB models of adjuvant and neo-adjuvant therapy, resulted in a better performance of FBGs loaded with Myocet compared to the other local (FBGs loaded with Caelyx or free Dox) or systemic (free Dox) treatments (administered at 2.5 and 5 mg/Kg Dox). Specifically, the application of FBGs at 40 mg/mL in the adjuvant model caused 92 % tumour volume reduction, while by the neo-adjuvant application of FBGs at 22 mg/mL a re-growing tumour volume reduction of 89 % was obtained. Taken together, our in vitro and in vivo results indicate a significantly higher activity for the FBGs loaded with Myocet. In particular, the lower toicity coupled with the higher anti-tumour activity on both the local treatment modalities strongly suggest a better therapeutic index when Myocet is administered through FBGs. Therefore, FBGs loaded with Myocet may be considered as a possible new tool for the loco-regional treatment of NB or even other tumour histotypes treatable by loco-regional chemotherapy.
Collapse
|
9
|
Foroushani ZH, Mahdavi SS, Abdekhodaie MJ, Baradaran-Rafii A, Tabatabei MR, Mehrvar M. A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111430. [PMID: 33255025 DOI: 10.1016/j.msec.2020.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced successfully up to 7 days which was much longer time compared to fibrin-only gel with 38 h of degradation time. More than 45% of FGG initial mass was preserved on day 7 in the presence of aprotinin. Human corneal fibroblast cells (HCFCs) were seeded on the FGG, fibrin-only gel and GG scaffolds for 5 days. The FGG scaffold showed excellent cell viability over 5 days, and the proliferation of HCFCs also increased significantly in comparison with fibrin-only gel and GG scaffolds. The FGG scaffold illustrates the great potential to use in which appropriate stability and mechanical properties are essential to tissue functionality.
Collapse
|
10
|
Biofunctionalized fibrin gel co-embedded with BMSCs and VEGF for accelerating skin injury repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111749. [PMID: 33579437 DOI: 10.1016/j.msec.2020.111749] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Rapid and effective repair of epithelial tissue is desirable for improving the success rate of operation and reducing postoperative complications. Hydrogel is a widely studied wound repair material, especially as a wound dressing for damaged epithelial tissue. Based on the catalytic effect of thrombin on fibrinogen, in this study, a three-dimensional fibrin gel which of adequate epithelial cell compatibility was constructed by using thrombin and fibrinogen under the cross-linking action of calcium ion. Immunofluorescence staining and hematoxylin-eosin (H&E) staining showed that bone marrow mesenchymal stem cell (BMSC) was embedded in fibrin gel. Furthermore, vascular endothelial growth factor (VEGF) was used to induce BMSC to differentiate into CD31+ and vWF+ endothelial cell (EC) in fibrin gel. The results showed that the fibrin gel surface may effectively promote the adhesion and proliferation of EC and smooth muscle cell (SMC). After 15 days of culture, it was found that the BMSC embedded in the hydrogel had differentiated into EC. The results of in vivo skin wound experiment in rats further proved that the fibrin gel containing BMSC could promote wound healing and repair, and showed the potential to promote neovascularization at the injured site. The construction method of hydrogel materials proposed in this study has potential application value in the field of regenerative medicine.
Collapse
|
11
|
Tao ZW, Wu S, Cosgriff-Hernandez EM, Jacot JG. Evaluation of a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Acta Biomater 2020; 101:206-218. [PMID: 31654774 PMCID: PMC6960327 DOI: 10.1016/j.actbio.2019.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Congenital heart defects affect about 1% births in the United States. Many of the defects are treated with surgically implanted patches made from inactive materials or fixed pericardium that do not grow with the patients, leading to an increased risk of arrhythmia, sudden cardiac death, and heart failure. This study investigated an angiogenic poly(ethylene glycol) fibrin-based hydrogel reinforced with an electrospun biodegradable poly(ether ester urethane) urea (BPUR) mesh layer that was designed to encourage cell invasion, angiogenesis, and regenerative remodeling in the repair of an artificial defect created onto the rat right ventricle wall. Electrocardiogram signals were analyzed, heart function was measured, and fibrosis, macrophage infiltration, muscularization, vascularization, and defect size were evaluated at 4- and 8-weeks post-surgery. Compared with rats with fixed pericardium patches, rats with BPUR-reinforced hydrogel patches had fewer arrhythmias and greater right ventricular ejection fraction and cardiac output, as well as greater left ventricular ejection fraction, fractional shorting, stroke work and cardiac output. Histology and immunofluorescence staining showed less fibrosis and less patch material remaining in rats with BPUR-reinforced hydrogel patches at 4- and 8-weeks. Rats with BPUR-reinforced hydrogel patches also had a greater volume of granular tissue, a greater volume of muscularized tissue, more blood vessels, and a greater number of leukocytes, pan-macrophages, and M2 macrophages at 8 weeks. Overall, this study demonstrated that the engineered BPUR-reinforced hydrogel patch initiated greater regenerative vascular and muscular remodeling with a limited fibrotic response, resulting in fewer incidences of arrhythmia and improved heart function compared with fixed pericardium patches when applied to heal the defects created on the rat right ventricle wall. STATEMENT OF SIGNIFICANCE: The study tested a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Compared with fixed pericardium patches, these reinforced hydrogel patches initiated greater regenerative vascular and muscular remodeling with a reduced fibrotic response, resulting in fewer incidences of arrhythmia and improved heart function at 4- and 8-weeks post surgery. Overall, the new BPUR-reinforced hydrogel patches resulted in better heart function when replacing contractile myocardium than fixed pericardium patches.
