1
|
Effect of ultrasonication on secondary structure and heat induced gelation of chicken myofibrils. Journal of Food Science and Technology 2016; 53:3340-3348. [PMID: 27784928 DOI: 10.1007/s13197-016-2311-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Ultrasonication has been suggested as a new promising technique to improve the quality of meat and other meat products. In this study ultrasonication at low frequency (20 kHz) was carried out to investigate the effect on structural and biochemical properties of myofibril proteins. The possible implications between ultrasonication-induced structural changes and gelation properties were also investigated. Structural changes were investigated by ATPase activity, SDS-PAGE, circular dichroism and fluorescence spectroscopy. Microstructural changes in heat induced gels were observed by SEM and water holding capacity was determined by centrifugation. Ultrasonic treatment for 30 min significantly reduced the Ca2+-ATPase activity. Moreover significant change in structure of proteins at secondary level, as indicated by marked decrease in α-helicity, was observed. Marginal change in fluorescence at 10 min was followed by significant increase at 20 and 30 min reflecting exposure of hydrophobic residues on surface during unfolding. Microstructural analyses of gels showed marked improvement in regular three dimensional network at 20 and 30 min of sonication. WHC at 20 min and 30 min were significantly higher than control. Our results suggest that ultrasonication at low frequency (20 kHz) can prove beneficial for improving functional properties of meat and meat products.
Collapse
|
Journal Article |
9 |
30 |
2
|
Wang J, Lu T, Hu Y, Wang X, Wu Y. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117651. [PMID: 31629980 DOI: 10.1016/j.saa.2019.117651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
A novel label-free aptasensor for kanamycin detection was constructed using gold nanoparticles (AuNPs) as absorber to quench the fluorescence of carbon dots (CDs) via the inner filter effect (IFE). The strategy was mainly relied on the fact that the absorption spectra of AuNPs overlapped with the fluorescence excitation spectra of fluorophores as well as the specific binding capacity of Ky2 aptamer to kanamycin. Upon adding kanamycin antibiotic, the free aptamer sequences are firstly exhausted to form some complexes, which leads to AuNPs aggregation in high salt concentration. Consequently, the absorber's absorption spectrum changes and no longer overlaps with the fluorescence emission spectrum of the CDs, which results in obvious fluorescence recovery of the aptasensor. Herein, the effects of some vital parameters like the type and number of nanoparticles on the fluorescent aptasensor have been investigated. Under optimal conditions, the proposed aptasensor can detect kanamycin in a linear range of 0.04-0.24 μM, with a limit of detection (LOD) as low as 18 nM. Moreover, the further studies also validate the applicability of the proposed aptasensor in milk samples, revealing that it may have enormous potential utility for practical kanamycin detection in food products in the future.
Collapse
|
Evaluation Study |
5 |
26 |
3
|
Jeyasingh V, Murugesan K, Lakshminarayanan S, Selvapalam N, Das G, Piramuthu L. A molecular phototropic system for cyanide: Detection and sunlight driven harvesting of cyanide with molecular sunflower. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118207. [PMID: 32217449 DOI: 10.1016/j.saa.2020.118207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
We are reporting a simple, easy to prepare, and conformation switchable first molecular phototropic system L, "(E)-2-(2,4-dinitrophenyl)-1-((pyren-8-yl)methylene)hydrazine, for cyanide harvesting. This molecular phototropic system behaves as a molecular sunflower in which the conformation of this molecular sunflower can be altered in response to the sunlight. This molecular flower can sense and bind the cyanide anion colorimetrically through its transition state. Further, upon exposure of this transition state cyanide complex 1, under sunlight, this system is capable to release the bound cyanide via -C=N- free rotation to reach its lower energy stable conformation. Similar behaviors were observed for acetate and fluoride with L. The strength of the phototropic system L towards cyanide, acetate and fluoride is found to be 4.5 × 105, 1.53 × 102 and 6.09 × 102 M-1.
