1
|
Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul 2019; 13:175-189. [PMID: 31611014 PMCID: PMC6889021 DOI: 10.1016/j.brs.2019.10.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/30/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) enables non-invasive modulation of brain activity with both clinical and research applications, but fundamental questions remain about the neural types and elements TMS activates and how stimulation parameters affect the neural response. OBJECTIVE To develop a multi-scale computational model to quantify the effect of TMS parameters on the direct response of individual neurons. METHODS We integrated morphologically-realistic neuronal models with TMS-induced electric fields computed in a finite element model of a human head to quantify the cortical response to TMS with several combinations of pulse waveforms and current directions. RESULTS TMS activated with lowest intensity intracortical axonal terminations in the superficial gyral crown and lip regions. Layer 5 pyramidal cells had the lowest thresholds, but layer 2/3 pyramidal cells and inhibitory basket cells were also activated at most intensities. Direct activation of layers 1 and 6 was unlikely. Neural activation was largely driven by the field magnitude, rather than the field component normal to the cortical surface. Varying the induced current direction caused a waveform-dependent shift in the activation site and provided a potential mechanism for experimentally observed differences in thresholds and latencies of muscle responses. CONCLUSIONS This biophysically-based simulation provides a novel method to elucidate mechanisms and inform parameter selection of TMS and other cortical stimulation modalities. It also serves as a foundation for more detailed network models of the response to TMS, which may include endogenous activity, synaptic connectivity, inputs from intrinsic and extrinsic axonal projections, and corticofugal axons in white matter.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
180 |
2
|
Seibt O, Brunoni AR, Huang Y, Bikson M. The Pursuit of DLPFC: Non-neuronavigated Methods to Target the Left Dorsolateral Pre-frontal Cortex With Symmetric Bicephalic Transcranial Direct Current Stimulation (tDCS). Brain Stimul 2015; 8:590-602. [PMID: 25862601 DOI: 10.1016/j.brs.2015.01.401] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The dose of transcranial direct current stimulation (tDCS) is defined by electrode montage and current, while the resulting brain current flow is more complex and varies across individuals. The left dorsolateral pre-frontal cortex (lDLPFC) is a common target in neuropsychology and neuropsychiatry applications, with varied approaches used to experimentally position electrodes on subjects. OBJECTIVE To predict brain current flow intensity and distribution using conventional symmetrical bicephalic frontal 1 × 1 electrode montages to nominally target lDLPFC in forward modeling studies. METHODS Six high-resolution Finite Element Method (FEM) models were created from five subjects of varied head size and an MNI standard. Seven electrode positioning methods, nominally targeting lDLPFC, were investigated on each head model: the EEG 10-10 including F3-F4, F5-F6, F7-8, F9-F10, the Beam F3-System, the 5-5 cm-Rule and the developed OLE-System were evaluated as electrode positioning methods for 5 × 5 cm(2) rectangular sponge-pad electrodes. RESULTS Each positioning approach resulted in distinct electrode positions on the scalp and variations in brain current flow. Variability was significant, but trends across montages and between subjects were identified. Factors enhancing electric field intensity and relative targeting in lDLPFC include increased inter-electrode distance and proximity to thinner skull structures. CONCLUSION Brain current flow can be shaped, but not focused, across frontal cortex by tDCS montages, including intensity at lDLPFC. The OLE-system balances lDLPFC targeting and reduced electric field variability, along with clinical ease-of-use.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
104 |
3
|
Vorwerk J, Oostenveld R, Piastra MC, Magyari L, Wolters CH. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed Eng Online 2018; 17:37. [PMID: 29580236 PMCID: PMC5870695 DOI: 10.1186/s12938-018-0463-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. Methods The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. Results The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. Conclusion The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained. Electronic supplementary material The online version of this article (10.1186/s12938-018-0463-y) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
97 |
4
|