Collapse
|
12
|
Viale M, Vecchio G, Maric I, Cilli M, Aprile A, Ponzoni M, Fontana V, Priori EC, Bertone V, Rocco M. Fibrin gels entrapment of a doxorubicin-containing targeted polycyclodextrin: Evaluation of in vivo antitumor activity in orthotopic models of human neuroblastoma. Toxicol Appl Pharmacol 2019; 385:114811. [PMID: 31705944 DOI: 10.1016/j.taap.2019.114811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
In vivo local antitumor activity of fibrin gels (FBGs) loaded with the poly-cyclodextrin oCD-NH2/Dox, compared to free Dox, was evaluated in two mouse orthotopic neuroblastoma (NB) models, after positioning of the releasing devices in the visceral space. FBGs were prepared at the fibrinogen (FG) concentrations of 22 and 40 mg/ml clotted in the presence of 0.81 mM/mg FG Ca2+ and 1.32 U/mg FG thrombin. Our results indicate that FBGs loaded with oCD-NH2/Dox and applied as neoadjuvant loco-regional treatment, show an antitumor activity significantly greater than that displayed by the same FBGs loaded with identical dose of Dox or after free Dox administered intra venous (iv). In particular, FBGs prepared at 40 mg/ml showed a slightly lower antitumor activity, although after their positioning we observed a significant initial reduction of tumor burden lasting for several days after gel implantation. FBGs at 22 mg/ml loaded with oCD-NH2/Dox and applied after tumor removal (adjuvant treatment model) showed a significantly better antitumor activity than the iv administration of free Dox, with 90% tumor regrowth reduction compared to untreated controls. In all cases the weight loss post-treatment was limited after gel application, although in the adjuvant treatment the loss of body weight lasted longer than in the other treatment modality. In accordance with our recent published data on the low local toxic effects of FBGs, the present findings also underline an increase of the therapeutic index of Dox when locally administered through FBGs loaded with the oCD-NH2/Dox complex.
Collapse
|
13
|
Gaviria Agudelo C, Becerra NY, Vergara JD, Correa LA, Estrada S, Restrepo LM. Dermo-epidermal organotypic cultures for in vitro evaluation of skin irritation and corrosion. Toxicol In Vitro 2019; 63:104657. [PMID: 31644923 DOI: 10.1016/j.tiv.2019.104657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
In recent years, in-vitro skin models for chemical hazard identification have been developed. Most of them consist only of human keratinocytes, neglecting the contribution of other skin constituents. Cultures containing the dermal and epidermal component provide an attractive system to investigate, in a more realistic model, toxicological responses, which represents a distinct advantage over keratinocytes-based models that do not mimic faithfully the in vivo environment. This study aimed to validate dermo-epidermal organotypic cultures (ORGs) as a platform to perform irritation and corrosion tests. Skin models were constructed by seeding keratinocytes on fibroblast-containing fibrin gels. After 21 days, the ORGs were evaluated histologically, and the irritant and corrosion potential was determined by means of viability measurements (MTT assay) and cytokine release, according to 431 and 439 OECD tests guidelines. Skin models showed similar histological characteristics to native skin and were able to classify different substances with high accuracy, showing their applicability to skin irritation and corrosion tests. Although cytokines release seems to be chemical-dependent, a tendency was observed, leading to the improvement of the prediction capacity. Nevertheless, further studies should be done to reduce variability in order to increase prediction capacity.