Collapse
|
|
5 |
10 |
4
|
Nigmatullin R, Johns MA, Eichhorn SJ. Hydrophobized cellulose nanocrystals enhance xanthan and locust bean gum network properties in gels and emulsions. Carbohydr Polym 2020; 250:116953. [PMID: 33049858 DOI: 10.1016/j.carbpol.2020.116953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Locust bean/xanthan gum (LBG/XG) synergistic networks have previously been well studied, with evidence that junction zones between the two polymers result in hydrophobic domains. Here we report on the effect of both hydrophilic and hydrophobic cellulose nanocrystals (CNCs) on the rheological properties of the individual gums, the gum networks, and emulsion gels consisting of the gum network and corn oil. We also take advantage of differences in the autofluorescent spectra for each of the components to map their distribution within the gel and emulsion gel systems. Whilst both types of CNC confer thermal stability to the systems, hydrophilic CNCs induce minor changes in rheological properties of synergistic gels and prove to be detrimental to the stability of the emulsion gels. In contrast, hydrophobic CNCs associate with the LBG/XG network, affecting the rheological response. Their inclusion in the emulsion gel system results in smaller, more homogeneously distributed oil droplets with a resultant increase in the storage modulus by an order of magnitude compared to the CNC-free and hydrophilic CNC systems. We conclude that hydrophobic CNCs play a critical role in stabilising LBG/XG network gels and emulsions.
Collapse
|
Journal Article |
5 |
9 |
5
|
Chai L, Huang M, Fan H, Wang J, Jiang D, Zhang M, Huang Y. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). CHEMOSPHERE 2019; 220:249-258. [PMID: 30590291 DOI: 10.1016/j.chemosphere.2018.12.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Soil organic matter (SOM) play an important role in soil ecology and global carbon dynamic. As one of the most sever and irreversible land use change, urbanization could alter the regional carbon storage and composition pattern. However how urbanization influence on SOM is still unclear. In this study, we collected soil samples from highly urbanized area of Beijing, China and explore the quantity and quality variations of SOM by using fluorescence spectroscopy in combine with parallel factor analysis (PARAFAC). The results shown that the soil physic-chemical properties were shaped by urbanization. Comparing to nature soil, moisture content, total organic carbon and total nitrogen in urban and rural soil significantly decreased. The fluorescence spectrum demonstrated that SOM quality was also altered by urbanization induced environmental changes. Five fluorescent compounds in SOM was identified by PARAFAC model and three of them was assigned to humic-like substances. The fluorescence intensity of humic-like substances in nature land was significantly higher than of rural and urban land, meanwhile microbial related substance accumulated in urban land in comparison with rural and nature land. The multivariate analyses further reveal the relationship between soil physic-chemical properties and SOM composition. These results suggest that urbanization could not only decrease the SOM quantity but also change the SOM composition. The SOM loss caused by urbanization was mainly consist of humic-like substance loss. Besides urbanization also stimulate the accumulation of microbial related substance in SOM which highlight the importance of microorganism is SOM dynamic.
Collapse
|
|
6 |
9 |
6
|
Sasidharan S, Saudagar P. Concerted motion of structure and active site charge is required for tyrosine aminotransferase activity in Leishmania parasite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118133. [PMID: 32086045 DOI: 10.1016/j.saa.2020.118133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Leishmania donovani tyrosine aminotransferase (LdTAT) is an essential enzyme that catalyzes the first step of amino acid catabolism. To understand LdTAT activity at different pH, molecular dynamics simulations were performed and trajectory and T-pad analysis pad were conducted. Fluorescence spectroscopy of LdTAT at various pH was measured to understand structural stability. UV studies on PLP were performed to determine the binding of the enzyme to cofactor PLP at different pH. The MD simulations showed that the structure of LdTAT was stable and no structural denaturation was observed at pH 2, 7 and 12. LdTAT exhibited the highest activity at pH -8 and fluorescent spectroscopy also corroborated by exhibiting the highest intensity at pH -8. Moreover, no structural denaturation was observed during the pH gradient. UV studies concluded that the aldimine bond forms only around neutral pH and redshift was observed on enzyme binding. From our observation, we hypothesize that the activity of LdTAT is a close interplay between the structure and charges of K286 and PLP. This study may provide significant insight into understanding parasitic enzymes like LdTAT during the life-cycle of Leishmania parasite. Knowledge of such enzyme mechanisms can pave the way for the design and delivery of enzyme-specific inhibitors.