Ambati DV, Wright EK, Lehman RA, Kang DG, Wagner SC, Dmitriev AE. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J 2015; 15:1812-22. [PMID: 24983669 DOI: 10.1016/j.spinee.2014.06.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/27/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Transforaminal lumbar interbody fusion (TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disease. The optimal construct for segmental stability remains unknown. PURPOSE To compare the stability of fusion constructs using standard (C) and crescent-shaped (CC) polyetheretherketone TLIF cages with unilateral (UPS) or bilateral (BPS) posterior instrumentation. STUDY DESIGN Five TLIF fusion constructs were compared using finite element (FE) analysis. METHODS A previously validated L3-L5 FE model was modified to simulate decompression and fusion at L4-L5. This model was used to analyze the biomechanics of various unilateral and bilateral TLIF constructs. The inferior surface of the L5 vertebra remained immobilized throughout the load simulation, and a bending moment of 10 Nm was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Various biomechanical parameters were evaluated for intact and implanted models in all loading planes. RESULTS All reconstructive conditions displayed decreased motion at L4-L5. Bilateral posterior fixation conferred greater stability when compared with unilateral fixation in left lateral bending. More than 50% of intact motion remained in the left lateral bending with unilateral posterior fixation compared with less than 10% when bilateral pedicle screw fixation was used. Posterior implant stresses for unilateral fixation were six times greater in flexion and up to four times greater in left lateral bending compared with bilateral fixation. No effects on segmental stability or posterior implant stresses were found. An obliquely-placed, single standard cage generated the lowest cage-end plate stress. CONCLUSIONS Transforaminal lumbar interbody fusion augmentation with bilateral posterior fixation increases fusion construct stability and decreases posterior instrumentation stress. The shape or number of interbody implants does not appear to impact the segmental stability when bilateral pedicle screws are used. Increased posterior instrumentation stresses were observed in all loading modes with unilateral pedicle screw/rod fixation, which may theoretically accelerate implant loosening or increase the risk of construct failure.
Collapse
|
|
10 |
92 |
5
|
Poelert S, Valstar E, Weinans H, Zadpoor AA. Patient-specific finite element modeling of bones. Proc Inst Mech Eng H 2012; 227:464-78. [PMID: 23637222 DOI: 10.1177/0954411912467884] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Collapse
|
Review |
13 |
77 |
6
|
Minjoli S, Saturnino GB, Blicher JU, Stagg CJ, Siebner HR, Antunes A, Thielscher A. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation. NEUROIMAGE-CLINICAL 2017; 15:106-117. [PMID: 28516033 PMCID: PMC5426045 DOI: 10.1016/j.nicl.2017.04.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/03/2017] [Accepted: 04/15/2017] [Indexed: 11/02/2022]
Abstract
Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible. Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field "hot spots" in the cortex. However, these maxima were not substantially stronger than those seen in a healthy control. The electric field pattern induced by TMS was not substantially changed by the lesions. However, the average field strength generated by TDCS was substantially decreased. This effect occurred for both head models and even when both electrodes were distant to the lesion, caused by increased current shunting through the lesion and enlarged ventricles. Judging from the similar peak field strengths compared to the healthy control, both TBS methods are safe in patients with large brain lesions (in practice, however, additional factors such as potentially lowered thresholds for seizure-induction have to be considered). Focused stimulation by TMS seems to be possible, but standard tDCS protocols appear to be less efficient than they are in healthy subjects, strongly suggesting that tDCS studies in this population might benefit from individualized treatment planning based on realistic field calculations.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
72 |
7
|