Collapse
|
14
|
Biopolymer gels as a basis of cryoprotective medium for testicular tissue of rats. Cell Tissue Bank 2018; 19:819-826. [PMID: 30465307 DOI: 10.1007/s10561-018-9740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
Cryopreservation of testis tissue is a promising approach to save fertility in prepubertal boys under going gonadotoxic cancer therapies. The using biopolymers as a basis of cryoprotective medium can be effective for the optimization of cryopreservation protocols of immature testicular tissue. The research purpose was to determine morphological parameters and metabolic activity of seminiferous tubules of immature rat testes under exposure to cryoprotective solution (DMSO) based on collagen or fibrin gels (CG or FG) as one of the first stages of developing the cryopreservation protocol. It was found that 30-min exposure of tissue samples to CG and FG with 0.6 M DMSO did not impair the spermatogenic epithelium and metabolic activity of the cells (MTT test and total lactate dehydrogenase activity). The use of FG at the time of exposure of 45 min did not lead to significant changes in the metabolic activity in contrast to other groups. The findings could be used to substantiate and develop the effective techniques for cryopreservation of immature seminiferous tubules.
Collapse
|
15
|
Shpichka A, Koroleva A, Kuznetsova D, Dmitriev RI, Timashev P. Fabrication and Handling of 3D Scaffolds Based on Polymers and Decellularized Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:71-81. [PMID: 29080131 DOI: 10.1007/978-3-319-67358-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Polymeric, ceramic and hybrid material-based three-dimensional (3D) scaffold or matrix structures are important for successful tissue engineering. While the number of approaches utilizing the use of cell-based scaffold and matrix structures is constantly growing, it is essential to provide a framework of their typical preparation and evaluation for tissue engineering. This chapter describes the fabrication of 3D scaffolds using two-photon polymerization, decellularization and cell encapsulation methods and easy-to-use protocols allowing assessing the cell morphology, cytotoxicity and viability in these scaffolds.
Collapse
|
16
|
Matthias N, Hunt SD, Wu J, Lo J, Smith Callahan LA, Li Y, Huard J, Darabi R. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res 2018; 27:65-73. [PMID: 29331939 PMCID: PMC5851454 DOI: 10.1016/j.scr.2018.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects.
Collapse
|
17
|
Latroche C, Weiss-Gayet M, Chazaud B. Investigating the Vascular Niche: Three-Dimensional Co-culture of Human Skeletal Muscle Stem Cells and Endothelial Cells. Methods Mol Biol 2018; 2002:121-128. [PMID: 30242569 DOI: 10.1007/7651_2018_182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiogenesis, the growth of new blood vessels, is crucial for efficient skeletal muscle regeneration. Myogenesis and angiogenesis take place concomitantly during muscle regeneration. Myogenic precursor cells (MPCs) are in close proximity to vessels and interact with neighboring endothelial cells (ECs) to expand and differentiate. To demonstrate functional interplay between the two cell types, we established a robust and predictive ex vivo assay to evaluate activity of MPCs on angiogenesis and vice-et-versa, of ECs on myogenesis. Here, we describe an optimized three-dimensional co-culture protocol for the assessment of biological interactions between MPCs and ECs during skeletal muscle regeneration.
Collapse
|
18
|
Xin L, Xu W, Yu L, Fan S, Wang W, Yu F, Wang Z. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/ fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration. J Orthop Surg Res 2017; 12:73. [PMID: 28499451 PMCID: PMC5429511 DOI: 10.1186/s13018-017-0572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/26/2017] [Indexed: 12/01/2022] Open
Abstract
Background Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. Methods New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Results Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Conclusions Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Collapse
|
19
|
Awada HK, Long DW, Wang Z, Hwang MP, Kim K, Wang Y. A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction. Biomaterials 2017; 125:65-80. [PMID: 28231509 PMCID: PMC5405736 DOI: 10.1016/j.biomaterials.2017.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 01/10/2023]
Abstract
After myocardial infarction (MI), the heart undergoes fibrotic pathological remodeling instead of repair and regeneration. With multiple pathologies developing after MI, treatment using several proteins is expected to address this range of pathologies more effectively than a single-agent therapy. A factorial design of experiments study guided us to combine three complementary factors in one injection: tissue inhibitor of metalloproteinases-3 (TIMP-3) was embedded in a fibrin gel for signaling in the initial phase of the treatment, while basic fibroblast growth factor (FGF-2) and stromal cell-derived factor 1-alpha (SDF-1α) were embedded in heparin-based coacervates for sustained release and distributed within the same fibrin gel to exert their effects over a longer period. The gel was then tested in a rat model of myocardial infarction. Contractility of rat hearts treated with the protein coacervate-gel composite stabilized and slightly improved after the first week while contractility continued to decrease in rats treated with free proteins or saline over the 8 week study period. Hearts receiving the protein coacervate-gel composite treatment also exhibited reduced ventricular dilation, inflammation, fibrosis, and extracellular matrix (ECM) degradation. Revascularization, cardiomyocyte preservation, stem cell homing, and increased myocardial strain likely all contributed to the repair. This study demonstrates the potential of a multifactorial therapeutic approach in MI, using three complementary proteins delivered sequentially for comprehensive healing. The study also shows the necessity of controlled delivery for growth factors and cytokines to be an effective treatment.