Collapse
|
|
5 |
8 |
7
|
Vanaei S, Parizi MS, Abdolhosseini S, Katouzian I. Spectroscopic, molecular docking and molecular dynamic simulation studies on the complexes of β-lactoglobulin, safranal and oleuropein. Int J Biol Macromol 2020; 165:2326-2337. [PMID: 33132125 DOI: 10.1016/j.ijbiomac.2020.10.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Herbal bioactive compounds have captured pronounced attention considering their health-promoting effects as well as their functional properties. In this study, the binding mechanism between milk protein bovine β-lactoglobulin (β-LG), oleuropein (OLE) and safranal (SAF) found in olive leaf extract and saffron, respectively via spectroscopic and in silico studies. Fluorescence quenching information exhibited that interactions with both ligands were spontaneous and hydrophobic interactions were dominant. Also, the CD spectroscopy results demonstrated the increase in β-sheet structure and decrease in the α-helix content for both ligands. Size of β-LG-OLE complex was higher than β-LG-SAF due to the conformation and larger molecular size. Molecular docking and simulation studies revealed that SAF and OLE bind in the central calyx of β-LG and the surface of β-LG next to hydrophobic residues. Lastly, OLE formed a more stabilized complex compared to SAF based on the molecular dynamic simulation results.
Collapse
|
Journal Article |
5 |
7 |
8
|
Ma D, Chen L, Wu Y, Liu R. Evaluation of the removal of antiestrogens and antiandrogens via ozone and granular activated carbon using bioassay and fluorescent spectroscopy. CHEMOSPHERE 2016; 153:346-355. [PMID: 27027562 DOI: 10.1016/j.chemosphere.2016.03.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Antiestrogens and antiandrogens are relatively rarely studied endocrine disrupting chemicals which can be found in un/treated wastewaters. Antiestrogens and antiandrogens in the wastewater treatment effluents could contribute to sexual disruption of organisms. In this study, to assess the removal of non-specific antiestrogens and antiandrogens by advanced treatment processes, ozonation and adsorption to granular activated carbon (GAC), the biological activities and excitation emission matrix fluorescence spectroscopy of wastewater were evaluated. As the applied ozone dose increased to 12 mg/L, the antiestrogenic activity dramatically decreased to 3.2 μg 4-hydroxytamoxifen equivalent (4HEQ)/L, with a removal efficiency of 84.8%, while the antiandrogenic activity was 23.1 μg flutamide equivalent (FEQ)/L, with a removal efficiency of 75.5%. The removal of antiestrogenic/antiandrogenic activity has high correlation with the removal of fulvic acid-like materials and humic acid-like organics, suggesting that they can be used as surrogates for antiestrogenic/antiandrogenic activity during ozonation. The adsorption kinetics of antiestrogenic activity and antiandrogenic activity were well described by pseudo-second-order kinetics models. The estimated equilibrium concentration of antiestrogenic activity is 7.9 μg 4HEQ/L with an effective removal efficiency of 70.5%, while the equilibrium concentration of antiandrogenic activity is 33.7 μg FEQ/L with a removal efficiency of 67.0%. Biological activity evaluation of wastewater effluents is an attractive way to assess the removal of endocrine disrupting chemicals by different treatment processes. Fluorescence spectroscopy can be used as a surrogate measure of bioassays during ozonation.