Gomez LJ, Dannhauer M, Koponen LM, Peterchev AV. Conditions for numerically accurate TMS electric field simulation. Brain Stimul 2019; 13:157-166. [PMID: 31604625 DOI: 10.1016/j.brs.2019.09.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Computational simulations of the E-field induced by transcranial magnetic stimulation (TMS) are increasingly used to understand its mechanisms and to inform its administration. However, characterization of the accuracy of the simulation methods and the factors that affect it is lacking. OBJECTIVE To ensure the accuracy of TMS E-field simulations, we systematically quantify their numerical error and provide guidelines for their setup. METHOD We benchmark the accuracy of computational approaches that are commonly used for TMS E-field simulations, including the finite element method (FEM) with and without superconvergent patch recovery (SPR), boundary element method (BEM), finite difference method (FDM), and coil modeling methods. RESULTS To achieve cortical E-field error levels below 2%, the commonly used FDM and 1st order FEM require meshes with an average edge length below 0.4 mm, 1st order SPR-FEM requires edge lengths below 0.8 mm, and BEM and 2nd (or higher) order FEM require edge lengths below 2.9 mm. Coil models employing magnetic and current dipoles require at least 200 and 3000 dipoles, respectively. For thick solid-conductor coils and frequencies above 3 kHz, winding eddy currents may have to be modeled. CONCLUSION BEM, FDM, and FEM all converge to the same solution. Compared to the common FDM and 1st order FEM approaches, BEM and 2nd (or higher) order FEM require significantly lower mesh densities to achieve the same error level. In some cases, coil winding eddy-currents must be modeled. Both electric current dipole and magnetic dipole models of the coil current can be accurate with sufficiently fine discretization.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
65 |
8
|
Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Abe Y, Asazuma T, Chiba K. Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir (Wien) 2016; 158:465-71. [PMID: 26769471 DOI: 10.1007/s00701-016-2705-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/06/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND The cortical bone trajectory (CBT) has attracted attention as a new minimally invasive technique for lumbar instrumentation by minimizing soft-tissue dissection. Biomechanical studies have demonstrated the superior fixation capacity of CBT; however, there is little consensus on the selection of screw size, and no biomechanical study has elucidated the most suitable screw size for CBT. The purpose of the present study was to evaluate the effect of screw size on fixation strength and to clarify the ideal size for optimal fixation using CBT. METHOD A total of 720 analyses on CBT screws with various diameters (4.5-6.5 mm) and lengths (25-40 mm) in simulations of 20 different lumbar vertebrae (mean age: 62.1 ± 20.0 years, 8 males and 12 females) were performed using a finite element method. First, the fixation strength of a single screw was evaluated by measuring the axial pullout strength. Next, the vertebral fixation strength of a paired-screw construct was examined by applying forces simulating flexion, extension, lateral bending, and axial rotation to the vertebra. Lastly, the equivalent stress value of the bone-screw interface was calculated. RESULTS Larger-diameter screws increased the pullout strength and vertebral fixation strength and decreased the equivalent stress around the screws; however, there were no statistically significant differences between 5.5-mm and 6.5-mm screws. The screw diameter was a factor more strongly affecting the fixation strength of CBT than the screw fit within the pedicle (%fill). Longer screws significantly increased the pullout strength and vertebral fixation strength in axial rotation. The amount of screw length within the vertebral body (%length) was more important than the actual screw length, contributing to the vertebral fixation strength and distribution of stress loaded to the vertebra. CONCLUSIONS The fixation strength of CBT screws varied depending on screw size. The ideal screw size for CBT is a diameter larger than 5.5 mm and length longer than 35 mm, and the screw should be placed sufficiently deep into the vertebral body.
Collapse
|
|
9 |
65 |
9
|
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics. Cardiovasc Eng Technol 2016; 7:374-388. [PMID: 27844463 DOI: 10.1007/s13239-016-0285-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models vs. FSI models, as well as an isotropic vs. an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the fluid inertia in the FSI model during the closing phase, which led to 13-28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
63 |
10
|
Genet M, Rausch MK, Lee LC, Choy S, Zhao X, Kassab GS, Kozerke S, Guccione JM, Kuhl E. Heterogeneous growth-induced prestrain in the heart. J Biomech 2015; 48:2080-9. [PMID: 25913241 DOI: 10.1016/j.jbiomech.2015.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/09/2015] [Accepted: 03/10/2015] [Indexed: 12/01/2022]
Abstract
