Dargah MM, Youseftabar-Miri L, Divsar F, Hosseinjani-Pirdehi H, Mahani M, Bakhtiari S, Montazar L. Triplex hairpin oligosensor for ultrasensitive determination of miRNA-155 as a cancer marker using Si quantum dots and Au nanoparticles.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024;
322:124750. [PMID:
39003825 DOI:
10.1016/j.saa.2024.124750]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
In this study, a new triplex hairpin oligosensor was developed for the determination of a breast cancer biomarker using silicon quantum dots (Si QD) (λex = 370 nm, λem = 482 nm) as donor and gold nanoparticles (GNP) as an acceptor in a FRET (fluorescence resonance energy transfer) mechanism. In the triplex hairpin oligosensor, a triplex-forming oligonucleotide (TFO) labeled with Si QD and a single-strand DNA labeled with GNP form a hairpin shape with a triplex structure at the hairpin stem. In a turn-on mechanism, the triplex hairpin stem is opened in the presence of sequence-specific miRNA-155 which leads to the release of the Si QD-labeled TFO probe and recovery of the fluorescence signal. About 80 % of the fluorescence intensity of the Si QD-TFO is quenched in the triplex hairpin structure of the oligosensor and in the presence of 800 pM miRNA-155, the fluorescence signal recovered to 57.7 % of its initial value. The LOD of about 10 pM was obtained. The designed triplex-based biosensor can discriminate concentrations of breast cancer biomarkers with high selectivity.
Collapse