Collapse
|
|
9 |
4 |
9
|
Luo Q, Bandi KR, Dong Y, Bao H, Li D, Chen Q. Synthesis and living cell imaging of a novel fluorescent sensor for selective cupric detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:146-151. [PMID: 30776715 DOI: 10.1016/j.saa.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Copper is an important element indispensable for human life and health. Many copper-determining probes have been created for exploring its functional behavior in various cell types but few of them contains both fluorescent and colorimetric characters. In the present study, we developed a set of copper probes by synthesizing several novel thiophene-based Schiff bases in order to make a suitable sensor for quantifying and imaging copper in living cells. We find that the ligand FS-1 has a splendid selectivity and affinity toward Cu2+ among the common divalent metal ions. Living cell imaging show that FS-1 has a robust and repetitive fluorescence response in the presence of Cu2+ only in the cytosolic space of Hepg2 cell and not in the other cells examined. These data suggest that we have developed a new copper probe that can be used as a Cu2+ fluorescent and colorimetric sensor for in vivo and in vitro copper studies.
Collapse
|
|
6 |
4 |
10
|
Polovyi IO, Gnatyuk OP, Pyrshev KO, Hanulia TO, Doroshenko TP, Karakhim SA, Posudievsky OY, Kondratyuk AS, Koshechko VG, Dovbeshko GI. Dual effect of 2D WS 2 nanoparticles on the lysozyme conformation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140556. [PMID: 33075478 DOI: 10.1016/j.bbapap.2020.140556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
In the present work we studied the effect of 2D WS2 nanoparticles on the conformational changes in lysozyme protein at different pH values (2.0-11.5). The contributions of various structural conformations (α-helix, β-sheets parallel and antiparallel, unordered structure and side groups) were determined by decomposition of Amid I absorbance bands. The 2D WS2 were shown to have different impact on secondary structure depending on pH of the solution and protein concentration. The amyloid fibril presence was confirmed with confocal microscopy enhanced by gold support, and fluorescent spectroscopy with amyloid-sensitive dye Thioflavin T. Our data show that WS2 can both inhibit and stimulate amyloid formation. Additionally, we have also reported an unusual spectroscopic behavior displayed by lysozyme, indicated by narrowing of Amide I and Amide II bands at pH 2.5 and 3.5 when incubated with 2D WS2 nanoparticles.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
2 |
11
|
Stabilization of AIMP1/p43 and EMAP II recombinant proteins in the complexes with polysaccharide dextran-70. Pharmacol Rep 2020; 72:238-245. [PMID: 32016851 DOI: 10.1007/s43440-019-00016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Protein-based pharmaceuticals are among the fastest growing categories of therapeutic agents in the clinic and as commercial products, and typically target high-impact areas such as various cancers, autoimmune diseases and metabolic disorders. The aim of our work was to explore the possibility of reducing the level of aggregation and improve the stability of the recombinant proteins AIMP1/p43 (aminoacyl-tRNA synthetase complex component of the higher eukaryotes) and antitumor cytokine EMAP II (proteolytic cleavage product of AIMP1/p43) in combination with dextran-70 polysaccharide for structural-functional research and development of new sustainable biomedical products. METHODS We studied interaction strength between these recombinant proteins with polymer by fluorescence spectroscopy and molecular docking. RESULTS During experimental studies, optimal concentration ratio of AIMP1/p43 and EMAP II recombinant proteins with dextran-70 in which proteins bind to ligand and form complex was established. As a result of molecular docking investigations, spatial structure of the AIMP1/p43-dextran-70 and EMAP II-dextran-70 complexes was obtained and their binding energy was evaluation. CONCLUSIONS The effect of temperature increase on the stability of these two complexes was determined by fluorescence spectroscopy method. It was found that dextran-70 specifically connects with recombinant proteins. Binding stoichiometry of dextran-70 with protein is about 1:1, which confirms the formation of a specific complex.
Collapse
|
|
5 |
1 |
12
|
Bodipy Based Fluorescent Materials in Cellulose Matrices: Synthesis, Spectral Properties and Vapochromic Fluorescent Recognition of Alcohols and Acetone. J Fluoresc 2021; 31:1627-1635. [PMID: 34370179 DOI: 10.1007/s10895-021-02792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
This paper highlights advances made using the 4-bora-3a,4a-diaza-s-indacene (BODIPY) as a fluorophore in design and application of fluorescent sensors for microenvironment polarity. Sections of the paper cover broad analysis of a range of fluorescent indicators immobilized in ethyl- and methyl cellulose matrices. The present study demonstrates that BODIPY-based fluorescent materials could be successfully utilized for ratiometric detection of ethanol and acetone in gas phase. The achieved limit of detection value equals 0.02 mg/ml for acetone and 0.08 mg/ml for ethanol, whereas obtained sensoric materials are reusable without regeneration required.