Even when entirely unloaded, biological structures are not stress-free, as shown by Y.C. Fung׳s seminal opening angle experiment on arteries and the left ventricle. As a result of this prestrain, subject-specific geometries extracted from medical imaging do not represent an unloaded reference configuration necessary for mechanical analysis, even if the structure is externally unloaded. Here we propose a new computational method to create physiological residual stress fields in subject-specific left ventricular geometries using the continuum theory of fictitious configurations combined with a fixed-point iteration. We also reproduced the opening angle experiment on four swine models, to characterize the range of normal opening angle values. The proposed method generates residual stress fields which can reliably reproduce the range of opening angles between 8.7±1.8 and 16.6±13.7 as measured experimentally. We demonstrate that including the effects of prestrain reduces the left ventricular stiffness by up to 40%, thus facilitating the ventricular filling, which has a significant impact on cardiac function. This method can improve the fidelity of subject-specific models to improve our understanding of cardiac diseases and to optimize treatment options.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
62 |
11
|
Modeling Pathologies of Diastolic and Systolic Heart Failure. Ann Biomed Eng 2015; 44:112-27. [PMID: 26043672 PMCID: PMC4670609 DOI: 10.1007/s10439-015-1351-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023]
Abstract
Chronic heart failure is a medical condition that involves structural and functional changes of the heart and a progressive reduction in cardiac output. Heart failure is classified into two categories: diastolic heart failure, a thickening of the ventricular wall associated with impaired filling; and systolic heart failure, a dilation of the ventricles associated with reduced pump function. In theory, the pathophysiology of heart failure is well understood. In practice, however, heart failure is highly sensitive to cardiac microstructure, geometry, and loading. This makes it virtually impossible
to predict the time line of heart failure for a diseased individual. Here we show that computational modeling allows us to integrate knowledge from different scales to create an individualized model for cardiac growth and remodeling during chronic heart failure. Our model naturally connects molecular events of parallel and serial sarcomere deposition with cellular phenomena of myofibrillogenesis and sarcomerogenesis to whole organ function. Our simulations predict chronic alterations in wall thickness, chamber size, and cardiac geometry, which agree favorably with the clinical observations in patients with diastolic and systolic heart failure. In contrast to existing single- or bi-ventricular models, our new four-chamber model can also predict characteristic secondary effects including papillary muscle dislocation, annular dilation, regurgitant flow, and outflow obstruction. Our prototype study suggests that computational modeling provides a patient-specific window into the progression of heart failure with a view towards personalized treatment planning.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
59 |
12
|
Roels P, Agricola R, Oei EH, Weinans H, Campoli G, Zadpoor AA. Mechanical factors explain development of cam-type deformity. Osteoarthritis Cartilage 2014; 22:2074-82. [PMID: 25241242 DOI: 10.1016/j.joca.2014.09.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A cam-type deformity drastically increases the risk of hip osteoarthritis (OA). Since this type of skeletal anomaly is more prevalent among young active adults, it is hypothesized that the loading conditions experienced during certain types of vigorous physical activities stimulates formation of cam-type deformity. We further hypothesize that the growth plate shape modulates the influence of mechanical factors on the development of cam-type deformity. DESIGN We used finite element (FE) models of the proximal femur with an open growth plate to study whether mechanical factors could explain the development of cam-type deformity in adolescents. Four different loading conditions (representing different types of physical activities) and three different levels of growth plate extension towards the femoral neck were considered. Mechanical stimuli at the tissue level were calculated by means of the osteogenic index (OI) for all loading conditions and growth plate shape variations. RESULTS Loading conditions and growth plate shape influence the distribution of OI in hips with an open growth plate, thereby driving the development of cam-type deformity. In particular, specific types of loads experienced during physical activities and a larger growth plate extension towards the femoral neck increase the chance of cam-type deformity. CONCLUSIONS Specific loading patterns seem to stimulate the development of cam-type deformity by modifying the distribution of the mechanical stimulus. This is in line with recent clinical studies and reveals mechanobiological mechanisms that trigger the development of cam-type deformity. Avoiding these loading patterns during skeletal growth might be a potential preventative strategy for future hip OA.