Collapse
|
20
|
Albers S, Thiebes AL, Gessenich KL, Jockenhoevel S, Cornelissen CG. Differentiation of respiratory epithelium in a 3-dimensional co-culture with fibroblasts embedded in fibrin gel. Multidiscip Respir Med 2016; 11:6. [PMID: 26933495 PMCID: PMC4772366 DOI: 10.1186/s40248-016-0046-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/12/2016] [Indexed: 01/15/2023] Open
Abstract
Background Tracheal tissue engineering is a promising option for the treatment of tracheal defects. In a previous study we proved the suitability of fibrin gel as a scaffold for tracheal tissue engineering. This study investigates whether the differentiation of respiratory epithelium can be increased by culturing epithelial cells in a three dimensional system containing fibroblasts embedded into fibrin gel. Methods Respiratory epithelial cells were isolated from porcine trachea, seeded onto a fibrin gel and kept in air-liquid-interface culture for 33 days. Morphology as well as pan-cytokeratin, MUC5AC and claudin-1 expression of cells cultured on pure fibrin gel were compared to culture on gels containing fibroblasts. Results After two weeks, cells seeded on pure fibrin gel were multilayered, showed hyperproliferation and dedifferentiation. Co-cultured cells built up a pseudostratified epithelium. The differentiation and organization of epithelial structure improved with respect to time. After four weeks, morphology of the co-cultured respiratory epithelium resembled native tracheal epithelium. Immunohistochemistry showed that respiratory epithelium co-cultured with fibroblasts had an increasing similarity of pan-cytokeratin expression compared to native trachea. Cells cultured without fibroblasts differed in pan-cytokeratin expression from native trachea and did not show any improvement of differentiation. Immunohistochemical staining of MUC5AC and claudin-1 proved seeded cells being respiratory epithelial cells. Conclusions This study indicates that adding fibroblasts to fibrin gel positively influences the differentiation of respiratory epithelium.
Collapse
|
21
|
Bayat N, Ebrahimi-Barough S, Ardakan MMM, Ai A, Kamyab A, Babaloo H, Ai J. Differentiation of Human Endometrial Stem Cells into Schwann Cells in Fibrin Hydrogel as 3D Culture. Mol Neurobiol 2015; 53:7170-7176. [PMID: 26687182 DOI: 10.1007/s12035-015-9574-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Abstract
Human endometrial stem cells (hEnSCs) are a new source of adult multipotent stem cells with the ability of differentiation into many cell lineages. Many stem cell sources are desirable for differentiation into Schwann cells. Schwann-like cells derived from hEnSCs may be one of the ideal alternative cell sources for Schwann cell generation. In this study, for differentiation of hEnSCs into Schwann cells, hEnSCs were induced with RA/FSK/PDGF-AA/HRG as an induction medium for 14 days. The cells were cultured in a tissue culture plate (TCP) and fibrin gel matrix. The viability of cultured cells in the fibrin gel and TCP was analyzed with 3-[4,5-dimethyl-2-thia-zolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay for 7 days. The attachment of cells was analyzed with SEM and DAPI staining. The expression of S100 and P75 as Schwann cell markers was evaluated by immunocytochemistry and quantitative real-time PCR (RT-PCR). The evaluation of the MTT assay and gene expression showed that the survival rate and differentiation of hEnSCs into Schwann cells in the fibrin gel were better than those in the TCP group. These results suggest that human EnSCs can be differentiated into Schwann cells in the fibrin gel better than in the TCP, and the fibrin gel might provide a suitable three-dimensional (3D) scaffold for clinical applications for cell therapy of the nervous system.