Collapse
|
Journal Article |
4 |
0 |
13
|
Blagodatskikh IV, Vyshivannaya OV, Tishchenko NA, Bezrodnykh EA, Piskarev VE, Aysin RR, Antonov YA, Orlov VN, Tikhonov VE. Interaction between reacetylated chitosan and albumin in alcalescent media. Carbohydr Res 2024; 545:109277. [PMID: 39299161 DOI: 10.1016/j.carres.2024.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Interaction of chitosan and its derivatives with proteins of animal blood at blood pH relevant conditions is of a particular interest for construction of antimicrobial chitosan/protein-based drug delivery systems. In this work, the interaction of a series of N-reacetylated oligochitosans (RA-CHI) having Mw of 10-12 kDa and differing in the degree of acetylation (DA 19, 24, and 40 %) with bovine serum albumin (BSA) in alkalescent media is described in first. It is shown that RA-CHI forms soluble complexes with BSA in solutions with pH 7.4 and a low ionic strength. Light scattering study shows that soluble RA-CHI complexes have spherical form with the radius of about 100 nm. Circular dichroism, fluorescent spectroscopy, and micro-IR spectroscopy studies show that the secondary structure of BSA in soluble complexes remain intact. Isothermal titration calorimetry of RA-CHI with DA 24 % and BSA mixing in the buffers with different ionization heats reveals a significant contribution of electrostatic forces to the binding process and an additional ionization of chitosan due to the proton transfer from the buffer substance. An increase of ionic strength to the blood relevant value 0.15 M suppresses the binding. It is shown that application of RA-CHI with higher DA value leads to a decrease in the affinity of RA-CHI to BSA and an alteration of the interaction mechanism. The finding opens an opportunity to the application of N-reacetylated chitosan derivatives in the complex systems compatible with blood plasma proteins.
Collapse
|
|
1 |
|
14
|
Fu M, Gao J, Mao K, Sun J, Ahmed Sadiq F, Sang Y. Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses. Food Chem 2024; 433:137352. [PMID: 37678123 DOI: 10.1016/j.foodchem.2023.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems.
Collapse
|
|
1 |
|
15
|
Yuan J, Chen S, Ge B, Cui M, Wong Y, Qi Y, Ge Y, Hao A, He K. Comprehensive source tracing and process supervision of coating industrial wastewater using integrated water quality parameters and fluorescence spectroscopy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:380. [PMID: 40069383 DOI: 10.1007/s10661-025-13811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Rapid industrialization has led to the concentration of heavily polluting industries, such as coatings, in industrial parks, resulting in significant volumes of hazardous wastewater. Effective inflow management and process monitoring are essential for the stable operation of wastewater treatment plants. This study collected samples from a coating industrial park and its treatment plant to analyze water quality. Fluorescence spectra were analyzed using parallel factor analysis (PARAFAC) to identify specific components. A fluorescence peak at Ex/Em = 350/425 nm was detected, indicating the presence of aromatic hydrocarbons. Conventional treatment, which primarily includes physical and chemical methods such as coagulation, flocculation, and activated sludge processes, was ineffective in removing these substances, while Fenton precipitation successfully degraded them. UV254 showed significant correlations with the biological index (BIX) (r = - 0.52) and fluorescence component C1 (r = 0.85), suggesting its potential as a pollutant marker. Component C4, identified as lignin-like, is characteristic of coating industry materials. These findings highlight the potential of fluorescence spectroscopy and PARAFAC for tracing wastewater sources and monitoring pollutant degradation in industrial treatment plants.
Collapse
|
|
1 |
|