Collapse
|
|
11 |
57 |
13
|
Chen C, Chen J, Wu W, Shi Y, Jin L, Petrini L, Shen L, Yuan G, Ding W, Ge J, Edelman ER, Migliavacca F. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials 2019; 221:119414. [PMID: 31419654 PMCID: PMC6732791 DOI: 10.1016/j.biomaterials.2019.119414] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/25/2023]
Abstract
The performance of biodegradable magnesium alloy stents (BMgS) requires special attention to non-uniform residual stress distribution and stress concentration, which can accelerate localized degradation after implantation. We now report on a novel concept in stent shape optimization using a finite element method (FEM) toolkit. A Mg-Nd-Zn-Zr alloy with uniform degradation behavior served as the basis of our BMgS. Comprehensive in vitro evaluations drove stent optimization, based on observed crimping and balloon inflation performance, measurement of radial strength, and stress condition validation via microarea-XRD. Moreover, a Rapamycin-eluting polymer coating was sprayed on the prototypical BMgS to improve the corrosion resistance and release anti-hyperplasia drugs. In vivo evaluation of the optimized coated BMgS was conducted in the iliac artery of New Zealand white rabbit with quantitative coronary angiography (QCA), optical coherence tomography (OCT) and micro-CT observation at 1, 3, 5-month follow-ups. Neither thrombus or early restenosis was observed, and the coated BMgS supported the vessel effectively prior to degradation and allowed for arterial healing thereafter. The proposed shape optimization framework based on FEM provides an novel concept in stent design and in-depth understanding of how deformation history affects the biomechanical performance of BMgS. Computational analysis tools can indeed promote the development of biodegradable magnesium stents.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
57 |
14
|
Ness TV, Chintaluri C, Potworowski J, Łęski S, Głąbska H, Wójcik DK, Einevoll GT. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs). Neuroinformatics 2015; 13:403-26. [PMID: 25822810 PMCID: PMC4626530 DOI: 10.1007/s12021-015-9265-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microelectrode arrays (MEAs), substrate-integrated planar arrays of up to thousands of closely spaced metal electrode contacts, have long been used to record neuronal activity in in vitro brain slices with high spatial and temporal resolution. However, the analysis of the MEA potentials has generally been mainly qualitative. Here we use a biophysical forward-modelling formalism based on the finite element method (FEM) to establish quantitatively accurate links between neural activity in the slice and potentials recorded in the MEA set-up. Then we develop a simpler approach based on the method of images (MoI) from electrostatics, which allows for computation of MEA potentials by simple formulas similar to what is used for homogeneous volume conductors. As we find MoI to give accurate results in most situations of practical interest, including anisotropic slices covered with highly conductive saline and MEA-electrode contacts of sizable physical extensions, a Python software package (ViMEAPy) has been developed to facilitate forward-modelling of MEA potentials generated by biophysically detailed multicompartmental neurons. We apply our scheme to investigate the influence of the MEA set-up on single-neuron spikes as well as on potentials generated by a cortical network comprising more than 3000 model neurons. The generated MEA potentials are substantially affected by both the saline bath covering the brain slice and a (putative) inadvertent saline layer at the interface between the MEA chip and the brain slice. We further explore methods for estimation of current-source density (CSD) from MEA potentials, and find the results to be much less sensitive to the experimental set-up.
Collapse
|
research-article |
10 |
55 |
15
|
Oh Y, Wakabayashi Y, Kurosa Y, Fujita K, Okawa A. Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: Mechanical analysis by the CT-based finite element method. Injury 2014; 45:1764-71. [PMID: 25225173 DOI: 10.1016/j.injury.2014.08.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/14/2014] [Accepted: 08/17/2014] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Stress fractures of the bowed femoral shaft (SBFs) may be one of the causes of atypical femoral fractures (AFFs). The CT-based finite element method (CT/FEM) can be used to structurally evaluate bone morphology and bone density based on patient DICOM data, thereby quantitatively and macroscopically assessing bone strength. Here, we clarify the pathogenic mechanism of SBFs and demonstrate this new understanding of AFFs through mechanical analysis by CT/FEM. PATIENTS AND METHODS A prospective clinical study was performed from April 2012 to February 2014. We assembled two study groups, the bowed AFF group (n=4 patients; mean age, 78.0 years) including those with a prior history of AFF associated with bowing deformity and the thigh pain group (n=14 patients; mean age, 78.6 years) comprising outpatients with complaints of thigh pain and tenderness. Stress concentration in the femoral shaft was analysed by CT/FEM, and the visual findings and extracted data were assessed to determine the maximum principal stress (MPS) and tensile stress-strength ratio (TSSR). In addition, we assessed femoral bowing, bone density, and bone metabolic markers. Wilcoxon's rank sum test was used for statistical analysis. RESULTS All patients in the bowed AFF group showed a marked concentration of diffuse stress on the anterolateral surface. Thirteen patients in the thigh pain group had no significant findings. However, the remaining 1 patient had a finding similar to that observed in the bowed AFF group, with radiographic evidence of bowing deformity and a focally thickened lateral cortex. Patients were reclassified as having SBF (n=5) or non-SBF (n=13). Statistical analysis revealed significant differences in MPS (p=0.0031), TSSR (p=0.0022), and femoral bowing (lateral, p=0.0015; anterior, p=0.0022) between the SBF and non-SBF groups, with no significant differences in bone density or bone metabolic markers. CONCLUSIONS Significant tensile stress due to bowing deformity can induce AFFs. SBFs should be considered a novel subtype of AFF, and patients with complaints of thigh pain and femoral shaft bowing deformity must be considered at high risk for AFFs. This project (Ref: AOTAP 13-13) was supported by AOTrauma Asia Pacific.