Collapse
|
22
|
Viale M, Rossi M, Russo E, Cilli M, Aprile A, Profumo A, Santi P, Fenoglio C, Cafaggi S, Rocco M. Fibrin gels loaded with cisplatin and cisplatin-hyaluronate complexes tested in a subcutaneous human melanoma model. Invest New Drugs 2015; 33:1151-61. [PMID: 26445859 DOI: 10.1007/s10637-015-0291-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/29/2015] [Indexed: 10/23/2022]
Abstract
Fibrin gels are attractive biomaterials for local delivery of a variety of agents, from drugs to proteins. Similarly, polymer-anticancer-drug conjugates and nanoparticles are emerging as potential candidates for cancer treatment. Combining these different approaches, we have studied the efficacy of fibrin gels loaded with cisplatin (DDP) and a complex of DDP with hyaluronate (DDP-HA) for tumor growth inhibition in a melanoma model. Loaded gels prepared at relatively high fibrinogen concentration (22 mg/ml) showed good in vitro antiproliferative activities, prolonged release of the anticancer drug, and a long persistence (10-15 days) in vivo when implanted subcutaneously (sc) in immunodeficient mice. Gels loaded with DDP or DDP-HA containing 1/3 or even 1/6 of their systemic dose (6 mg/kg) and positioned under the tumor mass in mice bearing a sc human SK-Mel-28 tumor showed an antitumor activity better than that of the original parent compound given intraperitoneally (ip). Moreover, in an additional experiment in vivo, fibrin gels loaded with N-trimethyl chitosan-based nanoparticles containing a DDP-HA complex were assayed, resulting in a further 8 % improvement of anticancer activity, with lesser adverse systemic toxic effects. Taken together, these results suggest that the combination of fibrin gels and drugs complexed with suitable macromolecules holds great promise for loco-regional anticancer therapy of melanoma and other surgically removable cancer types.
Collapse
|
23
|
de Barros CN, Miluzzi Yamada AL, Junior RSF, Barraviera B, Hussni CA, de Souza JB, Watanabe MJ, Rodrigues CA, Garcia Alves AL. A new heterologous fibrin sealant as a scaffold to cartilage repair-Experimental study and preliminary results. Exp Biol Med (Maywood) 2015; 241:1410-5. [PMID: 26264444 DOI: 10.1177/1535370215597192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/09/2015] [Indexed: 12/12/2022] Open
Abstract
Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study.
Collapse
|
24
|
Awada HK, Johnson NR, Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release 2015; 207:7-17. [PMID: 25836592 PMCID: PMC4430430 DOI: 10.1016/j.jconrel.2015.03.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/17/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
Treatment of ischemia through therapeutic angiogenesis faces significant challenges. Growth factor (GF)-based therapies can be more effective when concerns such as GF spatiotemporal presentation, bioactivity, bioavailability, and localization are addressed. During angiogenesis, vascular endothelial GF (VEGF) is required early to initiate neovessel formation while platelet-derived GF (PDGF-BB) is needed later to stabilize the neovessels. The spatiotemporal delivery of multiple bioactive GFs involved in angiogenesis, in a close mimic to physiological cues, holds great potential to treat ischemic diseases. To achieve sequential release of VEGF and PDGF, we embed VEGF in fibrin gel and PDGF in a heparin-based coacervate that is distributed in the same fibrin gel. In vitro, we show the benefits of this controlled delivery approach on cell proliferation, chemotaxis, and capillary formation. A rat myocardial infarction (MI) model demonstrated the effectiveness of this delivery system in improving cardiac function, ventricular wall thickness, angiogenesis, cardiac muscle survival, and reducing fibrosis and inflammation in the infarct zone compared to saline, empty vehicle, and free GFs. Collectively, our results show that this delivery approach mitigated the injury caused by MI and may serve as a new therapy to treat ischemic hearts pending further examination.
Collapse
|
25
|
Zhang Z, He Q, Deng W, Chen Q, Hu X, Gong A, Cao X, Yu J, Xu X. Nasal ectomesenchymal stem cells: multi-lineage differentiation and transformation effects on fibrin gels. Biomaterials 2015; 49:57-67. [PMID: 25725555 DOI: 10.1016/j.biomaterials.2015.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Ectomesenchymal stem cells (EMSCs) are novel adult stem cells derived from the cranial neural crest. However, their stemness and multi-lineage differentiation potential on three-dimensional fibrin gels has not yet been explored. The objective of this study was to investigate induced differentiation of EMSCs on fibrin gels and their remodeling effects on the scaffolds during the induced differentiation process. The results indicated that CD133(+)/nestin(+)/CD44(+) EMSCs were extensively distributed in the lamina propria of the nasal mucosa. The passaged cells could be induced to differentiate to a greater degree into neurons, Schwann cells and osteoblasts on three-dimensional fibrin gels than on two-dimensional glass slides. More importantly, the induced Schwann cells and osteoblasts exerted channelized and calcified remodeling effects, respectively, on the fibrin gels. Thus, these reshaped scaffolds have desirable biological properties, such as good cell adhesion, biocompatibility and guidance over the cell behavior, providing a tissue-committed niche for specific tissue generation.
Collapse
|