Collapse
|
|
11 |
53 |
16
|
Sahli Costabal F, Hurtado DE, Kuhl E. Generating Purkinje networks in the human heart. J Biomech 2016; 49:2455-65. [PMID: 26748729 PMCID: PMC4917481 DOI: 10.1016/j.jbiomech.2015.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The Purkinje network is an integral part of the excitation system in the human heart. Yet, to date, there is no in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and understand the role of the Purkinje system. However, most computational models either have to be generated manually, or fail to smoothly cover the irregular surfaces inside the left and right ventricles. Here we present a new algorithm to reliably create robust Purkinje networks within the human heart. We made the source code of this algorithm freely available online. Using Monte Carlo simulations, we demonstrate that the fractal tree algorithm with our new projection method generates denser and more compact Purkinje networks than previous approaches on irregular surfaces. Under similar conditions, our algorithm generates a network with 1219±61 branches, three times more than a conventional algorithm with 419±107 branches. With a coverage of 11±3mm, the surface density of our new Purkije network is twice as dense as the conventional network with 22±7mm. To demonstrate the importance of a dense Purkinje network in cardiac electrophysiology, we simulated three cases of excitation: with our new Purkinje network, with left-sided Purkinje network, and without Purkinje network. Simulations with our new Purkinje network predicted more realistic activation sequences and activation times than simulations without. Six-lead electrocardiograms of the three case studies agreed with the clinical electrocardiograms under physiological conditions, under pathological conditions of right bundle branch block, and under pathological conditions of trifascicular block. Taken together, our results underpin the importance of the Purkinje network in realistic human heart simulations. Human heart modeling has the potential to support the design of personalized strategies for single- or bi-ventricular pacing, radiofrequency ablation, and cardiac defibrillation with the common goal to restore a normal heart rhythm.
Collapse
|
research-article |
9 |
51 |
17
|
Duan Y, Griggs JA. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite. J Dent 2015; 43:742-9. [PMID: 25625675 DOI: 10.1016/j.jdent.2015.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. METHODS Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. RESULTS The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. CONCLUSIONS Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. CLINICAL SIGNIFICANCE Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
51 |
18
|
Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. Neuroimage Clin 2014; 4:500-7. [PMID: 24818076 PMCID: PMC3984442 DOI: 10.1016/j.nicl.2014.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/03/2022]
Abstract
The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.
Collapse
|
Evaluation Study |
11 |
50 |
19
|
Adouni M, Shirazi-Adl A. Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment. J Biomech 2014; 47:1696-703. [PMID: 24636718 DOI: 10.1016/j.jbiomech.2014.02.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics-kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17Nm is varied by ±50% to 25.5Nm and 8.5Nm. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
48 |
20
|
Hernandez F, Giordano C, Goubran M, Parivash S, Grant G, Zeineh M, Camarillo D. Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions. Biomech Model Mechanobiol 2019; 18:631-649. [PMID: 30859404 DOI: 10.1007/s10237-018-01106-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. Peak coronal accelerations were larger in impacts with mTBI (8592 rad/s2 avg.) than those without (1412 rad/s2 avg.). From FE simulations, coronal acceleration was strongly correlated with deep lateral motion of the falx center (r = 0.85), while horizontal acceleration was correlated with deep lateral motion of the falx periphery (r > 0.78). Larger lateral displacement at the falx center and periphery was correlated with higher tract-oriented strains in the corpus callosum body (r = 0.91) and genu/splenium (r > 0.72), respectively. The relationship between the corpus callosum and falx was unique: removing the falx from the FE model halved peak strains in the corpus callosum from 35% to 17%. Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.
Collapse
|
Journal Article |
6 |
48 |
21
|
Miller K, Lu J. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J Mech Behav Biomed Mater 2013; 27:154-66. [PMID: 23491073 DOI: 10.1016/j.jmbbm.2013.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/11/2012] [Accepted: 01/23/2013] [Indexed: 01/18/2023]
Abstract
This paper presents main theses of two keynote lectures delivered at Euromech Colloquium "Advanced experimental approaches and inverse problems in tissue biomechanics" held in Saint Etienne in June 2012. We are witnessing an advent of patient-specific biomechanics that will bring in the future personalized treatments to sufferers all over the world. It is the current task of biomechanists to devise methods for clinically-relevant patient-specific modeling. One of the obstacles standing before the biomechanics community is the difficulty in obtaining patient-specific properties of tissues to be used in biomechanical models. We postulate that focusing on reformulating computational mechanics problems in such a way that the results are weakly sensitive to the variation in mechanical properties of simulated continua is more likely to bear fruit in near future. We consider two types of problems: (i) displacement-zero traction problems whose solutions in displacements are weakly sensitive to mechanical properties of the considered continuum; and (ii) problems that are approximately statically determinate and therefore their solutions in stresses are also weakly sensitive to mechanical properties of constituents. We demonstrate that the kinematically loaded biomechanical models of the first type are applicable in the field of image-guided surgery where the current, intraoperative configuration of a soft organ is of critical importance. We show that sac-like membranes, which are prototypes of many thin-walled biological organs, are approximately statically determinate and therefore useful solutions for wall stress can be obtained without the knowledge of the wall's properties. We demonstrate the clinical applicability and effectiveness of the proposed methods using examples from modeling neurosurgery and intracranial aneurysms.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
47 |
22
|
Fastl TE, Tobon-Gomez C, Crozier A, Whitaker J, Rajani R, McCarthy KP, Sanchez-Quintana D, Ho SY, O'Neill MD, Plank G, Bishop MJ, Niederer SA. Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med Image Anal 2018; 47:180-190. [PMID: 29753182 PMCID: PMC6277816 DOI: 10.1016/j.media.2018.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
Abstract
Atrial fibrillation (AF) is a supraventricular tachyarrhythmia characterized by complete absence of coordinated atrial contraction and is associated with an increased morbidity and mortality. Personalized computational modeling provides a novel framework for integrating and interpreting the role of atrial electrophysiology (EP) including the underlying anatomy and microstructure in the development and sustenance of AF. Coronary computed tomography angiography data were segmented using a statistics-based approach and the smoothed voxel representations were discretized into high-resolution tetrahedral finite element (FE) meshes. To estimate the complex left atrial myofiber architecture, individual fiber fields were generated according to morphological data on the endo- and epicardial surfaces based on local solutions of Laplace’s equation and transmurally interpolated to tetrahedral elements. The influence of variable transmural microstructures was quantified through EP simulations on 3 patients using 5 different fiber interpolation functions. Personalized geometrical models included the heterogeneous thickness distribution of the left atrial myocardium and subsequent discretization led to high-fidelity tetrahedral FE meshes. The novel algorithm for automated incorporation of the left atrial fiber architecture provided a realistic estimate of the atrial microstructure and was able to qualitatively capture all important fiber bundles. Consistent maximum local activation times were predicted in EP simulations using individual transmural fiber interpolation functions for each patient suggesting a negligible effect of the transmural myofiber architecture on EP. The established modeling pipeline provides a robust framework for the rapid development of personalized model cohorts accounting for detailed anatomy and microstructure and facilitates simulations of atrial EP.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
44 |
23
|
Human Cardiac Function Simulator for the Optimal Design of a Novel Annuloplasty Ring with a Sub-valvular Element for Correction of Ischemic Mitral Regurgitation. Cardiovasc Eng Technol 2015; 6:105-16. [PMID: 25984248 PMCID: PMC4427655 DOI: 10.1007/s13239-015-0216-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
Abstract
Ischemic mitral regurgitation is associated with substantial risk of death. We sought to: (1)
detail significant recent improvements to the Dassault Systèmes human cardiac function simulator (HCFS); (2) use the HCFS to simulate normal cardiac function as well as pathologic function in the setting of posterior left ventricular (LV) papillary muscle infarction; and (3) debut our novel device for correction of ischemic mitral regurgitation. We synthesized two recent studies of human myocardial mechanics. The first study presented the robust and integrative finite element HCFS. Its primary limitation was its poor diastolic performance with an LV ejection fraction below 20% caused by overly stiff ex vivo porcine tissue parameters. The second study derived improved diastolic myocardial material parameters using in vivo MRI data from five normal human subjects. We combined these models to simulate ischemic mitral regurgitation by computationally infarcting an LV region including the posterior papillary muscle. Contact between our novel device and the mitral valve apparatus was simulated using Dassault Systèmes SIMULIA software. Incorporating improved cardiac geometry and diastolic myocardial material properties in the HCFS resulted in a realistic LV ejection fraction of 55%. Simulating infarction of posterior papillary muscle caused regurgitant mitral valve mechanics. Implementation of our novel device corrected valve dysfunction. Improvements in the current study to the HCFS permit increasingly accurate study of myocardial mechanics. The first application of this simulator to abnormal human cardiac function suggests that our novel annuloplasty ring with a sub-valvular element will correct ischemic mitral regurgitation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
44 |
24
|
Lee JH, Rygg AD, Kolahdouz EM, Rossi S, Retta SM, Duraiswamy N, Scotten LN, Craven BA, Griffith BE. Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator. Ann Biomed Eng 2020; 48:1475-1490. [PMID: 32034607 PMCID: PMC7154025 DOI: 10.1007/s10439-020-02466-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Computer modeling and simulation is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse-duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid-structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.
Collapse
|
research-article |
5 |
40 |
25
|
Samiezadeh S, Tavakkoli Avval P, Fawaz Z, Bougherara H. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study. Clin Biomech (Bristol, Avon) 2014; 29:803-10. [PMID: 24951320 DOI: 10.1016/j.clinbiomech.2014.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intramedullary nails are the primary choice for treating long bone fractures. However, complications following nail surgery including non-union, delayed union, and fracture of the bone or the implant still exist. Reducing nail stiffness while still maintaining sufficient stability seems to be the ideal solution to overcome the abovementioned complications. METHODS In this study, a new hybrid concept for nails made of carbon fibers/flax/epoxy was developed in order to reduce stress shielding. The mechanical performance of this new implant in terms of fracture stability and load sharing was assessed using a comprehensive non-linear FE model. This model considers several mechanical factors in nine fracture configurations at immediately post-operative, and in the healed bone stages. RESULTS Post-operative results showed that the hybrid composite nail increases the average normal force at the fracture site by 319.23N (P<0.05), and the mean stress in the vicinity of fracture by 2.11MPa (P<0.05) at 45% gait cycle, while only 0.33mm and 0.39mm (P<0.05) increases in the fracture opening and the fragments' shear movement were observed. The healed bone results revealed that implantation of the titanium nail caused 20.2% reduction in bone stiffness, while the composite nail lowered the stiffness by 11.8% as compared to an intact femur. INTERPRETATION Our results suggest that the composite nail can provide a preferred mechanical environment for healing, particularly in transverse shaft fractures. This may help bioengineers better understand the biomechanics of fracture healing, and aid in the design of effective implants.
Collapse
|
|
11 |
39 |